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1. Derivation of viscous streaming solution for elastic bodies11

Here we present a detailed, step-by-step derivation of the viscous streaming solution in the12
case of a hyperelastic three-dimensional sphere. The logic of our derivation is the following—13
we first present the problem setup with the complete set of governing equations and boundary14
conditions. We then non-dimensionalize them through appropriate scales, introducing the15
system’s key non-dimensional parameters, together with their ranges in typical settings.16
We perturb the relevant fields (velocity, deformation, pressure) as an asymptotic series of17
powers of the non-dimensional oscillation amplitude 𝜖 , to obtain approximations of the flow18
field solution at different orders. We derive the purely oscillatory solution at zeroth order19
O (1), which reduces to a rigid sphere immersed in a fluid governed by the unsteady Stokes20
equation. We then derive the next order solution at O (𝜖) in two steps. First, we obtain21
the deformation of the elastic solid due to the zeroth order flow in the fluid phase. Next,22
we use this deformation to derive the necessary boundary condition for the fluid flow, thus23
incorporating the effect of elasticity into the rectified streaming flow solution.24

This section is organized as follows: problem setup, governing equations and boundary25
conditions are presented in Section 1.1; their non-dimensionalization and key system-defining26
parameters are discussed in Section 1.2; candidate perturbation series solution and final form27
of the relevant equations are shown in‘Section 1.3; zeroth order (pure oscillatory) solution is28
derived in Section 1.4; finally, the first order O (𝜖) (steady streaming) flow solution including29
the effects of elasticity are discussed in Section 1.6.30

1.1. Problem setup and governing equations31

We consider the case of a three-dimensional visco-hyperelastic sphere (Fig. 1) of radius32
𝑎 immersed in a viscous fluid, with the fluid oscillating with velocity 𝑉 (𝑡) = 𝜖𝑎𝜔 cos𝜔𝑡,33
where 𝜖 , 𝜔 and 𝑡 represent the non-dimensional amplitude, angular frequency and time,34
respectively. We ‘pin’ the sphere’s center using a concentric, rigid spherical inclusion of35
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Figure 1: Problem setup. (a) 3D Elastic solid sphere Ω𝑒 of radius 𝑎 with a rigid inclusion
(pinned zone Γ of radius 𝑏), immersed in viscous fluid Ω 𝑓 . In this study, we deploy the

spherical coordinate system where (𝑟, \, 𝜙) are the radial, polar, and azimuthal
coordinates. The sphere is exposed to an oscillatory flow with far-field velocity

𝑉 (𝑡) = 𝜖𝑎𝜔 cos(𝜔𝑡) in the 𝑥 direction, along the axis of symmetry. (b) 2D axisymmetric
cross-section of the elastic sphere.

radius 𝑏, where 𝑏 < 𝑎, to kinematically enforce zero strain and velocities near the sphere’s36
center. This pinned zone Γ also serves the purpose of eliminating the trivial solution of the37
entire sphere vibrating in-sync with the fluid (i.e. 𝑉sph(𝑡) = 𝜖𝑎𝜔 cos𝜔𝑡).38

We denote with Ω𝑒 and 𝜕Ω the region occupied by the elastic sphere and the boundary39
between the elastic solid and viscous fluid, respectively. The region occupied by the fluid40
is represented by Ω 𝑓 . The fluid is assumed to be Newtonian, isotropic, and incompressible41
with density 𝜌 𝑓 and dynamic viscosity ` 𝑓 . We further assume that the solid is isotropic and42
incompressible with constant density 𝜌𝑒. The elastic solid is assumed to exhibit viscoelastic43
Kelvin-Voigt behavior, where stresses are modeled via neo-Hookean hyperelasticity, char-44
acteristic of soft biological materials (Bower 2009). Nonetheless, as it will later become45
apparent, the choice of hyperelastic or viscoelastic model does not affect the general theory46
presented in this study.47

The dynamics in the elastic and fluid phases, in the absence of body forces, is described48
by the Navier–Stokes (fluid) and the Cauchy (solid) momentum equations49

𝜌 𝑓

(
𝜕𝒗

𝜕𝑡
+ (𝒗 · ∇)𝒗

)
= −∇𝑝 + ` 𝑓∇

2𝒗, 𝒙 ∈ Ω 𝑓

𝜌𝑒

(
𝜕𝒗

𝜕𝑡
+ (𝒗 · ∇)𝒗

)
= −∇𝑝 + `𝑒∇2𝒗 + ∇ · 𝝈′

ℎ𝑒, 𝒙 ∈ Ω𝑒

(1.1)50

where 𝑝 and 𝒗 correspond to pressure and velocity fields, respectively. As a convention,51

the prime symbol ′ on a tensor 𝑨 denotes it is deviatoric, i.e. 𝑨′ := 𝑨 − 1
3
𝑡𝑟 (𝑨)𝑰, with52

𝑰 representing the tensor identity and 𝑡𝑟 (·) representing the trace operator. Thus, 𝝈′
ℎ𝑒53

corresponds to the deviatoric hyperelastic stress inside the elastic solid, which for a neo-54
Hookean solid is given by55

𝝈′
ℎ𝑒 = 𝐺 (𝑭𝑭𝑇 )′, (1.2)56

where 𝑭 corresponds to a finite strain measure known as the deformation gradient tensor,57
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defined as 𝑭 = 𝜕𝒙/𝜕𝑿. Here 𝑿 and 𝒙 correspond to the position of a material point at58
rest and after deformation, respectively. Alternatively, 𝑭 can also be written in the form59
𝑭 = 𝑰 + ∇𝒖, where 𝒖 is the displacement field defined as 𝒖 = 𝒙 − 𝑿 corresponding to the60
relative deformation of a material point. Further details regarding derivation of the solid61
governing equation may be found in supplementary materials, Section §10. In addition,62
incompressibility translates to the following constraint on the velocity field in the fluid phase63

∇ · 𝒗 = 0, 𝒙 ∈ Ω 𝑓 (1.3)64

and in the solid phase65

∇ · 𝒗 = 0, 𝒙 ∈ Ω𝑒

𝑑𝑒𝑡 (𝑭) = 1, 𝒙 ∈ Ω𝑒

(1.4)66

where 𝑑𝑒𝑡 (·) is the determinant operator. We note that 𝑑𝑒𝑡 (𝑭) = 1 follows from ∇ · 𝒗 = 067
(Jain et al. 2019) and it is not an additional constraint.68

To close the system of governing equations, we next derive the necessary boundary69
conditions relative to the pinned zone, interfacial conditions, and far-field conditions. First,70
the rigid inclusion at the center of the sphere enforces zero velocity and strain fields over its71
domain Γ72

𝒗 = 0, 𝒙 ∈ Γ

𝒖 = 0, 𝒙 ∈ Γ.
(1.5)73

Second, the fluid and elastic solid phases interact exclusively via boundary conditions at the74
fluid–elastic solid interface. This implies continuity in velocities (no-slip)75

𝒗 𝑓 = 𝒗𝑒, 𝒙 ∈ 𝜕Ω (1.6)76

and traction forces (normal and tangential components)77

𝒏 · (−𝑝 𝑓 𝑰 + 2` 𝑓 𝑫
′
𝑓 ) · 𝒏 = 𝒏 · (−𝑝𝑒 𝑰 + 2`𝑒𝑫′

𝑒 + 𝐺 (𝑭𝑭𝑇 )′) · 𝒏, 𝒙 ∈ 𝜕Ω
𝒏 · (−𝑝 𝑓 𝑰 + 2` 𝑓 𝑫

′
𝑓 ) · 𝒕 = 𝒏 · (−𝑝𝑒 𝑰 + 2`𝑒𝑫′

𝑒 + 𝐺 (𝑭𝑭𝑇 )′) · 𝒕, 𝒙 ∈ 𝜕Ω
(1.7)78

where 𝒏 and 𝒕 denote the unit outward normal vector and tangent vector at the interface 𝜕Ω79
(Fig. 1). The subscripts 𝑒 and 𝑓 refer to elastic and fluid phases respectively. Here, 𝑫′ is80
the strain rate tensor (∇𝒗 + ∇𝒗𝑇 )/2. Finally, the far-field flow velocity must approach the81
unperturbed oscillatory flow82

𝒗( |𝒙 | → ∞) = 𝜖𝑎𝜔 cos𝜔𝑡 𝑖, 𝒙 ∈ Ω 𝑓 (1.8)83

where 𝑖 refers to the oscillation direction. This concludes the definition of our model problem84
and introduces all governing equations and boundary conditions necessary to its solution.85

1.2. Non-dimensional form and key parameters86

Next, we non-dimensionalize the governing equations and boundary conditions, followed87
by the identification of the system’s key non-dimensional parameters, together with their88
ranges in typical viscous streaming scenarios. Following the setup of Fig. 1, we choose the89
characteristic scales of velocity, length and time to be 𝑉 = 𝜖𝑎𝜔, 𝐿 = 𝑎 and 𝑇 = 1/𝜔,90
respectively. We also define the density ratio as 𝛼 = 𝜌𝑠/𝜌 𝑓 and the dynamic viscosity ratio91
as 𝛽 = `𝑠/` 𝑓 . Given that streaming is observed in flow regimes with low to moderate inertia92
(i.e. large viscous effects), we scale the hydrostatic pressure using viscous stresses, so that93
the pressure scale is 𝑃 = ` 𝑓𝑉/𝐿. Non-dimensional relevant quantities and operators can94
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then be expressed as95

�̂� =
𝒙

𝑎
; 𝑡 = 𝜔𝑡; �̂� =

𝒗

𝜖𝑎𝜔
; ∇̂ = 𝑎∇; 𝑝 =

𝑝

` 𝑓 𝜖𝜔
; �̂� = 𝑭; �̂�′ =

𝑫′

𝜖𝜔
; �̂� = 𝒏; �̂� = 𝒕.

(1.9)96
By substituting the above quantities into Eq. (1.1), we obtain in the fluid phase97 (

𝜕 �̂�

𝜕𝑡
+ 𝜖 (�̂� · ∇̂) �̂�

)
= −

` 𝑓

𝜌 𝑓 𝑎
2𝜔

∇̂𝑝 +
` 𝑓

𝜌 𝑓 𝑎
2𝜔

∇̂2�̂�, �̂� ∈ Ω 𝑓 (1.10)98

and in the solid phase99

𝜖 𝜌 𝑓 𝑎
2𝜔2

𝐺
(𝛼)

(
𝜕 �̂�

𝜕𝑡
+ 𝜖 (�̂� · ∇̂) �̂�

)
= −

𝜖 ` 𝑓𝜔

𝐺
∇̂𝑝 +

𝜖 ` 𝑓𝜔

𝐺
(𝛽)∇̂2�̂� + ∇̂ · (�̂��̂�𝑇 )′, �̂� ∈ Ω𝑒 .

