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A. Different Glycerol/Water mixtures

The viscosities of the drop and the film were changed using different mixtures of water and glycerin. Table S0 lists
the various physical properties of these mixtures vs the weight fraction of the glycerin.

B. Ejecta Stretching

To study the in-plane stretching of the ejecta we discretized the arclength of ejecta shapes from the parametric
equations of the ballistic ejecta model from Thoroddsen et al. [1], after normalizing lengths with Rsp and time by
Rsp/Vsp:

x(t, τ) =
√

t(2− t) + C(1− t)2(τ − t); y(t, τ) = C(1− t)
√

t(2− t)(τ − t), (1)

which shows the ejecta shape at time τ and the time of ejection t ≤ τ is the parameter along the sheet. The model
consists of a sphere penetrating through the pool surface without deforming it, with the ejecta emerging from the
contact point

xc(t) =
√
Vspt(2Rsp − Vspt),

when its radial velocity becomes smaller than the ejecta

Vc =
dxc

dt
=

Vsp(Rsp − Vspt)√
Vspt(2Rsp − Vspt)

≤ C Vspcosθ.

TABLE S0. Density (ρ), Viscosity (µ) and surface tension (σ) of Glycerin/Water weight mixtures at T = 23◦.

wGlycerol % ρ [kg/m3] µ [cP] σ [mN/m]
70 1179 19.8 66.2
80 1206 50.9 65.3
83.9 1217 79.4 64.9
85.4 1221 96.3 64.8
88.3 1228 141 64.5
91.6 1237 231 64.2
93 1241 289 64.1
94.9 1246 397 63.9
97.9 1254 697 63.6
100 1261 1078 63.4

∗ These authors contributed equally.
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Supplemental Figure S1. The overall stretching and rotation of a typical element of the ejecta. The inset shows the stretching
in the coordinates moving with point of the sheet ejected at t = t2.

Early on cosθ ≃ 1 and the equality becomes

C2Vspt(2Rsp − Vspt) = C2 [2RspVspt− V 2
spt

2] = R2
sp − 2RspVspt+ V 2

spt
2

for small time the sphere has only penetrated a small distance, thereby Vspt << Rsp, giving tc ≃ Rsp/(2C
2 Vsp).

Figure S1 sketches the in-plane stretching of a short fluid element along the sheet, where the start of the element
emerges at t1 and the end of it is ejected at t2. Each end is projected along a straight line at a constant speed. As
the ejecta speed is larger at the start, according to the model, the element is stretched in time. Furthermore, the
ejecta direction changes, which tends to rotate the element. In the frame of reference of the t2 end, the inset in Fig.
S1 shows how the velocity difference and direction stretches and rotates the sheet element.

C. Ejecta Evolution

We use the local stretching, in terms of an arclength parameter, to distribute the nodal points uniformly along the
sheet. To accomplish this we to determine the values of t based on the values of the derivatives of Eq. (1), i.e.

∂x

∂t
=

(1− t)√
t(2− t)

− C(1− t) [2τ − 3t+ 1] ;
∂y

∂t
= C

[
τ − 4τt+ 2τt2 − 3t+ 7t2 − 3t3√

t(2− t)

]
.

D. Ejecta - Elliptical Kinematic Model

Owing to air resistance the drops are deformed away from spherical, during the free-fall, to become oblate at the
impact. We have also built a kinematic model in the vein of [1], now using an elliptic drop: The equation of the
ellipse shown in Figure S2 is

x2

a2
+

(y − y0)
2

b2
= 1 (2)

where a is the x−radius and b is the y−radius, their aspect ratio is defined as β = b/a. The y−coordinate of the drop
center is a function of time t,

y0 = b− Vit (3)

The intersection point xc is calculated combining the formula for the ellipse and x−axis.

xc =
1

β

√
(2b− Vit)Vit (4)
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where Vi is the impact velocity of the ellipse.

Note that, the ejection velocity, Ve, is angled with horizontal axis at α, which is not equal to the angle θ. The slope
of the ellipse at the intersection point is

dy

dx
=

β x√
1− x2

.

the trajectory of each fluid element

x(τ, t) = xc + Vecosα(τ − t); y(τ, t) = Vesinα(τ − t) (5)

where the ejection velocity Ve directed tangentially to the ellipse at the intersection, say the angle is α, is assumed to
be proportional to the normal impact velocity,

Ve = CVicosα (6)

where C is the ejecta-speed constant, shown in Fig. 4(a) in the main text. Substitute Equation 6 into 5,

x(τ, t) = xc + Vi cos
2α (τ − t); y(τ, t) = Vi cosα sinα (τ − t) (7)

Combining these equations we get a formula for the ejecta shapes for an ellipse of aspect ratio β, at time τ :

x(t, τ) =
1

β

√
t(2β − t) +

C(t− β)2(τ − t)

β2 + (β2 − 1) t (2β − t)
; y(t, τ) =

Cβ (β − t)
√
t(2β − t) (τ − t)

β2 + (β2 − 1) t (2β − t)
.
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Supplemental Figure S2. Sketch of the Elliptical Kinematic Model. Ve shows the angle of ejecting velocity, α, which is not the
same as θ.
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Supplemental Figure S3. The model prediction of the ejected sheets for an impact of an ellipsoidal drop, with aspect ratio
β = b/a = 0.70, shown at τ = 0.1, 0.15, 0.2 & 0.25 for C = 14.
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Supplemental Figure S4. (a) Ejecta shape evolution, spaced by 50 µs, for Re = 1050 and We = 4950 based on the corresponding
spherical drop diameter. (b) To reduced clutter we split the evolution in (a) into four separate plots. (c,d) Three representative
shapes, with the rotation of the tangent as one moves along the sheet. (e) The total area of the sheet vs time. The jump
corresponds to the rupture and slingshot of the tip section. The solid symbols add this area to the growing area of the intact
sheet. See also Supplemental Video SM1.

E. Ejecta Shapes

Figure S5 shows traces of the ejecta shapes from Supplemental Video SM1, for lower impact velocity, taken in our
lab with regular ceiling height. The growth rate of the area is much slower than for the higher impact velocity in the
main text. Here the sheet area grows by 12 × Adrop in 1 ms, while in Fig. 7 this stretching is about 17 times faster
and only takes ∼ 60 µs.

[1] Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. Droplet splashing by a slingshot mechanism. Phys. Rev.
lett. 106, 034501 (2011).
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Supplemental Figure S5. Ejecta shapes from Figure 8(b) in the main text, now plotted separately to minimize clutter. Ejecta
profiles are shown at 11, 19, 31, 42 and 56 µs after first contact of the drop. The colors follow bent segments in time, but
disappear when they rupture in to fine spray. The dashed horizontal red lines show the initial surface level of the liquid film.
The vertical dashed blue line is the drop axis of symmetry. See also Supplemental Video SM1.


