
 

 

Supplementary material 

Appendix D: Energetics of the NP component 

Following the reasoning which led to (2.27), but without the wave-mode contributions, (3.4), 
without the forcing term, gives 
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Taking the ensemble average of the complex conjugate of (D.1), multiplied by  0a k , 
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where 
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and we have used (2.35), the fact that 00D  is real, as well as 
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which follows from homogeneity. Note that, given the Dirac function in (D.2),  , k p  has 

been replaced by  , k p  in (D.3). Taking the complex conjugate of (D.2), permuting 

k k and using the fact that 00 00D A  is real, 
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Taking the time derivative of (2.35) and using (D.2) and (D.5), 
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Using (3.7), (D.6) gives the NP-mode energy equation 
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of which the first term on the right-hand side represents nonlinear energy transfer between NP 
modes, while the second expresses visco-diffusive dissipation. 



 

 

Taking the integral of (D.7) over k  and using (D.3), 
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Since, according to (2.13),       0l
j j jk p e   k p , hence (2.12) implies 
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thus    , ,
p q p qss s s ssN N k p p k  from (2.28). Given    , , k p p k , which follows from 

(D.4), the integrand of the first term on the right-hand side of (D.8) changes sign under the 
permutation p k , hence the integral is zero, yielding (3.8). 

Appendix E: Energetics of the wave component 

Prior to introducing scaled variables, (3.13) can be rewritten as 
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where 

          3

, 1

, ,
p q p p p q

p q

s ss s s s ss s
s s

E G A F d


  k k p p k p p , (E.2)  

           , , ,
p q p q q q p qss s ss s s s ss s ssG A A    k p k p k p k p k , (E.3) 

we have used reality of 
p qss s  and the diagonal elements of ssA   and converted the surface 

integral into a volume integral using a Dirac function. Taking the sum over 1s   , using the 
first of equations (2.40) and integrating over k , (E.1) yields 
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as the evolution equation of the total energy of the wave component. 

Using (2.31), (3.16), (3.17) and (E.3), 
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where 
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Thus, (E.2) gives 
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The final term in (E.7) is treated by changing the integration variable to   q k p  and 

permuting the summation indices according to p qs s , hence it becomes 
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where    , ,
q p p qss s ss sF F  k k q k q  has been used. Thus, (E.7) yields 
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where 
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Using    * *, ,
q p p qss s ss sM M  k k p k p  and (E.6), 
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Observe that the symmetry relation    , ,
p q p qss s s ssI Ik p p k  follows from (E.11) and 
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(E.9) implies 
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As was shown in appendix D using (D.9),    , ,
p q p qss s s ssN N k p p k . Using this result and 

   , ,
p q p qss s s ssI Ik p p k ,    , ,

p q p qss s s ssF Fk p p k , it is apparent that the integral in (E.12) 

changes sign under the permutation ps s , thus (E.12) is zero, hence (E.4) gives (3.18). 

Appendix F: Numerical scheme for (3.9)-(3.11) 

(3.9) and (3.10) are 
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Using (2.15), (3.11) implies 
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where 
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(F.1)-(F.4) describe the evolution of the NP component. 

In what follows, we use Cartesian coordinates, 1x , 2x  3x , where  0,0,1e  is the axial 

unit vector. DNS approximates the flow as periodic with respect to 1x , 2x  and 3x . Thus, (F.1) 

and (F.2) are replaced by the Fourier series 
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where k  has the components 1 1 12 /k l L , 2 2 22 /k l L , 3 3 32 /k l L , iL  are the spatial 

periods and, for 0k , 
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in which  1 2 3, ,a l l l  gives the amplitudes of the discrete NP modes which constitute the 

periodized NP flow considered here.    *
1 2 3 1 2 3, , , ,a l l l a l l l     because ˆviu  and ˆv  are real. 

Using (2.12) and (2.15), 
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There are divisions by zero in (F.7) and (F.8) when 0k , which is the reason why they can 
only be used for 0k . The case 0k  concerns only a single point in spectral space, so we 
expect its numerical treatment to be unimportant as regards the overall description of the 

flow. For simplicity’s sake we choose to set    0,0,0 0,0,0 0iu    in (F.5) and to restrict 

attention to the time evolution of components with 0k . As usual in DNS, the spatial 

periods, iL , need to be sufficiently large that periodicity is unimportant. Another way of 

putting this is that the spacing, 2 / iL , in spectral space should be sufficiently small. The 

numerical equivalent of (F.3) is 
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for 0k , where   k  is given by (F.4), but with suitable interpretations of ̂̂NP NP
i ju u  and 

̂̂NP NP
ju  in terms of discrete Fourier transforms. 