(1.11)100
By introducing the Womersley number 𝑀 = 𝑎

√︁
𝜌 𝑓𝜔/` 𝑓 , which is the inverse of the non-101

dimensional Stokes layer thickness 𝛿𝐴𝐶/𝑎, and Cauchy number Cau = 𝜖 𝜌 𝑓 𝑎
2𝜔2/𝐺, which102

represents the ratio of inertial to elastic forces, we obtain103 (
𝜕 �̂�

𝜕𝑡
+ 𝜖 (�̂� · ∇̂) �̂�

)
= − 1

𝑀2 ∇̂𝑝 +
1
𝑀2 ∇̂

2�̂�, �̂� ∈ Ω 𝑓 (1.12)104

and105

Cau(𝛼)
(
𝜕 �̂�

𝜕𝑡
+ 𝜖 (�̂� · ∇̂) �̂�

)
= −Cau

𝑀2 ∇̂𝑝 +
Cau
𝑀2 (𝛽)∇̂2�̂� + ∇̂ · (�̂��̂�𝑇 )′, �̂� ∈ Ω𝑒 . (1.13)106

Similar to the governing equations above, non-dimensionalization transforms Eq. (1.6) and107
Eq. (1.7) into the following non-dimensional boundary conditions108

�̂� 𝑓 = �̂�𝑒 �̂� ∈ 𝜕Ω (1.14)109
110

�̂� ·
(

Cau
𝑀2 (−𝑝 𝑓 𝑰 + 2�̂�′

𝑓 )
)
· �̂� = �̂� ·

(
Cau
𝑀2 (−𝑝𝑒 𝑰 + 2(𝛽)�̂�′

𝑒) + (�̂��̂�𝑇 )′
)
· �̂�, �̂� ∈ 𝜕Ω

�̂� ·
(

Cau
𝑀2 (−𝑝 𝑓 𝑰 + 2�̂�′

𝑓 )
)
· �̂� = �̂� ·

(
Cau
𝑀2 (−𝑝𝑒 𝑰 + 2(𝛽)�̂�′

𝑒) + (�̂��̂�𝑇 )′
)
· �̂�, �̂� ∈ 𝜕Ω.

(1.15)111
Finally, the incompressibility constraints of Eq. (1.3) and Eq. (1.4), and the pinned zone112
constraints of Eq. (1.5) remain unchanged, while the far-field condition now reads113

�̂�( |�̂� | → ∞) = cos 𝑡 𝑖, �̂� ∈ Ω 𝑓 . (1.16)114

We note that the key parameters that define the system behaviour are 𝜖 , 𝑀 and Cau.115
We emphasize that 𝜖 corresponds to the non-dimensional oscillation amplitude and 𝜖 ≪ 1116
for typical viscous streaming applications. The Womersley number 𝑀 , the inverse of the117
non-dimensional Stokes layer thickness, is typically 𝑀 ⩾ O (1) (Marmottant & Hilgenfeldt118
2004; Lutz et al. 2006). Accordingly, we assume 𝜖 ≪ 1 and 𝑀 = O (1), consistent with119
assumptions made for 2D soft cylinders (Bhosale et al. 2022).120

Lastly, the parameter Cau, known as the Cauchy number, represents the ratio of inertial121
to elastic forces in the system. Here we employ the same assumption for Cau as the 2D122
soft cylinder case (Bhosale et al. 2022), where for a rigid body Cau = 0, and Cau > 0 for123
an elastic body with Cau ≪ 1 implying a weakly elastic body. We note that dealing with124
Cau ⩾ O (1) is mathematically challenging due to the highly non-linear nature of the stress-125
strain response in hyperelastic materials. Here, to gain theoretical insight, we assume that the126

Focus on Fluids articles must not exceed this page length
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sphere is instead weakly elastic Cau ≪ 1 and in particular that Cau = ^𝜖 , where ^ = O (1).127
This assumption simplifies the application of asymptotics/perturbation theory, allowing us to128
investigate the effect of body elasticity on the streaming solution in the limit of 𝜖 → 0, thus129
Cau → 0. This is because the problem dependence is reduced to one small parameter 𝜖 (i.e.130
Cau and 𝜖 are assumed to be equally small). For the less significant parameters density ratio131
𝛼 and viscosity ratio 𝛽, we assume 𝛼 = O (1) and 𝛽 = O (1). Nonetheless, these assumptions132
have negligible influence on the final streaming flow solution, as it shall become clear in the133
following analysis.134

1.3. Perturbation series approach135

Given the above assumptions and limits, we perturb all relevant fields (velocity, pressure,136
deformation and interface location) as an asymptotic series with powers of 𝜖 as gauge137
functions, valid in the limit 𝜖 → 0 and Cau → 0. We henceforth drop the use of ˆ[·] to138
simplify notations, thus assuming all quantities to be non-dimensional.139

With increasing powers of 𝜖 , we obtain higher order correction terms in the approximate140
solution, approaching the true problem solution in the limit 𝜖 → 0 and Cau → 0. In this141
work, we aim to derive the solution at least to first order O (𝜖), where streaming is known to142
emerge in the rigid body case. We perturb all relevant quantities to O (𝜖) as shown below143

𝒗 ∼ 𝒗0 + 𝜖𝒗1 + O
(
𝜖2

)
𝒖 ∼ 𝒖0 + 𝜖𝒖1 + O

(
𝜖2

)
𝒏 ∼ 𝒏0 + 𝜖𝒏1 + O

(
𝜖2

)
𝒕 ∼ 𝒕0 + 𝜖 𝒕1 + O

(
𝜖2

)
𝑝 ∼ 𝑝0 + 𝜖 𝑝1 + O

(
𝜖2

)
𝜕Ω ∼ 𝜕Ω0 + 𝜖𝜕Ω1 + O

(
𝜖2

)
(1.17)144

where the subscript (0, 1, ...) indicates the order of the solution. We comment that this145
may appear different from previous literature examples (Longuet-Higgins 1998; Spelman146
& Lauga 2017) where perturbation series start from the first order O (𝜖), namely, 𝜓 =147
𝜖𝜓1 + 𝜖2𝜓2 + O

(
𝜖3) . However, this apparent discrepancy is readily resolved by recalling148

that our nondimensionalization employs the characteristic velocity 𝑉 = 𝜖𝑎𝜔, which stems149
from our far-field oscillatory boundary condition (Eq. 1.8, identical to previous literature).150
This characteristic velocity 𝑉 is of order O (𝜖). Thus, upon nondimensionalization, velocity,151
vector potential, and Stokes streamfunctions drop of one order relative to their dimensional152
forms. For example, the zeroth order velocity 𝒗0 is in fact of order O (𝜖), which corresponds153
to the first order in the alternative expansion approach. Thus, our expansion approach is154
consistent with classical sphere streaming literature (Lane 1955; Wang 1965), as well as155
mirroring theories for cylinders (Holtsmark et al. 1954; Raney et al. 1954; Bertelsen et al.156
1973).157

By substituting the above expansions into Eq. (1.12) and Eq. (1.13) we obtain the following158
form of the governing equations in the fluid159 (

𝜕 (𝒗0 + 𝜖𝒗1 + ...)
𝜕𝑡

+ 𝜖 ((𝒗0 + 𝜖𝒗1 + ...) · ∇) (𝒗0 + 𝜖𝒗1 + ...)
)

= − 1
𝑀2 ∇(𝑝0 + 𝜖 𝑝1 + ...) +

1
𝑀2 ∇

2(𝒗0 + 𝜖𝒗1 + ...), 𝒙 ∈ Ω 𝑓

(1.18)160
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and in the solid phase161

^𝜖 (𝛼)
(
𝜕 (𝒗0 + 𝜖𝒗1 + ...)

𝜕𝑡
+ 𝜖 ((𝒗0 + 𝜖𝒗1 + ...) · ∇) (𝒗0 + 𝜖𝒗1 + ...)

)
= − ^𝜖

𝑀2 ∇(𝑝0 + 𝜖 𝑝1 + ...) +
^𝜖

𝑀2 (𝛽)∇
2(𝒗0 + 𝜖𝒗1 + ...)

+ ∇ · ((𝑰 + ∇𝒖0 + 𝜖∇𝒖1 + ...) (𝑰 + ∇𝒖0 + 𝜖∇𝒖1 + ...)𝑇 )′, 𝒙 ∈ Ω𝑒 .

(1.19)162

Furthermore, incompressibility in the fluid phase implies163

∇ · (𝒗0 + 𝜖𝒗1 + ...) = 0, 𝒙 ∈ Ω 𝑓 (1.20)164

and in the solid phase165

∇ · (𝒗0 + 𝜖𝒗1 + ...) = 0, 𝒙 ∈ Ω𝑒

𝑑𝑒𝑡 (𝑰 + ∇𝒖0 + 𝜖∇𝒖1 + ...) = 1, 𝒙 ∈ Ω𝑒 .
(1.21)166

For the boundary conditions, constraints induced by the pinned zone (Eq. (1.5)) read167

(𝒗0 + 𝜖𝒗1 + ...) = 0, 𝒙 ∈ Γ

(𝒖0 + 𝜖𝒖1 + ...) = 0, 𝒙 ∈ Γ.
(1.22)168

Interfacial boundary conditions Eq. (1.14) and Eq. (1.15) follow as169

(𝒗 𝑓 ,0 + 𝜖𝒗 𝑓 ,1 + ...) = (𝒗𝑒,0 + 𝜖𝒗𝑒,1 + ...) 𝒙 ∈ 𝜕Ω (1.23)170

171

(𝒏0 + 𝜖𝒏1 + ...) ·
( 𝜖^
𝑀2 (−(𝑝 𝑓 ,0 + 𝜖 𝑝 𝑓 ,1 + ...)𝑰 + 2(𝑫′

𝑓 ,0 + 𝜖𝑫
′
𝑓 ,1 + ...))

)
· (𝒏0 + 𝜖𝒏1 + ...)172

= (𝒏0 + 𝜖𝒏1 + ...) ·
( 𝜖^
𝑀2 (−(𝑝𝑒,0 + 𝜖 𝑝𝑒,1 + ...)𝑰 + 2(𝛽) (𝑫′

𝑒,0 + 𝜖𝑫
′
𝑒,1 + ...))173

+ ((𝑰 + ∇𝒖0 + 𝜖∇𝒖1 + ...) (𝑰 + ∇𝒖0 + 𝜖∇𝒖1 + ...)𝑇 )′
)
· (𝒏0 + 𝜖𝒏1 + ...) 𝒙 ∈ 𝜕Ω (1.24)174

175

(𝒏0 + 𝜖𝒏1 + ...) ·
( 𝜖^
𝑀2 (−(𝑝 𝑓 ,0 + 𝜖 𝑝 𝑓 ,1 + ...)𝑰 + 2(𝑫′

𝑓 ,0 + 𝜖𝑫
′
𝑓 ,1 + ...))

