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NUMERICAL METHODS AND COMPUTATIONAL ACCURACY

The simulations are performed using a volume-of-fluid (VOF) method with a piecewise-linear interface calculation
(PLIC) algorithm, which is implemented in the interFoam solver of the open-source OpenFOAM v8. In the VOF
method, the phase fraction variable α is utilized in each cell to characterize the distribution of the two phases. The
range of α is from zero to one, where α = 0 represents the continuous phase, α = 1 represents the dispersed phase,
and 0 < α < 1 represents the interface region. The evolution of α is governed by the transport equation

∂tα+∇ · (αu) = 0, (S1)

where u is the velocity field. Because of the continuity of the phase fraction, the interface between the two phases
tends to become smeared. To mitigate this issue, previous versions of OpenFOAM implemented an interface com-
pression approach based on the counter-gradient transport to keep the sharpness of the interface [1]. In addition, the
multidimensional universal limiter with explicit solution (MULES) algorithm is implemented to ensure that the phase
fraction α remains within the strict bounds of 0 and 1. After adding the interface compression term which is only
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FIG. S1: A snapshot of the two-phase interface resolved by the PLIC algorithm.
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active at the interface, the transport equation becomes

∂tα+∇ · (αu) +∇ · [α(1− α)uc] = 0, (S2)

where uc = cu∇α/|∇α| with c being the compression factor. Alternatively, a PLIC-based algorithm has been recently
implemented to capture the interface more accurately. This algorithm involves representing the interface between the
two phases by employing surface-cuts which split each cell to match the volume fraction of the phase in that cell. The
surface-cuts are oriented according to the point field of the local phase fraction. The phase fraction on each cell face is
then calculated from the amount submerged below the surface-cut. Note that this algorithm may cannot handle certain
cells when the cut position is unclear or multiple interfaces exist. In such cases, the interface compression approach
is still applied to those cells. Compared to the traditional PLIC method, the present approach is easier to implement
when using an unstructured mesh. Moreover, when solving practical engineering problems, the combination of the
present method with the interface compression approach enhances the robustness of the solutions. Therefore, we have
employed this PLIC-based VOF method in our study to deal with the two-phase turbulence in TC system. Figure
S1 shows a snapshot of a droplet placed in the Taylor-Couette system. The resolved interface region (0 < α < 1) is
confined within a single layer of grid cells between the two phases to ensure sharpness of the interface.

Spurious currents have long been a significant obstacle in relevant research, affected by factors including surface
tension coefficient, grid resolution, time step, density ratio, and viscosity ratio between phases [2–4]. To date,
completely eliminating spurious currents remains a formidable challenge. In our study, we address this issue by
carefully selecting suitable simulation conditions and parameters to ensure that spurious currents remain within an
acceptable range. Figure S2 shows a snapshot of a static drop with a diameter half of the gap width. The density
ratio of the drop to the continuous phase is set as 1/4 and the viscosity ratio is set as 1/4 which has strongest spurious
currents considered in our work. The inner and outer cylinders are fixed and the spurious current mainly appear near
the two-phase interface. The normalized maximum velocity magnitude is limited to below 1.8% as shown in Fig. S2.
By doing this, the almost constant conserved quantity for two-phase flow could be obtained as shown by the black
solid line in Fig. S3. The ratio of the fluctuation and mean value of the conserved quantity is below 1.2%.

The schemes of the time integration and spatial discretization are listed below. We utilize a blended scheme for the
temporal term discretization, which lies between the first-order Euler scheme and the second-order Crank-Nicolson
scheme. To ensure robustness and accuracy, we set the blending factor to 0.9. For spatial discretization, we employ a
second-order linear-upwind scheme to discretize the advection term in the momentum equation. The phase fraction
transport equation is solved using a piecewise-linear interface calculation (PLIC) scheme. The pressure-velocity
coupling is handled using the PIMPLE algorithm. The pressure equation is solved using the Geometric Algebraic
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FIG. S2: Spurious currents for a static drop in a Taylor-Couette system with the two cylinders fixed. (a) Contour of the velocity
magnitude. (b) The maximum velocity magnitude as a function of time. The maximum velocity magnitude is normalized by
the velocity of the inner cylinder ui considered in our work and the time t is normalized by the time required for one turn of
the inner cylinder t0 = 2πri/ui, where ri is the radius of the inner cylinder.
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Multigrid (GAMG) solver coupled with the Simplified Diagonal-based Incomplete Cholesky (DIC) smoother. For
solving velocity and phase fraction, we use an iterative solver with a symmetric Gauss-Seidel smoother. In the
simulation, we maintain a tolerance of 10−6 for all variables to control the residuals, except for the phase fraction,
which has a tolerance of 10−8.