Although the case 0N   has been excluded in the main text, it is perhaps appropriate to 

consider it here. Analytically, ˆ 0NP
iu   follows from (2.12), (2.15) and (F.1), hence 0   

from (F.3). Thus, the nonlinear term in (F.3) vanishes and the NP component should undergo 
simple visco-diffusive decay. From a numerical point of view, when 0N  , (F.7) is zero 

unless 3 0k  , where there is a zero-by-zero division. In an attempt to approach the case 

0N  , consider an extremely small value of N . This makes (F.7) very small, apart from the 

3 0k   component, which is  1O . Thus,  iu k  other than 3 0k   are correctly treated by the 

numerics, but those with 3 0k   remain and pollute the numerical results for all other wave 

vectors over time. These numerical problems reflect the singular nature of the 0N   limit 
for the NP component. The case 0  , excluded in the main text, also leads to numerical 

difficulties since both (F.7) and (F.8) have zero-by-zero divisions when 0k  . 

In addition to supposing periodicity, DNS truncates the sums in (F.5) to i il K , where iK  

are positive integers, which must be sufficiently large that the smallest dynamically 
significant length scales of the flow are resolved. Evaluating (F.5) at the discrete points 

1 1 1 1/x p L N , 2 2 2 2/x p L N , 3 3 3 3/x p L N , where 2i iN K  and 0 i ip N   are integers, 

the result can be expressed as 
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where 
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i iq l  for 0 i il K   and i i iq N l   for 0i iK l   . All  1 2 3, ,i q q q  which are not covered 

by (F.11) are zero. (F.10) is a three-dimensional discrete Fourier transform. Given a  and 

   0,0,0 0,0,0 0iu   , (F.7), (F.8), (F.10) and (F.11) allow the determination of ˆNPiu  and 

ˆNP , hence ˆ ˆNP NP
i ju u  and ˆ ˆNP NP

ju , in physical space. Applying the inverse transform, 
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gives the DNS approximations of ̂̂NP NP
i ju u  and ̂̂NP NP

ju  as 
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where, as before, i iq l  for 0 i il K   and i i iq N l   for 0i iK l   . This allows the 

calculation of   k  using (F.4). As usual, FFT is used to implement the Fourier transforms 

in (F.10) and (F.12). 

A time-stepping scheme for integration of (F.9) is introduced. Time is discretized to the 

values n̂t n  ,  where   is the time step, and (F.9) gives 
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Given  n̂a t ,  n̂t  is determined as described above. As a first-order approximation,  t̂   

is taken as constant and equal to  n̂t , hence 
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as an approximate value of  1n̂a t  . To increase the precision to second order, let †  be the 

value obtained using   †ˆ / 2na t a , which approximates the value of  ˆa t  at time ˆ / 2nt   . 

Thus, 
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completes the time step. The advantage of the above scheme, compared with more traditional 
ones for integrating general differential equations, is that it only assumes that the time scale 

for significant changes in  ˆa t  is long compared with  . As k  increases, so does  00D̂ k , 

and, when  00D̂ k  becomes of  1O , visco-diffusive effects are significant within a time 

step. At this point, the precision of traditional schemes is degraded, whereas it is maintained 
for the above scheme. 

Using (F.5) and the fact that ˆviu  and ˆv  are real, the averaged, scaled energy density of the 

NP component in physical space is 
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Statistical homogeneity implies that only terms with i il l   are nonzero. Using (F.7) and (F.8) 

for 0k  and    0,0,0 0,0,0 0iu   , 
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where, here and henceforth,  0 0a  . On the other hand, prior to discretization, 

    2 3 3
00

1 1 ˆˆˆ ˆ ˆ
2 2

NP NP NP
i i vu u e d A d    

   k k k k , (F.19) 



 

 

where 2
00 00

ˆ / NPA A   and 2ˆ /NP NP NPe e  , expresses the scaled NP energy as an integral over 

spectral space. (F.18) is a numerical approximation of (F.19). Since the density of discrete k  

in spectral space is 3
1 2 3 / 8L L L  , 
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00 1 2 33

ˆ , ,
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L L L
A a l l l


k  (F.20) 

provides an approximation of  00Â k . 