)
· ( 𝒕0 + 𝜖 𝒕1 + ...)176

= (𝒏0 + 𝜖𝒏1 + ...) ·
( 𝜖^
𝑀2 (−(𝑝𝑒,0 + 𝜖 𝑝𝑒,1 + ...)𝑰 + 2(𝛽) (𝑫′

𝑒,0 + 𝜖𝑫
′
𝑒,1 + ...))177

+ ((𝑰 + ∇𝒖0 + 𝜖∇𝒖1 + ...) (𝑰 + ∇𝒖0 + 𝜖∇𝒖1 + ...)𝑇 )′
)
· ( 𝒕0 + 𝜖 𝒕1 + ...) 𝒙 ∈ 𝜕Ω. (1.25)178

Finally, the far-field condition reads179

(𝒗0 + 𝜖𝒗1 + ...) ( |𝒙 | → ∞) = cos 𝑡 𝑖, 𝒙 ∈ Ω 𝑓 . (1.26)180

Before proceeding, we briefly describe the key steps we will follow to derive the flow field181
solutions at different orders. Given the pinned zone constraints and governing equations in182
the solid phase, we first derive the solution for the deformation of the elastic body. From183
this we compute the motion of the solid–fluid interface. This, in turn, provides us with the184
appropriate boundary conditions to solve the governing equations in the fluid phase.185

1.4. Zeroth order O (1) governing equations and boundary conditions186

We begin with the derivation of the zeroth order O (1) solution. Zeroth order equations are187
obtained by recovering the O (1) terms from the governing equations Eqs. (1.18) and (1.19)188
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and boundary conditions Eqs. (1.23) to (1.26). Alternatively, the zeroth order equations can189
be obtained by setting 𝜖 = 0. First, the fluid phase governing equations Eqs. (1.18) and (1.20)190
reduce to the incompressible unsteady Stokes equations191

𝑀2 𝜕𝒗0
𝜕𝑡

= −∇𝑝0 + ∇2𝒗0, ∇ · 𝒗0 = 0, 𝒙 ∈ Ω 𝑓 (1.27)192

while in the elastic solid phase, the governing equations Eqs. (1.19) and (1.21) reduce to193

∇ · ((𝑰 + ∇𝒖0) (𝑰 + ∇𝒖0)𝑇 )′ = 0, ∇ · 𝒗0 = 0, 𝒙 ∈ Ω𝑒 . (1.28)194

To solve the above equations, we start from the pinned zone constraints of Eq. (1.22), which195
reduce to196

𝒗0 = 0, 𝒙 ∈ Γ

𝒖0 = 0, 𝒙 ∈ Γ.
(1.29)197

Since Cau = 0 (implied by Cau = ^𝜖) the elastic solid is effectively rigid at zeroth order so198
that the direct solution of Eq. (1.28), with the constraints of Eq. (1.29), corresponds to the199
fixed rigid sphere200

𝒗0 = 0, 𝒖0 = 0, 𝒙 ∈ 𝜕Ω0

𝜕Ω0 := 𝑟 = 1
(1.30)201

where 𝜕Ω0 is the boundary at the non-dimensional radius 𝑟 = 1. Because of the no-slip202
boundary condition for the velocity field, and continuity in pressure fields (Angot et al.203
(1999)), we have204

𝒗 𝑓 ,0 = 0, 𝒙 ∈ 𝜕Ω0

𝑝 𝑓 ,0 = 𝑝𝑒,0, 𝒙 ∈ 𝜕Ω0
(1.31)205

while the far-field condition of Eq. (1.26) reads206

𝒗0( |𝒙 | → ∞) = cos 𝑡 𝑖, 𝒙 ∈ Ω 𝑓 . (1.32)207

1.5. Zeroth order O (1) solution in spherical coordinates208

To solve the above system of equations, we introduce the geometrically convenient spherical209
coordinate system (𝑟, \, 𝜙), with 𝑟 being the radial coordinate, \ the angular coordinate, and210
𝜙 the azimuthal coordinate. The origin of the coordinate system is set to be at the center of211
the sphere, and 𝑖 corresponds to the line of oscillation \ = 0. The no-slip boundary condition212
Eq. (1.31) and the far-field condition Eq. (1.32) can be written as213

𝑣0,𝑟 |𝑟=1 = 0
𝑣0, \ |𝑟=1 = 0
𝑣0,𝜙 |𝑟=1 = 0
𝑣0,𝑟 |𝑟→∞ = cos \ cos 𝑡
𝑣0, \ |𝑟→∞ = − sin \ cos 𝑡
𝑣0,𝜙 |𝑟→∞ = 0.

(1.33)214

We next drive the zeroth order solution using the vector potential 𝝋0 = 𝜑0𝜙 form of Eq. (1.27)215

𝑀2 𝜕∇
2𝝋0
𝜕𝑡

= ∇
4𝝋0, 𝑟 ⩾ 1 (1.34)216
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where 𝒗 = ∇ × 𝝋 = ∇ × 𝜑𝝓, and 𝝓 is the unit vector in the azimuthal direction. The solution217
of the above equation was first derived by Lane (1955) and can be written as218

𝜑0 = −sin \
4

(
3
ℎ1(𝑚𝑟)
𝑚ℎ0(𝑚)

− 𝑟 − ℎ2(𝑚)
𝑟2ℎ0(𝑚)

)
𝑒−𝑖𝑡 + 𝑐.𝑐., 𝑟 ⩾ 1 (1.35)219

where 𝑖 =
√
−1 and𝑚 =

√
𝑖𝑀 = (1+𝑖)𝑀/

√
2, ℎ𝑛 is the 𝑛𝑡ℎ order spherical Hankel function of220

the first kind, and 𝑐.𝑐. refers to the complex conjugate. By taking the curl of the zeroth-order221
vector potential, the velocity field 𝒗0 is derived as222

𝑣0,𝑟 =
1

𝑟 sin \
𝜕 (𝜑0 sin \)

𝜕\

= −cos \
2

(
3
ℎ1(𝑚𝑟)
𝑚ℎ0(𝑚)𝑟

− 1 − ℎ2(𝑚)
𝑟3ℎ0(𝑚)

)
𝑒−𝑖𝑡 + 𝑐.𝑐 𝑟 ⩾ 1

𝑣0, \ = −1
𝑟

𝜕 (𝑟𝜑0)
𝜕𝑟

= −sin \
4

(
3
ℎ1(𝑚𝑟)
𝑚ℎ0(𝑚)𝑟

− 3
ℎ0(𝑚𝑟)
ℎ0(𝑚)

+ 2 − ℎ2(𝑚)
𝑟3ℎ0(𝑚)

)
𝑒−𝑖𝑡 + 𝑐.𝑐. 𝑟 ⩾ 1

(1.36)223

where we have used the recurrent identity

ℎ′𝑛 (𝑧) = ℎ𝑛−1(𝑧) −
𝑛 + 1
𝑧

ℎ𝑛 (𝑧)

Eq. (1.36) suggests that the zeroth order velocity field 𝒗0 in the fluid is purely oscillatory (time-224
dependent), and hence no steady streaming manifests at O (1) (Lane 1955). Additionally,225
no effects of elasticity on the flow field manifest at zeroth order as Cau = 0 . Therefore,226
we proceed to perturbation series approximation at O (𝜖), where elasticity affects the steady227
streaming solution.228

1.6. First order O (𝜖) governing equations and boundary conditions229

We recover the first order governing equations by extracting the O (𝜖) terms from Eq. (1.18)230
and Eq. (1.19). The fluid phase governing equation (Eq. (1.18)) at order O (𝜖) is given as231

𝑀2 𝜕𝒗1
𝜕𝑡

+ 𝑀2 (𝒗0 · ∇) 𝒗0 = −∇𝑝1 + ∇2𝒗1, 𝒙 ∈ Ω 𝑓 (1.37)232

while in the solid phase Eq. (1.19), we have233

^(𝛼)
(
𝜕𝒗0
𝜕𝑡

)
= − ^

𝑀2 ∇𝑝0 +
^

𝑀2 (𝛽)∇
2𝒗0 + ∇ · (∇𝒖1 + (∇𝒖1)𝑇 )′, 𝒙 ∈ Ω𝑒 . (1.38)234

We then substitute Eq. (1.31) into Eq. (1.38) to obtain235

^∇𝑝0 = 𝑀2
∇ · (∇𝒖1 + (∇𝒖1)𝑇 )′, 𝒙 ∈ Ω𝑒 . (1.39)236

We note in this step the disappearance of the density (𝛼) and viscosity (𝛽) ratios, rendering237
them insignificant at order O (𝜖). To simplify Eq. (1.39), we note that the incompressibility238
constraint Eq. (1.21) reduces to the following at O (𝜖)239

𝑑𝑒𝑡 (𝑰 + 𝜖∇𝒖1) = 1, 𝒙 ∈ Ω𝑒 . (1.40)240

Using the following 3D determinant identity

𝑑𝑒𝑡 (𝑨 + 𝑩) = 𝑑𝑒𝑡 (𝑨) + 𝑑𝑒𝑡 (𝑩) + 𝑑𝑒𝑡 (𝑨) · 𝑡𝑟 (𝑨−1𝑩) + 𝑑𝑒𝑡 (𝑩) · 𝑡𝑟 (𝑨𝑩−1)
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with 𝑨 = 𝑰, 𝑑𝑒𝑡 (𝑨) = 1, 𝑩 = 𝜖∇𝒖1, at O (𝜖) the constraint further reduces to241

𝑡𝑟 (∇𝒖1) = ∇ · 𝒖1 = 0, 𝒙 ∈ Ω𝑒 . (1.41)242

which suggests incompressibility in elastic solid’s displacement field at O (𝜖). The solid243
phase governing equation Eq. (1.39) is then simplified into244

^∇𝑝0 = 𝑀2∇2𝒖1, 𝒙 ∈ Ω𝑒 . (1.42)245

The above equation physically represents the zeroth-order fluid flow (^∇𝑝0 term) deforming246
the first-order weakly elastic solid (𝒖1). As pointed out previously, Eq. (1.39) shows how the247
choice of hyperelastic or viscoelastic model does not affect equations at O (𝜖) as all nonlinear248
terms are of higher orders. It represents a linear approximation of the hyperelastic model249
(Eq. (1.2)), where higher order non-linear terms in the stress strain response drop out.250

To solve the governing equations O (𝜖) Eq. (1.37) and Eq. (1.42), we consider the boundary251
conditions starting from the pinned zone constraints of Eq. (1.22), which at O (𝜖) read252

𝒗1 = 0, 𝒖1 = 0, 𝒙 ∈ Γ. (1.43)253

Next, we consider the solid–fluid interfacial stress boundary conditions of Eq. (1.24) and254
Eq. (1.25), which when evaluated at O (𝜖) accurate interface 𝜕Ω0 + 𝜖𝜕Ω1, with substitution255
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of Eq. (1.31) give256

𝒏 ·
(

Cau
𝑀2 (−𝑝 𝑓 𝑰 + 2𝑫′

𝑓 )
)
· 𝒏

����
𝜕Ω

= 𝜖𝒏0 ·
( ^

𝑀2 (−𝑝 𝑓 ,0𝑰 + 2𝑫′
𝑓 ,0)