We have before performed simulations using OpenFOAM for single-phase flows with a range of Taylor number
from Ta = 5.84× 103 to Ta = 2.39× 107 with the temporal term discretized using a second-order implicit backward
inferencing scheme [5, 6] and validated our results through comparisons with those from Ostilla et al. [7]. Considering
our temporal term is discretized with a blended scheme, we have additionally simulated two cases with the Taylor
number being Ta = 3.90 × 106 (Re = 1600) and Ta = 9.52 × 106 (Re = 2500) and compared our results with those
from Ostilla et al [7], as shown in Table 1. In our work, the minimum flow geometry with a rotational symmetry of
six (nsym = 6, i.e., the azimuthal angle of the simulated domain is π/3) and an aspect ratio of Γ = L/d = 2π/3 is
selected to reduce the computational cost while not affecting the results, which has been verified by previous studies
[8, 9]. The L denotes the axial length and d denotes the gap width. Regarding the deviation analysis, we represent
the Nusselt number Nuω from Ostilla et al. [7] and OpenFOAM as Nuω,Ot and Nuω,Op, respectively. The deviation
is obtained by Nuω,Op/Nuω,Ot − 1 at the same Reynolds number. A deviation of +1.13% is found at Re=1600 and
a deviation of −1.37% is found at Re = 2500, indicating that the chosen time scheme is sufficient to capture the flow
field information.

Re Ta nsym Γ Nθ ×Nr ×Nz Nuω Deviation

Ostilla et al. 1600 3.90× 106 1 2π 300× 144× 144 5.42553 —

OpenFOAM 1600 3.90× 106 6 2π/3 80× 160× 80 5.48683 +1.13%

Ostilla et al. 2500 9.52× 106 1 2π 384× 192× 192 6.42160 —

OpenFOAM 2500 9.52× 106 6 2π/3 100× 192× 100 6.33191 −1.37%

TABLE I: Validity of the calculation results for the single-phase flow at Re = 1600 and Re = 2500.

FORMULA DERIVATION OF THE CONSTANT AZIMUTHAL MOMENTUM TRANSPORT

The azimuthal momentum in a Taylor-Couette flow in the cylindrical coordinate system (r, θ, z) is governed by
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where ur, uθ, and uz are the radial velocity, the azimuthal velocity and the axial velocity, respectively. fθ is the
azimuthal interfacial tension. Although the density and viscosity of the dispersed phase (ρd and µd) and carrier phase
(ρf and µf ) are constants, the effective density ρ and the effective viscosity µ are variables in two-phase flow and are
defined as ρ = αρd +(1−α)ρf and µ = αµd +(1−α)µf in the volume-of-fluid method, where α is the phase fraction
of dispersed phase. We apply the following operator to Eq. (S3):
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i.e., we average all the quantities over time, axially, and azimuthally. T is the total time and L is the height of
Taylor-Couette system. Given the axial periodicity, azimuthal periodicity, and statistical steady state, any term in
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Combining the two terms on the left side of Eq. (S5), we have〈
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The terms on the right side of Eq. (S5) can be rewritten as〈
2µ

r2
∂ur

∂θ
+

2µ

r

∂uθ

∂r
− 2µuθ

r2
− µ

r2
∂ur

∂θ
+

µ

r

∂ur

∂r∂θ
+

µ∂2uθ

∂r2
+

µuθ

r2
− µ

r

∂uθ

∂r
+

1

r

∂µ

∂r

∂ur

∂θ
+

∂µ

∂r

∂uθ

∂r
− ∂µ

∂r

uθ

r
+ fθ

〉
A,t

.