The scheme is initialised as follows. The coefficients  1 2 3, ,a l l l  are of zero mean and 

must satisfy    *
1 2 3 1 2 3, , , , 0a l l l a l l l     unless i il l  , as well as    *a a k k . Assuming the 

initial  00Â k  is given and such that    00 00
ˆ ˆA A k k , (F.20) determines   2

1 2 3, ,a l l l . 

These conditions are satisfied by taking the initial coefficients 
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where the phases   k  are random variables, uniformly distributed between 0  and 2  and 

independent apart from the constraint       k k . 

Having described the methods used to initialise and integrate (F.9), we now want to extract 

information from the results. The problem with using (F.20) to determine  00Â k  is that it 

contains an ensemble average. To calculate such an average numerically would require very 
many DNS runs, which, given the computational cost, is not attempted. We instead extract 
information from a single run. In so doing, we assume that, prior to discretization, the flow is 

statistically axisymmetric. In particular,  00Â k  is axisymmetric and the aim here is results 

which are representative of the scaled energy density in spectral space,  00
ˆˆ , / 2ve A k k  , 

without using ensemble averaging. Note that    00 00
ˆ ˆA A k k  and axisymmetry give 

   00 00
ˆ ˆ, ,A k k A k k    . Thus, we restrict attention to determination of 00Â  for 0k  . For 

simplicity’s sake, from here on we assume 1 2 3L L L L    and 1 2 3K K K K   . Let 

  2 1mk m
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
         0 1m K   . (F.22) 

Define axisymmetric regions  ,D m m   in spectral space by 1m mk k k
     and 

1m mk k k  
  , where 0 m K   and 0 m K  . Let 
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where the sum is over discrete wave vectors inside  ,D m m   and m mN
 

 is the number of 

such wave vectors (which is non-zero given the construction of  ,D m m  ). Taking the 

average of (F.23) and using (F.20), 
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If the region is small in the k - k  plane (large enough L ), variations of  00Â k  across 

 ,D m m   can be neglected and the right-hand side of (F.24) approximates  00Â k  

throughout the given region. The problem is that, as noted earlier, it is not feasible to 
determine the ensemble average using DNS. Thus, we take the right-hand side of (F.23) as 

representative of  00
ˆ ,A k k   at 
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2

k m
L


           0 m K  . (F.26) 

One can also regard  00Â k  as a function of k  k  and k , the angle between the vectors 

k  and e . For given k , k  runs over the values 
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The associated value of 00Â  is taken from the nearest point in the k - k  plane at which it has 

been calculated as described above. 

The spherically-averaged energy spectrum of the NP component can be obtained as 

follows. Let  S m  be the region 1m mk k k    in spectral space, where 0 m K  . The 

quantity 
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is taken as representative of the scaled spectrum,     2ˆ /NP NP NPE k E k  , at k  given by 

(F.27). 



 

 

Finally, the total (unaveraged) scaled NP energy is 

   21

2
a

k

k , (F.29) 

where the sum is over all wavenumbers. 

The numerical parameters used to obtain the results described in section 4.1 were 

512iN  , 255iK  , 60iL  , 35 10    and 7
0 1.5 10d   , where the hyperviscous 

damping factor is 6
00 0D̂ d k . 

Appendix G: Numerical scheme for (3.13) 

 (3.13) yields 
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where we have used the Dirac function   ,
p qss sF k p  to turn the surface integral into a 

volume integral. 

Here we assume axisymmetry of  ˆ
ssA k  and, before discussing numerical methods, (G.1) 

is recast in a form which is better suited for numerical purposes. From a numerical point of 

view, a problem with (G.1) is that the coefficients  ,
p qss s k p  and  ,

p qss s k p  are mildly 

singular at both 0p  and  p k , points which may lie on or near the surface 

 , 0
p qss sF k p , a surface which is significant given the Dirac function in (G.1). By mildly 

singular we mean that the coefficients have different limiting values depending on the 
direction from which the singular point is approached. The following analysis is intended to 
remove the point  p k  from consideration, thus reducing from two to one the number of 

singular points. 