)
· 𝒏0

���
𝜕Ω0+𝜖 𝜕Ω1

+ O
(
𝜖2

)
= 𝜖𝒏0 ·

( ^

𝑀2 (−𝑝 𝑓 ,0𝑰 + 2𝑫′
𝑓 ,0)

)
· 𝒏0

���
𝜕Ω0

+ O
(
𝜖2

)
= 𝒏 ·

(
Cau
𝑀2 (−𝑝𝑒 𝑰 + 2(𝛽)𝑫′

𝑒) + (𝑭𝑭𝑇 )′
)
· 𝒏

����
𝜕Ω

= 𝜖𝒏0 ·
( ^

𝑀2 (−𝑝𝑒,0𝑰 + 2(𝛽)𝑫′
𝑒,0) + (∇𝒖1 + (∇𝒖1)𝑇 )′

)
· 𝒏0

���
𝜕Ω0+𝜖 𝜕Ω1

+ O
(
𝜖2

)
= 𝜖𝒏0 ·

( ^

𝑀2 (−𝑝𝑒,0𝑰 + 2(𝛽)𝑫′
𝑒,0) + (∇𝒖1 + (∇𝒖1)𝑇 )′

)
· 𝒏0

���
𝜕Ω0

+ O
(
𝜖2

)
𝒏 ·

(
Cau
𝑀2 (−𝑝 𝑓 𝑰 + 2𝑫′

𝑓 )
)
· 𝒕

����
𝜕Ω

= 𝜖𝒏0 ·
( ^

𝑀2 (−𝑝 𝑓 ,0𝑰 + 2𝑫′
𝑓 ,0)

)
· 𝒕0

���
𝜕Ω0+𝜖 𝜕Ω1

+ O
(
𝜖2

)
= 𝜖𝒏0 ·

( ^

𝑀2 (−𝑝 𝑓 ,0𝑰 + 2𝑫′
𝑓 ,0)

)
· 𝒕0

���
𝜕Ω0

+ O
(
𝜖2

)
= 𝒏 ·

(
Cau
𝑀2 (−𝑝𝑒 𝑰 + 2(𝛽)𝑫′

𝑒) + (𝑭𝑭𝑇 )′
)
· 𝒕

����
𝜕Ω

= 𝜖𝒏0 ·
( ^

𝑀2 (−𝑝𝑒,0𝑰 + 2(𝛽)𝑫′
𝑒,0) + (∇𝒖1 + (∇𝒖1)𝑇 )′

)
· 𝒕0

���
𝜕Ω0+𝜖 𝜕Ω1

+ O
(
𝜖2

)
= 𝜖𝒏0 ·

( ^

𝑀2 (−𝑝𝑒,0𝑰 + 2(𝛽)𝑫′
𝑒,0) + (∇𝒖1 + (∇𝒖1)𝑇 )′

)
· 𝒕0

���
𝜕Ω0

+ O
(
𝜖2

)
.

(1.44)257
Retention of O (𝜖) terms in Eq. (1.44) gives us258

𝒏0 ·
( ^

𝑀2 (−𝑝 𝑓 ,0𝑰 + 2𝑫′
𝑓 ,0)

)
· 𝒏0 = 𝒏0 ·

( ^

𝑀2 (−𝑝𝑒,0𝑰 + 2(𝛽)𝑫′
𝑒,0) + (∇𝒖1 + (∇𝒖1)𝑇 )′

)
· 𝒏0

𝒏0 ·
( ^

𝑀2 (−𝑝 𝑓 ,0𝑰 + 2𝑫′
𝑓 ,0)

)
· 𝒕0 = 𝒏0 ·

( ^

𝑀2 (−𝑝𝑒,0𝑰 + 2(𝛽)𝑫′
𝑒,0) + (∇𝒖1 + (∇𝒖1)𝑇 )′

)
· 𝒕0,

𝒙 ∈ 𝜕Ω0.
(1.45)259

Here, 𝒏0 and 𝒕0 refer to the normal and tangent vectors at the zeroth order at the rigid body260
interface 𝜕Ω0. These conditions (Eq. 1.45) can be simplified using Eqs. (1.30) and (1.31) to261
obtain262

𝒏0 ·
(
2𝑫′

𝑓 ,0

)
· 𝒏0 = 𝒏0 ·

(
𝑀2

^
(∇𝒖1 + (∇𝒖1)𝑇 )′

)
· 𝒏0, 𝒙 ∈ 𝜕Ω0

𝒏0 ·
(
2𝑫′

𝑓 ,0

)
· 𝒕0 = 𝒏0 ·

(
𝑀2

^
(∇𝒖1 + (∇𝒖1)𝑇 )′

)
· 𝒕0, 𝒙 ∈ 𝜕Ω0.

(1.46)263

Rapids articles must not exceed this page length
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1.7. First order O (𝜖) solution in spherical coordinates264

With O (𝜖) governing equations and boundary conditions obtained, we proceed as before265
to derive their analytical solution. We start by deriving an expression for the displacement266
field 𝒖1 inside the solid. We define Z = 𝑏/𝑎 as the non-dimensional radius of the pinned267
zone. Adopting the same spherical coordinate system, the solid pinned zone constraints of268
Eq. (1.43) read as269

𝑢1,𝑟 |𝑟=Z = 0
𝑢1, \ |𝑟=Z = 0

(1.47)270

while the solid–fluid interfacial stress boundary conditions of Eq. (1.46) become271

𝜕𝑣0,𝑟

𝜕𝑟

����
𝑟=1

=
𝑀2

^

𝜕𝑢1,𝑟

𝜕𝑟

����
𝑟=1(

1
𝑟

𝜕𝑣0,𝑟

𝜕\
+
𝜕𝑣0, \

𝜕𝑟
−
𝑣0, \

𝑟

)����
𝑟=1

=
𝑀2

^

(
1
𝑟

𝜕𝑢1,𝑟

𝜕\
+
𝜕𝑢1, \

𝜕𝑟
−
𝑢1, \

𝑟

)����
𝑟=1

.

(1.48)272

We comment that Eq. (1.41) implies that 𝒖1 is divergence free, which allows the definition of273
a streamfunction-equivalent strain function 𝝋𝑒,1 where 𝒖1 = ∇ × 𝝋𝑒,1. Taking the curl (∇×)274
of Eq. (1.42), and expressing 𝒖1 in terms of 𝝋𝑒,1, we obtain the following homogeneous275
fourth-order homogeneous biharmonic equation276

∇
4𝝋𝑒,1 = 0, 𝒙 ∈ Ω𝑒 (1.49)277

with the pinned zone constraints Eq. (1.47) becoming278

1
𝑟 sin \

𝜕 (𝜑𝑒,1 sin \)
𝜕\

����
𝑟=Z

= 0

−1
𝑟

𝜕 (𝑟𝜑𝑒,1)
𝜕𝑟

����
𝑟=Z

= 0.
(1.50)279

Next, the boundary conditions of Eq. (1.48), with forcing terms (i.e. previous order terms)280
moved to the RHS, become281

𝜕

𝜕𝑟

(
1

𝑟 sin \
𝜕 (𝜑𝑒,1 sin \)

𝜕\

)����
𝑟=1

=
^

𝑀2
𝜕𝑣0,𝑟

𝜕𝑟

����
𝑟=1(

1
𝑟

𝜕

𝜕\

(
1

𝑟 sin \
𝜕 (𝜑𝑒,1 sin \)

𝜕\

)
− 𝜕

𝜕𝑟

(
1
𝑟

𝜕 (𝑟𝜑𝑒,1)
𝜕𝑟

)
+ 1
𝑟2
𝜕 (𝑟𝜑𝑒,1)
𝜕𝑟

)����
𝑟=1

=
^

𝑀2

(
1
𝑟

𝜕𝑣0,𝑟

𝜕\
+
𝜕𝑣0, \

𝜕𝑟
−
𝑣0, \

𝑟

)����
𝑟=1

.

(1.51)282
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The RHS of Eq. (1.51) can be directly evaluated using Eq. (1.36) and the recurrence properties283
of spherical Hankel functions, yielding284

𝜕𝑣0,𝑟

𝜕𝑟

����
𝑟=1

= −3 cos \
2

(
−3

ℎ1(𝑚𝑟)
𝑚ℎ0(𝑚)𝑟2 + ℎ0(𝑚𝑟)

ℎ0(𝑚)
+ ℎ2(𝑚)
ℎ0(𝑚)𝑟4

)
𝑒−𝑖𝑡 + 𝑐.𝑐.

����
𝑟=1

= 0

𝜕𝑣0,𝑟

𝜕\

����
𝑟=1

=
sin \

2

(
3
ℎ1(𝑚𝑟)
𝑚ℎ0(𝑚)𝑟

− 1 − ℎ2(𝑚)
𝑟3ℎ0(𝑚)

)
𝑒−𝑖𝑡 + 𝑐.𝑐.

����
𝑟=1

= 0

𝜕𝑣0, \

𝜕𝑟

����
𝑟=1

= −3 sin \
4

(
−3

ℎ1(𝑚𝑟)
𝑚ℎ0(𝑚)𝑟2 + ℎ0(𝑚𝑟)

ℎ0(𝑚)
+ 𝑚ℎ1(𝑚𝑟)

ℎ0(𝑚)
+ ℎ2(𝑚)
ℎ0(𝑚)𝑟4

)
𝑒−𝑖𝑡 + 𝑐.𝑐.

����
𝑟=1

= sin \ 𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐.
(1.52)285

Here, 𝐹 (𝑚) expresses in compact form the terms in the parenthesis. Using Eq. (1.52),286
conditions of Eq. (1.51) simplify to287

𝜕

𝜕𝑟

(
1

𝑟 sin \
𝜕 (𝜑𝑒,1 sin \)

𝜕\

)����
𝑟=1

= 0(
1
𝑟

𝜕

𝜕\

(
1

𝑟 sin \
𝜕 (𝜑𝑒,1 sin \)

𝜕\

)
− 𝜕

𝜕𝑟

(
1
𝑟

𝜕 (𝑟𝜑𝑒,1)
𝜕𝑟

)
+ 1
𝑟2
𝜕 (𝑟𝜑𝑒,1)
𝜕𝑟

)����
𝑟=1

= sin \ 𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐.

(1.53)288
Now we have expressions for the four boundary conditions (pinned zone constraints -289
Eq. (1.50); solid–fluid interfacial stress boundary conditions - Eq. (1.53)) necessary to290
solve the elastic solid fourth order differential equation (Eq. 1.49). Based on the form of291
the boundary conditions in Eq. (1.53), we choose for the homogeneous biharmonic equation292
(Eq. (1.49)) the candidate general solution293

𝜑𝑒,1 =
^

𝑀2 sin \
(
𝑐1𝑟 +

𝑐2

𝑟2 + 𝑐3𝑟
3 + 𝑐4

)
𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐. (1.54)294

where 𝑐1, 𝑐2, 𝑐3 and 𝑐4 are constants that are determined from the 4 boundary conditions295
given by Eq. (1.50) and Eq. (1.53)296

𝑐1Z +
𝑐2

Z2 + 𝑐3Z
3 + 𝑐4 = 0

2𝑐1Z −
𝑐2

Z2 + 4𝑐3Z
3 + 𝑐4 = 0

−3𝑐2 + 2𝑐3 − 𝑐4 = 0
−6(𝑐2 + 𝑐3) = 1.