(S7)

Combining the similar items, including the first and fourth items, the second and eighth items, and the third and
seventh items, the Eq. (S7) can be rewritten as〈
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Combining the second, third, fifth, seventh, and eighth items of Eq. (S8), we have〈
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Combining the remaining items of Eq. (S8), we have〈
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We here introduce the operator ∂x =
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The Eq. (S12 can be rewritten as
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where the
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from the inner cylinder r = ri to a generic cylindrical surface r = r∗
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Jω
adv(ri) = 0 due to ur = 0 at the inner cylinder, and Jω

int(ri) = 0 due to fθ = 0 at the inner cylinder. We can therefore
introduce the constant quantity Jω = Jω

dif (ri) to characterize the transverse current of azimuthal momentum, i.e.,

Jω = Jω
adv(r

∗) + Jω
dif (r

∗) + Jω
int(r

∗). (S15)

The three terms on the right side of Eq. (S15) are the density-related advection contribution, the viscosity-related
diffusion contribution, and the interface contribution, respectively. The interface contribution exhibits a distinct form
from other two terms, and it is necessary to discuss its physical meaning. For the region between the arbitrary
cylindrical surface and the inner cylinder, the interface acts as a source term for momentum transfer. This means that
the interface contribution comes from all the interfaces in the region between the cylindrical surface and the inner
cylinder. Therefore, it is necessary to sum the influence of all interfaces in the region.

The Eq. (S15) is normalized by the single-phase laminar current Jω
lam = 2µfr

2
i r

2
oωi/(r

2
o − r2i ) to obtain the constant

Nusselt number Nuω = Jω/Jω
lam and its three contributions related to r including Nuω,adv(r) , Nuω,dif (r), and

Nuω,int(r), where ro and ωi are the radius of outer cylinder and the angular velocity of inner cylinder, respectively.
The Nuω and T are related by T = 2πLJω

lamNuω, providing the opportunity to effectively decouple the effects of
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density, viscosity, and interface structure on the drag modulation. Figure S3 shows the Nuω and its three contributions
as a function of the radial position for two-phase flow with ρd = ρf/4 and µd = µf/4, and compares them to those
for single-phase flow. Given that the value of Nuω hardly changes with r, it can be sure that present simulations
accurately capture the momentum transfer process. The dispersed phase shows to alter the density-related advection
contribution and the viscosity-related diffusion contribution, and induce non-zero interface contribution. By varying
density or viscosity of the dispersed phase individually, it becomes possible to reveal their respective roles in drag
modulation.
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FIG. S3: Momentum transport analysis at Re = 2000. The dotted line denotes the single-phase flow and the solid line denotes
the two-phase flow with φ = 10%.
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FIG. S4: Advection contribution analysis. (a) The whole advection contribution, (b) the average part, and (c) the turbulent
part are shown as a function of the radial position.

Strictly speaking, based on the Favre averaging, the formula of the constant quantity can be rewritten as

Jω = Jω
adv1(r) + Jω

adv2(r) + Jω
dif (r) + Jω

int(r), (S16)

where Jω
adv1(r) = r2ρũrũθ and Jω

adv2(r) =
〈
r2ρu′′
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′′
θ

〉
A,t

are the average part and the turbulent part of the advection
term Jω

adv1(r), respectively. Here, ρ = ⟨ρ⟩A,t, ũθ = ⟨ρuθ⟩A,t / ⟨ρ⟩A,t and ũr = ⟨ρur⟩A,t / ⟨ρ⟩A,t.The two parts of
the advection contribution are normalized to obtain Nuω,adv1(r) = Jω

adv1(r)/J
ω
lam and Nuω,adv2(r) = Jω

adv2(r)/J
ω
lam,

which are shown in Fig. S4. The average part of the advection contribution is negligible compared to the turbulent
part since their maximum ratio is within 1.7% and the mean value of the ratio is about 0.59%. Hence, the advection
contribution, the primary focus of our manuscript, is synonymous with the turbulence contribution.
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