First consider 
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which forms one of the components of (G.1). p -space is divided into two parts:  p p k  

and  p p k , which are separated by the planar boundary  p p k . The integral in (G.2) 

is the sum of contributions from these two parts of p -space, i.e. 
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. (G.3) 

Changing the integration variable to   q k p  and permuting the summation indices 

according to p qs s , 
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where we have used    , ,
q p p qss s ss sF F  k k q k q . Renaming the integration variable on the 

right-hand side of (G.4) and using the result in (G.3), 
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The quantity 
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also appears in (G.1) and can be split into contributions from  p p k  and  p p k  in 

the manner of (G.3). Changing the integration variable to   q k p  and permuting the 

summation indices p qs s , 

 

        
        

3

, 1

3

, 1

ˆ ˆ, ,

ˆ ˆ, ,

p q p p q q p q

p q

p q p p q q p q

p q

ss s s s s s ss s
s s

ss s s s s s ss s
s s

A A F d

A A F d

 

 

 


 


  

 

 

 

p k p

q k q

k p p k p k p p

k q q k q k q q
, (G.7) 



 

 

where we have used    , ,
q p p qss s ss sF F  k k q k q  and    , ,

q p p qss s ss s   k k q k q , which 

is a consequence of (3.16) and    , ,
q p p qss s ss sM M  k k q k q . Renaming the integration 

variable on the right-hand side of (G.7), 
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The integrals on the right-hand sides of (G.5) and (G.8) do not contain the point  p k , 

which was the motivation for the above analytical manipulations. 

Using (G.5) and (G.8) in (G.1), 
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where 
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and 
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Some remarks concerning (G.9)-(G.11) are in order. Firstly, bearing in mind that 

   ,
ˆ ˆ

s s ssA A   k k , we restrict (G.9) to 1s   in what follows. Secondly, because the 

resonant surface does not exist when p qs s s  , the term 1p qs s   is zero and is dropped. 

Consider a Cartesian coordinate system such that 1 0k  , 2 0k   and  0,0,1e . Given 

axisymmetry, the integrands in (G.10) and (G.11) are symmetric under the reflection 

2 2p p . Thus, specializing to 1s  , (G.10) and (G.11) give 
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where the term 1p qs s   is omitted from the sums. The identities    1, 1 11
ˆ ˆA A   p p  and 

   1, 1 11
ˆ ˆA A     k p k p  provide the spectra in (G.12) and (G.13) in terms of 11Â  when 

1ps    or 1qs   . (G.9) with 1s   and (G.12), (G.13) give the wave-turbulence equation 

which is treated numerically. 

The integrals in (G.12) and (G.13) are evaluated numerically. This requires a numerical 

representation of the spectrum 11Â . Given axisymmetry,  11Â k  depends on k  k  and 

0   k , the angle between k  and the axial vector e . k  is discretized and truncated 

according to 

 minlog log k kk k n   ,     0 k kn N  , (G.14) 

where  1
max minlog /k kN k k  . Here, kN , mink  and maxk  are numerical parameters. kN  is 

large, while min max0 k k   define the range of k  which is treated numerically. The 

motivation for the logarithmic distribution (G.14), compared to a linear one, is to widen the 

range of k  for a given kN . k  is also discretized: 
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where  / 2N    and N  is large. (G.9) (with 1s  ), (G.12) and (G.13) are applied for 

all k  defined by (G.14), (G.15) and 2 0k  . For each such k , the integrals in (G.12) and 

(G.13) require numerical evaluation, which is carried out as follows. 