(1.55)297

Solving the above linear system of equations yields298

𝑐1 = − 9Z4 + 9Z3 + 4Z2 + 4Z + 4
6Z (Z − 1)

(
2Z3 + 4Z2 + 6Z + 3

)
𝑐2 = −

Z2 (
Z2 + Z + 1

)
3(Z − 1)

(
2Z3 + 4Z2 + 6Z + 3

)
𝑐3 =

Z + 1
2(Z − 1)

(
2Z3 + 4Z2 + 6Z + 3

)
𝑐4 =

Z4 + Z3 + Z2 + Z + 1
(Z − 1)

(
2Z3 + 4Z2 + 6Z + 3

) .
(1.56)299
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Having determined the strain function 𝝋𝑒,1, we proceed to evaluate 𝒖1 = ∇ × 𝝋𝑒,1 at the300
sphere surface (𝑟 = 1), which will eventually feed into the solution of the fluid phase through301
the no-slip boundary condition. The interfacial displacement 𝒖1, accurate up to O (𝜖) is then302
given by303

𝑢1,𝑟 =
1

𝑟 sin \
𝜕 (𝜑𝑒,1 sin \)

𝜕\

����
𝑟=1

=
2^
𝑀2 cos \

(
𝑐1𝑟 +

𝑐2

𝑟2 + 𝑐3𝑟
3 + 𝑐4

)
𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐.

����
𝑟=1

=
^

𝑀2 cos \ 𝐺1(Z) 𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐.

𝑢1, \ = −1
𝑟

𝜕 (𝑟𝜑𝑒,1)
𝜕𝑟

����
𝑟=1

= − ^

𝑀2 sin \
(
−2𝑐1 −

𝑐2

𝑟3 − 4𝑐3𝑟
2 − 𝑐4

𝑟

)
𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐.

���
𝑟=1

= − ^

𝑀2 sin \ 𝐺2(Z) 𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐.
(1.57)304

with 𝐺1(Z) and 𝐺2(Z) as the compact notation for the bracketed terms.305
We now have all the conditions required to evaluate the solution in the fluid phase at O (𝜖).306

We recall that the governing equations in the fluid phase (Eq. (1.37)) can be written in vector307
potential form, which at O (𝜖) read308

𝑀2 𝜕∇
2𝝋1
𝜕𝑡

+ 𝑀2
(
(𝒗0 · ∇) ∇2𝝋0

)
− 𝑀2

(
(∇2𝝋0 · ∇)𝒗0

)
= ∇

4𝝋1, 𝑟 ⩾ 1. (1.58)309

where 𝒗1 = ∇× 𝝋1. We note that the term 𝑀2(∇2𝝋0 ·∇)𝒗0 in Eq. (1.58), which corresponds310
to vortex stretching, is absent in previous studies on rigid sphere streaming (Lane 1955).311
Thus, by considering this unaccounted term, our work significantly improves upon the rigid312
sphere streaming theory. In order to solve for 𝜑1, we first simplify the steady forcing forcing313
term 𝑀2 [

(𝒗0 · ∇) ∇2𝜑0 − (∇2𝝋0 · ∇)𝒗0
]

with Eqs. (1.35) and (1.36)314

𝑀2 [
(𝒗0 · ∇) ∇2𝜑0 − (∇2𝝋0 · ∇)𝒗0

]
= sin 2\

(
𝜌(𝑟) +Ω(𝑟)𝑒−𝑖𝑡 +Ω∗(𝑟)𝑒𝑖𝑡

)
(1.59)315

where316

𝜌(𝑟) = 1
16𝑟4

(
𝑟3𝐽 (3) + 𝑟2𝐽 (2) − 6𝑟𝐽 (1) + 6𝐽

)
𝐽∗ + 𝑐.𝑐.

𝐽 (𝑟) = 3
ℎ1(𝑚𝑟)
𝑚ℎ0(𝑚)

− 𝑟 − ℎ2(𝑚)
𝑟2ℎ0(𝑚)

(1.60)317

Here 𝐽 is the radially dependent term in Eq. (1.35), with 𝐽 (𝑛) and 𝐽∗ being its 𝑛th derivative and318
complex conjugate, respectively. The terms sin 2\ Ω(𝑟)𝑒2𝑖𝑡 and sin 2\ Ω(𝑟)𝑒−2𝑖𝑡 correspond319
to higher order oscillatory forcing terms, which generate oscillatory unsteady corrections320
to the first order flow. In contrast, the term sin 2\𝜌(𝑟) is real, steady, time-independent and321
is the one responsible for the streaming flow that emerges in the case of a rigid sphere, as322
demonstrated previously in Lane (1955). Since we are interested in steady streaming flow,323
we consider the time-averaged form of Eq. (1.58) (i.e. dropping the time derivative), yielding324

∇
4⟨𝝋1⟩ = sin 2\ 𝜌(𝑟) 𝝓, 𝑟 ⩾ 1 (1.61)325

where ⟨·⟩ stands for a time averaged field. To solve the above equation in the fluid phase, we326
recall the necessary no-slip boundary conditions given in Eq. (1.23) that needs to be enforced327
at the elastic solid–fluid interface, deformed by the zeroth order flow. Based on Eq. (1.57),328
we note that 𝑟 = 1+ 𝜖𝑢1,𝑟 corresponds to an O (𝜖) accurate expression for the location of the329
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deforming interface. The no-slip condition of Eq. (1.23) can then be written as330

𝑣 𝑓 ,𝑟

��
𝜕Ω

= 𝑣 𝑓 ,𝑟

��
𝑟=1+𝜖 𝑢1,𝑟

+ O
(
𝜖2

)
= 𝑣𝑒,𝑟

��
𝜕Ω

= 𝑣𝑒,𝑟
��
𝑟=1+𝜖 𝑢1,𝑟

+ O
(
𝜖2

)
𝑣 𝑓 , \

��
𝜕Ω

= 𝑣 𝑓 , \

��
𝑟=1+𝜖 𝑢1,𝑟

+ O
(
𝜖2

)
= 𝑣𝑒, \

��
𝜕Ω

= 𝑣𝑒, \
��
𝑟=1+𝜖 𝑢1,𝑟

+ O
(
𝜖2

) (1.62)331

where the subscripts 𝑒 and 𝑓 refer to the interfacial field values from the elastic solid and fluid332
perspective, respectively. The RHS of Eq. (1.62) is the deformation velocity of the elastic333
solid interface, which can be computed from the displacement field 𝒖 of Eq. (1.57) as334

𝑣𝑒,𝑟
��
𝜕Ω

=
𝜕𝑢𝑟

𝜕𝑡

����
𝑟=1+𝜖 𝑢1,𝑟

+ O
(
𝜖2

)
=
𝜕 (𝜖𝑢1,𝑟 + O

(
𝜖2))

𝜕𝑡

�����
𝑟=1+𝜖 𝑢1,𝑟

+ O
(
𝜖2

)
=
𝜕 (𝜖𝑢1,𝑟 + O

(
𝜖2))

𝜕𝑡

�����
𝑟=1

+ 𝜖𝑢1,𝑟
𝜕2(𝜖𝑢1,𝑟 + O

(
𝜖2))

𝜕𝑟𝜕𝑡

�����
𝑟=1

+ O
(
𝜖2

)
= 𝜖

𝜕𝑢1,𝑟

𝜕𝑡

����
𝑟=1

+ O
(
𝜖2

)
= −𝜖𝑖 ^

𝑀2 cos \ 𝐺1(Z) 𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐. + O
(
𝜖2

)
𝑣𝑒, \

��
𝜕Ω

=
𝜕𝑢\

𝜕𝑡

����
𝑟=1+𝜖 𝑢1,𝑟

+ O
(
𝜖2

)
=
𝜕 (𝜖𝑢1, \ + O

(
𝜖2))

𝜕𝑡

�����
𝑟=1+𝜖 𝑢1,𝑟

+ O
(
𝜖2

)
=
𝜕 (𝜖𝑢1, \ + O

(
𝜖2))

𝜕𝑡

�����
𝑟=1

+ 𝜖𝑢1,𝑟
𝜕2(𝜖𝑢1, \ + O

(
𝜖2))

𝜕𝑟𝜕𝑡

�����
𝑟=1

+ O
(
𝜖2

)
= 𝜖

𝜕𝑢1, \

𝜕𝑡

����
𝑟=1

+ O
(
𝜖2

)
= −𝜖𝑖 ^

𝑀2 sin \ 𝐺2(Z) 𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐. + O
(
𝜖2

)
.

(1.63)335

We note that at zeroth order the displacement field is zero (𝑢0,𝑟 = 𝑢0, \ = 0), hence 𝑢𝑟 =336
𝜖𝑢1,𝑟 + O

(
𝜖2) and 𝑢\ = 𝜖𝑢1, \ + O

(
𝜖2) . There are now two ways to enforce the no-slip337

condition of Eq. (1.44) to the fluid. First, we can adopt a moving coordinate system attached338
to the moving interface, and enforce the no-slip condition on a fixed surface in that frame339
of reference. Second, we can maintain the fixed coordinate system with origin at the sphere340
center, and enforce the no-slip condition on a moving interface. Since the use of moving341
coordinates presents technical complications in the time averaging process eventually needed342
for streaming, as pointed out in Longuet-Higgins (1998), we adopt the latter approach.343
Additionally, we can replace the boundary flow velocity 𝑣 𝑓 ,𝑟 |𝑟=1+𝜖 𝑢1,𝑟 and 𝑣 𝑓 , \ |𝑟=1+𝜖 𝑢1,𝑟 on344
the temporally moving interface 𝑟 = 1+𝜖𝑢1,𝑟 with the velocity that the flow would need to see345
on the fixed interface 𝑟 = 1 to respond equivalently. This boundary condition transfer can be346
achieved by Taylor expanding 𝑣 𝑓 ,𝑟 |𝑟=1+𝜖 𝑢1,𝑟 and 𝑣 𝑓 , \ |𝑟=1+𝜖 𝑢1,𝑟 about 𝑟 = 1 (Longuet-Higgins347
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1998)348

𝑣 𝑓 ,𝑟 |𝜕Ω = 𝑣 𝑓 ,𝑟 |𝑟=1+𝜖 𝑢1,𝑟 + O
(
𝜖2

)
=

(
𝑣 𝑓 ,𝑟 +

𝜕𝑣 𝑓 ,𝑟

𝜕𝑟
(𝜖𝑢1,𝑟 + O

(
𝜖2

)
)
)����
𝑟=1

+ O
(
𝜖2

)
=

(
𝑣 𝑓 ,𝑟 + 𝜖

𝜕𝑣 𝑓 ,𝑟

𝜕𝑟
𝑢1,𝑟

)����
𝑟=1

+ O
(
𝜖2

)
𝑣 𝑓 , \ |𝜕Ω = 𝑣 𝑓 , \ |𝑟=1+𝜖 𝑢1,𝑟 + O

(
𝜖2

)
=

(
𝑣 𝑓 , \ +

𝜕𝑣 𝑓 , \

𝜕𝑟
(𝜖𝑢1,𝑟 + O

(
𝜖2

)
)
)����
𝑟=1

+ O
(
𝜖2

)
=

(
𝑣 𝑓 , \ + 𝜖

𝜕𝑣 𝑓 , \

𝜕𝑟
𝑢1,𝑟

)����
𝑟=1

+ O
(
𝜖2

)
.