The integrals in (G.12) and (G.13) have the form 
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With the aim of evaluating such integrals, we introduce spherical coordinates, p  p , 

0     and 0     (because 2 0p   in (G.16)), in p -space such that the Cartesian 

system defined above is 1 sin cosp p   , 2 sin sinp p   , 3 cosp p  . We next 

introduce  ln /p k   to replace the radial coordinate, p . Thus, (G.16) becomes 
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  is truncated to    1/ 2 1/ 2k k k kN N       , a range which is divided into 2 1kN   

intervals of length k . Likewise, 0     is divided into 2N  intervals of length   and 

0     into a large number, N , of intervals of length / N   . Taken together, these 

intervals divide  , ,   -space into many small rectangular blocks. The numerical 

contribution of each block to the integral in (G.17) is determined separately and the sum over 

blocks taken to give the total value. Numerically, the value of   3, sinf e  k p  is 

approximated by its value at the block centre. Blocks whose centre point are such that 

minp k , maxp k , mink k p  or maxk k p  are ignored, because they involve values 

outside the numerical range of 11Â . Blocks whose centre point does not satisfy p  k p  are 

also ignored because their centre points are excluded by the integral in (G.17). For each of the 
remaining blocks, the contribution to (G.17) is 

     3 3, sin ,
p qss sk f e F d d d     k p k p , (G.18) 

where the factor multiplying the integral has the value at the block centre. Its calculation 

involves the determination of  ˆ
p ps sA p  and  ˆ

q qs sA  k p  in (G.12) and (G.13). Whereas 

 ˆ
p ps sA p  follows directly from one of the values in the numerical representation of 11Â , this is 

not generally true of  ˆ
q qs sA  k p .  ˆ

q qs sA  k p  is approximated using the value of 11Â  at 

the nearest available point in the log k -k  plane. 

It remains to determine the integral in (G.18). Let / kX    , /X    and 

/X   , so the rectangular blocks in  , ,   -space become unit cubes in the new  

 , ,X X X   -space. For each cube,  ,
p qss sF k p  is approximated using a Taylor’s expansion 

about the cube centre, neglecting terms of order two and above. Thus, 

        0 0 0
0,

p qss sF F X X X X X X                k p , (G.19) 

where 0X  , 0X  and 0X  denote the cube centre, 0F  is the value of  ,
p qss sF k p  at the centre 

and 
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, (G.20) 

the derivatives being also evaluated at the centre. The resulting approximation of the integral 
in (G.18) is 
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. (G.21) 

The integral on the right-hand side of (G.21), henceforth denoted I , can be evaluated 

analytically. The results can be expressed in terms of min , mid  and max , which are the 

values of  ,   and  , ordered according to min mid max    . There are a number of 

different cases: 

i) 0 min mid max2 F      . In that case 0I   and the given cube is ignored. 

ii) 0 mid max min2 F       gives 

  2

0 min mid max
min mid max

1
2

8
I F   

  
    . (G.22) 

iii) min mid 0 max mid min2 F          yields 

  mid max 0
mid max

1
2

2
I F 

 
   . (G.23) 

iv) min mid max 0 min mid max2 F            leads to 

  2

0 min mid max
max min mid

1 1
1 2

8
I F   

  
 

     
 

. (G.24) 

v) max min mid     and 0 max min mid2 F       gives max1/I  . 

vi) max min mid     and 0 min mid max2 F       yields 

   2 2

0 min mid max
max min mid

1 1
1 4

4
I F   

  
 

     
 

. (G.25) 

Having described the numerical methods employed to determine the integrals in (G.12) 
and (G.13), we turn attention to the scheme used to integrate (G.9) with respect to time. As 
usual, it involves stepping forwards in time, the time step being denoted by  . Each step 

involves two stages. In the first stage, 1K  and 1J  are approximated as time-independent and 

equal to their values at the beginning of the step, values which are determined as described 

above. Given time-independence of 1K  and 1J , (G.9) gives 
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as an approximation of  11
ˆ , / 2A T  k . The second stage determines 1K  and 1J  using †

11Â  

and the resulting time-independent approximations, †
1 1K K , †

1 1J J , are employed in (G.9), 

yielding 
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k
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k
, (G.27) 

which is the final result of the time step. An advantage of this scheme, compared to more 

conventional ones, is that, since   1 1exp / 2 1 / 0K K    and   1 1exp 1 / 0K K   , no 

matter what the sign of 1K , and 1 0J   according to (G.13), it guarantees that non-negative 

11A  is maintained. 

The numerical parameters used to obtain the results of section 4.2 were 1
min 10k  , 

3
max 10k  , 400kN  , 200N  , 100N  , 35 10    and 510d  , where the 

hyperviscous damping factor is   4D̂ dkk . 

 