(1.64)349

To avoid subscript clutte, we henceforth drop the subscript 𝑓 , and all references of the velocity350
field 𝒗 now correspond to the velocity in the fluid phase. By combining Eqs. (1.62) to (1.64),351
followed by substitution of the asymptotic series for fluid velocity 𝒗 = 𝒗0 + 𝜖𝒗1 + O

(
𝜖2) and352

retention of O (𝜖) terms, we obtain353 (
𝑣1,𝑟 +

𝜕𝑣0,𝑟

𝜕𝑟
𝑢1,𝑟

)����
𝑟=1

= −𝑖 ^
𝑀2 cos \ 𝐺1(Z) 𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐.(

𝑣1, \ +
𝜕𝑣0, \

𝜕𝑟
𝑢1,𝑟

)����
𝑟=1

= −𝑖 ^
𝑀2 sin \ 𝐺2(Z) 𝐹 (𝑚) 𝑒−𝑖𝑡 + 𝑐.𝑐.

(1.65)354

The first term on LHS of the equation above (𝒗1 |𝑟=1), currently unknown, corresponds to355
the first-order no-slip velocity that the fluid flow experiences at the zeroth-order boundary356
𝑟 = 1 due to the boundary condition transfer. The second term on the LHS, which represents357
the correction generated due to the Taylor expansion, can be evaluated using Eq. (1.52) and358
Eq. (1.57) as359 (

𝜕𝑣0,𝑟

𝜕𝑟
𝑢1,𝑟

)����
𝑟=1

= 0(
𝜕𝑣0, \

𝜕𝑟
𝑢1,𝑟

)����
𝑟=1

=
^

𝑀2 sin 2\
(
𝐺1(Z)𝐹 (𝑚)𝐹∗(𝑚) + 𝜙(𝑟)𝑒−2𝑖𝑡 + 𝜙∗(𝑟)𝑒2𝑖𝑡

)
.

(1.66)360

Since we are interested in the effect of elasticity on steady streaming flow, we consider the361
time averaged form of the no-slip condition of Eq. (1.65), which via Eq. (1.66) reduces to362

⟨𝑣1,𝑟 ⟩
��
𝑟=1 = 0

⟨𝑣1, \ ⟩
��
𝑟=1 = − ^

𝑀2 sin 2\ 𝐺1(Z)𝐹 (𝑚)𝐹∗(𝑚).
(1.67)363

Equation (1.67) suggests that an oscillatory no-slip velocity imposed on a moving interface364
(𝑟 = 1+ 𝜖𝑢1,𝑟 ) can be equivalently seen as a rectified slip different from zero (⟨𝑣1, \ ⟩|𝑟=1 ≠ 0)365
at the zeroth-order, fixed interface 𝑟 = 1. Such rectified slip velocities are also seen in the366
case of streaming flow generation due to axisymmetric pulsating bubbles (Longuet-Higgins367
1998; Spelman & Lauga 2017). In our case this slip velocity, which is non-zero only for368
a deformable elastic body, modifies the well-known steady streaming flow generated due369
to the Reynolds stress term (sin 2\ 𝜌(𝑟), RHS of Eq. (1.61)) induced by the rigid sphere370
counterpart. We remark that this slip is independent of the nonlinear inertial advection term371
in Navier–Stokes equations, and thus can generate streaming even in the Stokes limit, unlike372
the case of rigid bodies. Finally, to derive the effect of this steady slip on streaming flow, we373
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consider the vector potential form of the time averaged no-slip condition Eq. (1.67)374

1
𝑟 sin \

𝜕 (⟨𝜑1⟩ sin \)
𝜕\

����
𝑟=1

= 0

1
𝑟

𝜕 (𝑟 ⟨𝜑1⟩)
𝜕𝑟

����
𝑟=1

=
^

𝑀2 sin 2\ 𝐺1(Z)𝐹 (𝑚)𝐹∗(𝑚)
(1.68)375

where 𝝋1 = ∇ × 𝒗1. Similarly, the time averaged far-field conditions from Eq. (1.26), read376

1
𝑟 sin \

𝜕 (⟨𝜑1⟩ sin \)
𝜕\

����
𝑟→∞

= 0

1
𝑟

𝜕 (𝑟 ⟨𝜑1⟩)
𝜕𝑟

����
𝑟=→∞

= 0.
(1.69)377

Finally, with the time averaged flow of equation Eq. (1.61) and the necessary boundary378
conditions of Eq. (1.68) and Eq. (1.69) resolved, the steady streaming flow solution for a379
weakly elastic sphere can be computed to O (𝜖) accuracy, yielding380

⟨𝜑1⟩ = sin 2\ [Θ(𝑟) + Λ(𝑟)] (1.70)381

where Θ(𝑟) is the rectified classical rigid body contribution382

Θ(𝑟) = − 𝑟
4

70

∫ ∞

𝑟

𝜌(𝜏)
𝜏

d𝜏 + 𝑟
2

30

∫ ∞

𝑟

𝜏𝜌(𝜏) d𝜏

+ 1
𝑟

(
1

30

∫ 𝑟

1
𝜏4𝜌(𝜏) d𝜏 + 1

20

∫ ∞

1

𝜌(𝜏)
𝜏

d𝜏 − 1
12

∫ ∞

1
𝜏𝜌(𝜏) d𝜏

)
+ 1
𝑟3

(
− 1

70

∫ 𝑟

1
𝜏6𝜌(𝜏) d𝜏 − 1

28

∫ ∞

1

𝜌(𝜏)
𝜏

d𝜏 + 1
20

∫ ∞

1
𝜏𝜌(𝜏) d𝜏

) (1.71)383

whose asymptotic nature is given by384

Θ(∞) = 0
𝑑Θ

𝑑𝑟
(∞) = 0

(1.72)385

Next, Λ(𝑟) is the new elasticity effect modification given by386

Λ(𝑟) = 0.5
^

𝑀2 𝐺1(Z)𝐹 (𝑚)𝐹∗(𝑚)
(

1
𝑟
− 1
𝑟3

)
(1.73)387

whose asymptotic nature is given by388

Λ(∞) = 0
𝑑Λ

𝑑𝑟
(∞) = 0

(1.74)389

𝐺1(Z) and 𝐹 (𝑚) are expanded here for convenience390

𝐺1(Z) =
(Z − 1)2 (

4Z2 + 7Z + 4
)

3Z
(
2Z3 + 4Z2 + 6Z + 3

)
𝐹 (𝑚) = −3𝑚ℎ1(𝑚)

4ℎ0(𝑚)

(1.75)391

This concludes the detailed, step-by-step derivation of the viscous streaming solution for the392
case of a hyperelastic three-dimensional sphere.393
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Figure 2: Effect of elasticity on streaming flow strength. (a) Radial variation of radial
Eulerian velocity 𝑣𝑟 along \ = 0◦ for 𝑀 = 12 and Cau = 0 (rigid limit). Orange and blue

markers correspond to the maximum (𝑣𝑟 ,𝑚𝑎𝑥) and minimum (𝑣𝑟 ,𝑚𝑖𝑛) velocities,
respectively. (b, c) Heat-maps tracking |𝑣𝑟 ,𝑚𝑎𝑥 | and |𝑣𝑟 ,𝑚𝑖𝑛 | as functions of 𝑀 and Cau.

Red dashed lines are iso-contours.

2. Stokes drift correction394

The final result of Eq. 3.20 in the main text represents the Eulerian vector potential for the395
steady streaming flow. However, fluid particles do not precisely follow the corresponding396
streamlines because of Stokes drift. This implies that true pathlines of fluid particles, i.e. the397
Lagrangian streamlines, require the computation of the Stokes drift to correct the Eulerian398
counterparts. Following the derivation in supplementary material §3 of Bhosale et al. (2022),399
we derive the Lagrangian vector potential as400

⟨𝜑𝐿
1 ⟩ = ⟨𝜑1⟩ + sin 2\ 𝛽(𝑟) (2.1)401

where 𝜑1 is the azimuthal component of Eulerian vector potential in main text (Eq. 3.20) and402

𝛽(𝑟) = 3
8

Im
[
ℎ0(𝑚𝑟)ℎ2(𝑚𝑟)∗
ℎ0(𝑚)ℎ0(𝑚)∗

+ ℎ2(𝑚𝑟)
ℎ0(𝑚)

+ ℎ2(𝑚)ℎ0(𝑚𝑟)∗
𝑟3ℎ0(𝑚)ℎ0(𝑚)∗

− ℎ2(𝑚)
𝑟3ℎ0(𝑚)

]
(2.2)403

Here, 𝑚 =
√
𝑖𝑀 , with ℎ𝑛, ∗, 𝑀 and Im[·] referring to the 𝑛𝑡ℎ order Hankel function of the404

first kind, complex conjugate, Womersley number and the imaginary part, respectively.405

3. Effect of elasticity on flow strength406

In this section, we present how variations in flow inertia (𝑀) and sphere elasticity (Cau) affect407
the flow strength of the resulting streaming field. Following classical streaming literature408
(Bertelsen et al. (1973)), we characterize the flow strength via the Eulerian velocity along409
\ = 0◦. Since the tangential component of the velocity is 𝑣 \ = 0 along \ = 0◦, we can410
equivalently characterize the flow strength via the radial velocity 𝑣𝑟 . Figure 2a shows a411
typical variation of 𝑣𝑟 (\ = 0◦) for Cau = 0 (rigid limit) and 𝑀 = 12. To characterize flow412
strength consistently, in Fig. 2b, c we track maximum (𝑣𝑟 ,𝑚𝑎𝑥 , orange marker, Fig. 2b) and413
minimum (𝑣 \,𝑚𝑖𝑛, blue marker, Fig. 2c) velocities as functions of Cau and 𝑀 . As seen414
in Fig. 2(b), |𝑣𝑟 ,𝑚𝑎𝑥 | increases with both sphere elasticity (Cau) and flow inertia (𝑀). In415
Fig. 2(c), instead, |𝑣𝑟 ,𝑚𝑖𝑛 | increases with 𝑀 but decreases with Cau. The above analysis416
provides a compact rulebook to manipulate streaming flow strength, via variations in flow417
inertia (𝑀) and sphere elasticity (Cau).418
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Figure 3: Effect of pinned zone radius Z on streaming flow. (a) Prefactor 𝐺1 (Z), which
captures the Z-dependence of the elastic streaming modification term Λ(𝑟), versus pinned

zone radius Z . (b-d) Radial decay of velocity magnitude along \ = 90◦ at 𝑀 = 8, for
elastic spheres with Cau = 0.025 and varying pinned zone radius (b) Z = 0.4, (c) Z = 0.6,

and (d) Z = 0.8.

4. Effect of pinned zone radius on streaming flow419

In this section, we demonstrate the effects of pinned zone radius Z of the soft sphere on420
the resultant streaming flow. We first consider the elasticity-based streaming modification421
term Λ(𝑟), and specifically the prefactor 𝐺1(Z), which captures the Z-dependence of Λ(𝑟).422
Figure 3(a) shows the variation of 𝐺1(Z) with Z , where 𝐺1(Z) is observed to decrease with423
increasing Z . The term 𝐺1(Z) asymptotically approaches zero as Z → 1, which implies424
that the entire sphere is treated as pinned zone rendering the sphere rigid, and thus body425
elasticity does not affect the streaming flow. On the other hand, as Z → 0, a singularity is426
observed for 𝐺1(Z) → ∞. This represents a physically unrealistic scenario where the soft427
sphere is ‘pinned’ in a region of zero thickness. For a realistic range of pinned zone radii Z ,428
theory predicts that decreasing the pinned zone radius Z leads to an increase in the elastic429
contribution to streaming (Fig. 3a), as intuitively expected.430

We next proceed to validate the above theoretical predictions by comparing against results431
from numerical simulations. With body softness (Cau = 0.025) and flow inertia (𝑀 = 8)432
fixed, we increase the pinned zone radius Z and observe its effect on streaming, characterized433
via the radial velocity decay along \ = 90◦ (Fig. 3(b-d)). We note the close agreement434
between theoretical predictions and the numerical results. Figure 3(b-d) further shows that,435
with increasing pinned zone radius Z , there is an increase in 𝛿𝐷𝐶 , which approaches the flow436
configuration of a rigid sphere as Z → 1. This shows that the pinned zone radius can be437
utilized as an additional, tunable parameter to rationally modulate streaming flow topology438
via elasticity.439

5. Equivalent experimental parameters440

Here, we report the range of realistic experimental parameters, equivalent to the values of441
𝑀 , 𝜖 and Cau considered in the main text, for which body elasticity significantly affects442
streaming. The non-dimensional quantities (𝑀 , 𝜖 and Cau) and corresponding experimental443
parameter ranges are tabulated in Table 1. For streaming setup properties that include fluid444
density 𝜌 𝑓 , angular oscillation frequency 𝜔, fluid kinematic viscosity a and sphere radius445
𝑎, we assume ranges typically employed in streaming applications (Lutz et al. 2005, 2006;446
Vishwanathan & Juarez 2019; Bhosale et al. 2021b). Then, we derive ranges for the shear447
modulus 𝐺 of the body, showcased in the last row of Table 1. As seen from Table 1, the448
shear modulus (𝐺) range corresponds to materials that can be realistically employed in449
microfluidic settings, from soft biological tissues (Liu et al. 2015) to common polymeric450
materials such as Polydimethylsiloxane (PDMS) (Lötters et al. 1997; Wang et al. 2014). We451
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Parameter Value range

Non-dimensional quantities

𝑀 O (1) – O (10)
𝜖 O

(
10−1

)
Cau O

(
10−1

)
Equivalent experimental quantities

𝜌 𝑓 O
(
103

)
kg · m−3 (Lutz et al. 2005; Vishwanathan & Juarez 2019; Bhosale et al. 2021b)

a O
(
10−6

)
m2 · s−1 (Lutz et al. 2005; Vishwanathan & Juarez 2019; Bhosale et al. 2021b)

𝑎 O
(
10−4

)
– O

(
10−3

)
m (Lutz et al. 2005; Vishwanathan & Juarez 2019; Bhosale et al. 2021b)

𝜔 O
(
102

)
− O

(
103

)
rad · s−1 (Lutz et al. 2005; Vishwanathan & Juarez 2019; Bhosale et al. 2021b)

𝐺 O (1) − O
(
102

)
kPa

Table 1: Range of realistic experimental parameters for which body elasticity significantly
affects streaming.
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Figure 4: Normalized DC layer thickness 𝛿𝐷𝐶/𝑎 vs. inverse of Womersley number
(1/𝑀) from theory, for rigid (Cau = 0) and elastic (Cau = 0.0125) spheres.

conclude that within the range of experimental parameters shown in Table 1, body elasticity452
can be realistically used to significantly modulate streaming flows.453

6. Behavior of 𝛿𝐷𝐶 with 𝑀 in the limit 𝑀 → O (1)454

To investigate the behavior of 𝛿𝐷𝐶 with 𝑀 for a soft sphere, in the low inertia limit i.e. for455
𝑀 → O (1), we extend the range of 𝑀 considered in the main text (Fig. 2d), and present456
the corresponding theoretically predicted DC layer thickness 𝛿𝐷𝐶/𝑎 values in Fig. 4. As it457
can be seen, approach to divergence is observed for Cau > 0, although at values of 𝑀 lower458
than those of the rigid sphere limit. This is expected since, for Cau > 0, the rigid body459
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(b) Cau = 0.05
M = 4

(a) Cau = 0
M = 8

Lower frequency

Figure 5: Frequency reduction to achieve the same flow topology via elasticity for a 3D
torus. Stokes streamfunctions contours are shown for (a) a rigid torus with Cau = 0, 𝑀 = 8
and (b) a elastic torus with Cau = 0, 𝑀 = 8 (see main text Fig. 3 captions for details). DC

layer thicknesses, similarly defined as the soft sphere case, is included for reference.

contribution Θ(𝑟) is the same as in classic streaming and will diverge, with the elasticity460
contribution Λ(𝑟) only shifting the curve.461

7. Frequency reduction via elasticity in multi-curvature bodies462

Here we demonstrate that similar flow topologies for an elastic torus with Cau = 0.05, 𝑀 = 4463
(Fig. 5b, main text Fig.3c), characterized by close agreement in DC layer thicknesses (𝛿𝐷𝐶),464
can be alternatively obtained by using its rigid counterparts (Fig. 5a). However, this requires 4465
times higher oscillation frequency 𝜔, as suggested by the doubling in Womersley number 𝑀 .466
This underlines the distinct advantage in leveraging body compliance for viscous streaming,467
where the same flow topology can be achieved at a significantly lower frequency via the use468
of body elasticity.469

8. Details regarding the sphere streaming simulation470

We elaborate in this section a number of implementation details concerning the sphere471
streaming simulation (main text Fig. 2, supplementary materials Fig. 6). First, we briefly472
justify the usage of pinned zone radius Z = 0.4. Lowering the pinned zone radius rapidly473
increases the prefactor 𝐺1(Z) (main text Eq. 3.19, supplementary materials Eq. 1.75),474
which results in a slip velocity much greater than O (1), thereby weakening the asymptotic475
assumption. The opposite holds true for large Z , rendering Z = 0.4 a robust compromise. Next,476
we characterize streaming via the thickness of the DC layer, which refers to the innermost477
recirculation zone, for its utility in trapping, filtration and chemical mixing, and because of478
its robust nature. Regarding the numerical implementation, the simulations are performed479
using a vortex-method based formulation (Gazzola et al. 2011; Bhosale et al. 2021a, 2023)480
that solves the vorticity form of the Navier–Stokes equations in an axisymmetric cylindrical481
coordinate system. Within this framework, fluid and solid are modeled to be density matched482
(𝜌 𝑓 = 𝜌𝑒 = 1). The rigid sphere and pinned zone are modeled as Brinkman solids, and483
the elastic phase as a viscoelastic Kelvin-Voigt solid with shear modulus 𝐺. Soft body484
deformations are tracked using an inverse-map technique (Bhosale et al. 2021a; Kamrin &485
Nave 2009; Kamrin et al. 2012). The far-field velocity is 𝑉 (𝑡) = 𝑉0 cos𝜔𝑡 with characteristic486
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Figure 6: Elastic sphere and streaming flow response. (a-c) 3D time-averaged
Lagrangian (i.e. Stokes-drift corrected, supplementary material §3) Stokes streamfunction

depicting the streaming response at 𝑀 = 6 with increasing softness Cau. (a) Rigid limit
Cau = 0, (b) Cau = 0.025, and (c) Cau = 0.05. Note that blue/orange represent

clockwise/counterclockwise rotating regions. The non-dimensional radius of the pinned
zone is set at Z = 0.4 throughout the study, to maintain the tangential slip velocity

magnitude (Eq. ??) at O (1), consistent with the asymptotic analysis. The effect of pinned
zone radius on streaming flow is detailed in Section §4 of the supplementary material. (d)

Normalized DC layer thickness (𝛿𝐷𝐶/𝑎) vs. inverse Womersley number (1/𝑀) from
theory and simulations, for varying body elasticity Cau. An alternative theory (purple

dashed line) derived by Riley (1966), the incomplete theory (black dashed line) of Lane
(1955), and experimental results (grey squares) (Kotas et al. 2007) in the rigidity limit are
plotted for reference. (e-g) Radial decay of velocity magnitude along \ = 90◦ from theory

and simulations at 𝑀 = 6, with increasing softness Cau. (e) Rigid limit Cau = 0, (f)
Cau = 0.0125, and (g) Cau = 0.025.

velocity 𝑉0 = 𝜖𝑎𝜔, where 𝜖 = 0.1, 𝑎 = 0.1, and 𝜔 = 32𝜋. The fluid dynamic viscosity487
` 𝑓 and elastic body’s shear modulus 𝐺 are determined based on the Womersley number488

𝑀 = 𝑎
√︁
𝜌 𝑓𝜔/` 𝑓 and Cauchy number Cau = 𝜖 𝜌 𝑓 𝑎

2𝜔2/𝐺. Additional simulation parameters489
include: domain [0, 1] × [0, 0.5], uniform grid spacing ℎ = 1/1024, Brinkman penalization490
factor _ = 1𝑒6, mollification length 𝜖𝑚𝑜𝑙𝑙 = 2ℎ, Courant–Friedrichs–Lewy number CFL =491
0.1. For details on these parameters, refer to (Gazzola et al. 2011; Bhosale et al. 2021a;492
Parthasarathy et al. 2022; Bhosale et al. 2023).493
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9. Rigid sphere streaming solution by Riley (1966)494

In this section, we elaborate upon the rigid sphere streaming solution derived by (Riley495
1966), where an inner-outer asymptotic expansion approach is employed.496

First, we note a number of key differences in assumptions and nomenclature between497
Riley’s work and the present theory. Riley formulates the Navier-Stokes equation in the498
Stokes-streamfunction (𝜓) form, where the radial and tangential velocities are evaluated as499

𝑣𝑟 =
1

𝑟2 sin \
𝜕𝜓

𝜕\
, 𝑣 \ = − 1

𝑟 sin \
𝜕𝜓

𝜕𝑟
(9.1)500

whereas the vector potential 𝝋 is used in the present work, with velocities given in Eq. (1.36).501
We note that in spherical coordinates, the azimuthal vector potential may be directly recovered502
from corresponding Stokes streamfunction by503

𝜑 = 𝝋 · �̂� =
𝜓

𝑟 sin \
(9.2)504

Furthermore, Riley considers the nondimensional far-field boundary condition505

𝜓 |𝑟→∞ =
1
2
𝑟2 sin2 \𝑒𝑖𝑡 (9.3)506

which in velocity form (using Eq. (9.1)) reduces to507

𝒗 |𝑟→∞ = 𝑒𝑖𝑡 �̂� (9.4)508

where �̂� is the oscillation direction similarly defined in Eq. (1.8). The pure-cosine farfield509
boundary condition used in this work (Eq. (1.16)) is recovered by taking the real part510
of Eq. (9.4). Finally, Riley characterizes the inertia-viscous regimes via an imaginary511
nondimensional number that is closely related to the Womersley number512

𝑚2 = 𝑖
𝜔𝑎2

a
⇔ 𝑚 =

1 + 𝑖
√

2
𝑀 (9.5)513

where𝑚 is also used in depicting the zeroth-order unsteady streaming solution in the present514
theory (Eq. (1.35)). For consistency in nomenclature, we exclusively use the Womersley515
number 𝑀 in the following formulation of Riley’s theory.516

Riley’s theory considers two different regimes, one where the Womersley number is small517
𝑀2 ≪ 1 (viscous regime) and one where 𝑀2 ≫ 1 (inertial regime). Our theory instead518
assumes 𝑀 ∼ O (1), corresponding to an intermediate inertial-viscous regime, one which is519
of practical experimental relevance (Section 5). Within this context, we discuss how Riley’s520
limits fare when applied to the 𝑀 ∼ O(1 − 10) regime, which is the focus of this study.521
At 𝑀2 ≪ 1 (viscous regime), both Riley and the present theory (Section 6) predicts an522
unbounded 𝛿𝐷𝐶 (corresponding to the far top-right region of Fig. 7) and therefore cannot523
be compared to our theory in the viscous-inertial regime where a finite 𝛿𝐷𝐶 is present.524
Riley’s theory for 𝑀2 ≫ 1 instead predicts the presence of a bounded DC layer, allowing525
us to quantitatively compare with our results. In Riley’s theory, a uniformly valid solution526
for the entire flow domain is not provided; instead, individual inner and outer solutions with527
appropriate matching conditions are formulated. The inner-solution to the first-order (O (𝜖))528
time-averaged streamfunction reads529

⟨𝜓 (in)
1 ⟩ = 9

√
2

4𝑀

(
1
8
𝑒−2[ + 5

2
𝑒−2[ cos [ + 3

2
𝑒−[ sin [ + [𝑒−[ sin [ − 21

8
+ 5

4
[

)
cos \ sin2 \

(9.6)530
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where

[ =
𝑀 (𝑟 − 1)

√
2

The steady outer-layer equation, under the assumption of 𝜖2𝑀2 ≪ 1, is governed by a531
homogeneous biharmonic equation with solution of the form532

⟨𝜓 (out)
1 ⟩ =

(
𝐴1

𝑟2 + 𝐵1

)
cos \ sin2 \ (9.7)533

Riley unifies the inner (Eq. (9.6)) and outer (Eq. (9.7)) layer solutions by equating them in534
the limit of 𝑟 → ∞, where the solutions become535

⟨𝜓 (in)
1 ⟩|𝑟→∞ =

9
√

2
4𝑀

(
−21

8
+ 5

4
[

)
cos \ sin2 \

⟨𝜓 (out)
1 ⟩|𝑟→∞ =

(
𝐴1 + 𝐵1 −

2
√

2
𝑀

𝐴1[

)
cos \ sin2 \

(9.8)536

where they obtain the coefficients by matching the the two limits537

𝐴1 = −45
32
, 𝐵1 =

45
32

(9.9)538

Here we remark that the first terms of the two equations cannot be matched due to the539
differences in orders of magnitude (O (1) vs. O (1/𝑀)).540

While Riley provided the appropriate matching conditions, a uniformly valid solution for541
the entire fluid domain is not explicitly stated. Hence, following Riley’s solution we derive542
here the complementary solution that combines the inner and outer expansions. A direct543
result from the matching (Eq. (9.8)) is the shared limit terms between the inner and outer544
solutions545

⟨𝜓 (𝑠)
1 ⟩ = 45

√
2

16𝑀
[ (9.10)546

The unified, first-order steady streaming solution from Riley’s formulation is obtained by547
combining the inner and outer solutions while subtracting the shared terms548

⟨𝜓1⟩ = ⟨𝜓 (in)
1 ⟩ + ⟨𝜓 (out)

1 ⟩ − ⟨𝜓 (𝑠)
1 ⟩

=

[
9
√

2
4𝑀

(
1
8
𝑒−2[ + 5

2
𝑒−[ cos [ + 3

2
𝑒−[ sin [ + [𝑒−[ sin [ − 21

8

)
+ 45

32

(
1 − 1

𝑟2

)]
cos \ sin2 \

(9.11)549
and the corresponding azimuthal vector potential reads (Eq. (9.2))550

⟨𝜑1⟩ =
⟨𝜓1⟩
𝑟 sin \

= sin(2\)
[

9
√

2
8𝑀𝑟

(
1
8
𝑒−2[ + 5

2
𝑒−[ cos [ + 3

2
𝑒−[ sin [ + [𝑒−[ sin [ − 21

8

)
+ 45

64

(
1
𝑟
− 1
𝑟3

)]
(9.12)551

The 𝛿𝐷𝐶 predicted by Riley’s theory is reflected in main text Fig. 2(d) as well as Fig. 7.552
We highlight the close agreement in 𝛿𝐷𝐶 for higher Womersley numbers 𝑀 > 10. For553
lower Womersley numbers, Riley’s assumption of 𝑀2 ≫ 1 weakens, which accounts for the554
quantitative deviation from the present theory with 𝑀 < 10.555
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Figure 7: Normalized DC layer thickness (𝛿𝐷𝐶/𝑎 vs. inverse Womersley number (1/𝑀)
from theory and simulations, for varying body elasticity 𝐶𝑎𝑢. An alternative theory

(purple dashed line) derived by (Riley 1966), the incomplete theory (black dashed line)
of Lane (1955), and experimental results (grey squares) (Kotas et al. 2007) in the rigidity

limit are plotted for reference.

10. Derivation of the governing equation for visco-hyperelastic solid556

Here we outline the derivation for the solid governing equation used in main text Eq. (2.1)557
and supplementary materials Eq. (1.1).558

We start with Cauchy momentum equation559

𝜌
𝐷𝒗

𝐷𝑡
= ∇ · 𝝈 + 𝜌 𝒇 (10.1)560

The body force term 𝜌 𝒇 is henceforth dropped as it is absent within our system. In the561
following steps, we shall replace the Cauchy stress tensor 𝝈 with an appropriate constitutive562
relation. To reiterate, in the present work we consider an isotropic, incompressible, and563
viscoelastic solid with hyperelasticity. We choose a generalized Kelvin-Voigt constitutive564
model for viscoelasticity (Bulıcek et al. 2012), where we split the Cauchy stress into a565
fluid-like part and a solid-like part566

𝝈 = 𝝈 𝑓 + 𝝈ℎ𝑒 (10.2)567

For the fluid-like part, we employ the Newtonian viscosity model with Cauchy stress (Panton568
2006)569

𝝈 𝑓 = −𝑝 𝑓 𝑰 + 2` 𝑓 𝑫 (10.3)570

where 𝑫 = 𝐷𝑖 𝑗 = (𝜕 𝑗𝑣𝑖 +𝜕𝑖𝑣 𝑗)/2 is the rate of strain tensor, 𝑝 𝑓 denotes the pressure, and ` 𝑓571
is the dynamic viscosity. For the solid-like part, we choose the hyperelastic constitutive model572
as mentioned previously. Given a strain energy density function 𝑊 , in the incompressibility573
limit the Cauchy stress may be derived as (Bower 2009)574

𝝈ℎ𝑒 = 2
[(
𝜕𝑊

𝜕𝐼1
+ 𝐼1

𝜕𝑊

𝜕𝐼2

)
𝑩 − 1

3

(
𝐼1
𝜕𝑊

𝜕𝐼1
+ 2𝐼2

𝜕𝑊

𝜕𝐼2

)
𝑰 − 𝜕𝑊

𝜕𝐼2
𝑩 · 𝑩

]
+ 𝑝ℎ𝑒 𝑰 (10.4)575
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where 𝑩 = 𝑭𝑭𝑇 is the left Cauchy-Green tensor, with 𝐼1 = 𝑡𝑟 (𝑩) and 𝐼2 = (𝐼2
1 − 𝑡𝑟 (𝑩 ·576

𝑩))/2 being its first and second tensor invariant. Here 𝑝ℎ𝑒 refers is an unknown pressure577
/ hydrostatic stress in the incompressibility limit, analogous to 𝑝 𝑓 in Eq. (10.3). Next, we578
choose the Neo-Hookean strain energy density function, whose incompressible form reads579

𝑊 =
𝐺

2
(𝐼1 − 3) (10.5)580

where 𝐺 is the shear modulus that is equivalent to Lamé’s second parameter `. As an581
additional note, without the incompressibility condition, one would also expect the third582
invariant 𝐼3 = det(𝑩) = 𝐽2 and the bulk modulus 𝐾 to be relevant, both related to583
volumetric changes of the material. Substituting the strain energy density function Eq. (10.5)584
into Eq. (10.4), we obtain the Cauchy stress corresponding to the solid-limit of the viscoelastic585
material586

𝝈ℎ𝑒 = 𝐺

(
𝑩 − 1

3
𝑡𝑟𝑎𝑐𝑒(𝑩)𝑰

)
+ 𝑝ℎ𝑒 𝑰 = 𝐺 (𝑭𝑭𝑇 )′ + 𝑝ℎ𝑒 𝑰 (10.6)587

where ′ denotes the deviatoric operator. Substituting the Cauchy stresses Eqs. (10.2), (10.3)588
and (10.6) into the Cauchy momentum equation Eq. (10.1) and consolidating the unknown589
pressure terms as 𝑝 = 𝑝 𝑓 − 𝑝ℎ𝑒, we recover the dimensional form of the solid governing590
equation591

𝜌
𝐷𝒗

𝐷𝑡
= −∇𝑝 + ` 𝑓∇

2𝒗 + 𝐺∇ · (𝑭𝑭𝑇 )′ (10.7)592

The exact same form of Eq. (10.7) may be found in (Hu et al. 2018), in which the equation593
is adapted from Upper-Convected Maxwell (UCM) and Oldroyd-B viscoelastic constitutive594
models. This derivation is also largely identical to the Eulerian governing equations derived595
by Jain et al (Jain et al. 2019), although they did not consider visco-elasticity.596
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