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Supplementary Materials1

S.1. Fluidisation model for an ideal gas2

For an ideal gas, an a�ne relationship between pressure and density will be imposed:3

? 5 = &(d 5 ) with &(d 5 ) = ?atm

⇣
d 5

d
0
5

� 1
⌘
, (S.1.1)4

where ?atm = 1.013 ⇥ 105 Pa is the atmospheric pressure, and d
0
5
= 1 kg.m�3 corresponds5

to the density of air at atmospheric pressure. Note that this formulation is equivalent to the6

one given in Goren et al. (2010):7

d 5 = d
0
5

⇣
1 +

? 5

?atm

⌘
.8

Recall that it is possible to choose any regular function � in equation (3.3). If we first choose9

� (d 5 ) = &(d 5 ), then we deduce an equation describing the evolution of the pressure ? 5 ,10

namely11

mC ((1 � q)? 5 ) + div((1 � q)? 5 u) + ?atmdiv u = div(^(q) (?atm + ? 5 )r? 5 ).12

Considering that the pore gas pressure in the granular medium is negligible compared to13

the atmospheric pressure, that is ? 5 ⌧ ?atm, it is reasonable to approximate ? 5 + ?atm by14

?atm in the right-hand side of the last equation. As a consequence, we obtain the following15

pressure "di�usion" equation (3.6):16

mC ((1 � q)? 5 ) + div((1 � q)? 5 u) + ?atmdiv u = ?atmdiv(^(q)r? 5 ). (S.1.2)17

As in the case of a general state law, it is also possible to estimate the term � in the energy18

equation (2.13). To do this, we now choose the function � in (3.3) so that d 5 �
0(d 5 ) �19

� (d 5 ) = &(d 5 ) (that is the function � given by using (3.5)), namely20

� (d 5 ) = ?atm
d 5

d
0
5

h
ln

⇣
d 5

d
0
5

⌘
� 1

i
= (?atm + ? 5 )

h
ln

⇣
1 +

? 5

?atm

⌘
� 1

i
.21

We get22

�� =
3

3C

⇣ π
(1 � q) (?atm + ? 5 )

h
ln
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? 5

?atm

⌘
� 1

i ⌘
+
π

^(q) |r? 5 |2.23

24

R����� 1. This convection-di�usion equation (S.1.2) for the pore gas pressure is25

frequently used, sometimes in slightly di�erent forms. Thus, in Goren et al. (2010, equation26

(7)) or in McNamara et al. (2000, equation (7)) corrected in Anghel et al. (2006), the authors27

use its non-conservative form (using the approximation ?atm + ? 5 ⇡ ?atm), namely28

(1 � q)
�
mC ? 5 + u · r? 5

�
+ ?atmdiv u = ?atmdiv(^(q)r? 5 ).29

A similar equation is often used in the incompressible case, i.e. when q is constant and30

div u = 0. It then reduces to a "classical" convection/di�usion equation, and even to a31

di�usion equation if the transport term is not taken into account. This is for example the case32

in Montserrat et al. (2012) and Roche (2012).33
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Figure 3: Schematic configuration of a two-dimensional (left) or three-dimensional (right)
displacement.

S.2. Dilatancy law and dilatancy angle34

As for the friction angle, some authors use the tangent function instead of the sine function.35

Specifically, the dilatancy angle is the angle of motion relative to the horizontal arising36

from displacement, with 3. = tan(k)3- where 3. and 3- are the vertical and horizontal37

displacements. This definition of k is specific to planar shear but can be generalised by the38

relation39

div u = 2|S| sin(k). (S.2.1)40

On the left-hand side of the Figure 3, the dilatancy angle is represented for a two-dimensional41

flow whose velocity field depends only on the vertical variable H. In that case and assuming42

that the velocity field is written u = (D(H), E(H)), we have43

div u = mHE , S =
1
2

✓
�mHE mHD

mHD mHE

◆
and 2|S| =

q
(mHD)2 + (mHE)2

.44

In this case, the definition of k via tan(k) = 3.

3-
exactly coincides with (S.2.1).45

Although this article is devoted to two-dimensional models, it may be interesting to say a46

few words about extending the definition of the dilatancy angle k to the three-dimensional47

case. In Andreotti et al. (2012, p.150-151), the authors define k by the formula (S.2.1) by48

replacing the constant 2 by 3, while explaining that this definition no longer coincides with49

that given in the case of simple shear. Nevertheless, it is possible to do the same reasoning50

as in dimension 2. Assuming that u = (D(I), E(I),F(I)), we have51

div u = mIF, S =
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´
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™ÆÆÆÆ
¨
, 2|S| =

r
(mID)2 + (mIE)2 + 4

3
(mIF)2

,52

so that the length ✓ (see the right-hand side of the Figure 3) writes ✓2 = 4|S|2 � 1
3 (div u)2.53

We obtain54

sin(k) = div u

✓

=
div uq

4|S|2 � 1
3 (div u)2

.55

It is then possible to express the divergence of the velocity field as follows56

div u =
2|S| sin(k)r
1 + 1

3
sin2(k)

.57

When the dilatancy angle is small, the above relation is a close approximation to (S.2.1).58

The coe�cient 2 remains valid in the three-dimensional case. There would therefore be no59

reason to propose 3 as coe�cient in (S.2.1), even for a three-dimensional model60
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S.3. Proof of the stability result: Theorem 361

We recall the stability result stated in the Theorem 3 (on page 12) and detail its proof.62

T������. Under the conditions (5.7), (5.8) and (5.9), the model (4.4)–(4.7) is linearly63

stable.64

Proof. To prove this result, we adopt the ideas of the proof made in Barker et al. (2017,65

Section 3) or in Barker et al. (2023, section 3). We must estimate the e�ects of the additional66

equation describing the evolution of the pore gas pressure, namely (4.5), and its coupling67

with the momentum conservation equation through the gradient term�r? 5 in the right-hand68

side of (4.6).69

Let us consider a solution V
0 = (q0

, u
0
, ?

0
, ?

0
5
) of the system of equations (4.4)–(4.7).70

The first step is to linearize this system around V
0 by looking for a perturbed solution in the71

form V = V
0 + eV. As in Barker et al. (2017), we retain only the terms that are linear in the72

perturbation eV and neglect most of the terms that are not of maximal order. As an example,73

the linearized version of equation (4.5) describing the evolution of ? 5 writes74

mC f? 5 = 2�f? 5 where 2 = ?atm
^(q0)
1 � q

0
. (S.3.1)75

In the next step, the coe�cients in the resulting linear system are frozen and we look for76

exponential solutions eV(C, G) = eib ·G+_CbV, in order to obtain an eigenvalue problem that can77

be written as _bV = MbV.78

By specifying the unknown ? 5 , i.e. by decomposing bV =
⇣bU, b? 5

⌘
, the matrix M takes79

the following form80

M =

©≠≠≠≠≠≠≠
´

�N
0

ib

0

0 0 0 �2 |b |2

™ÆÆÆÆÆÆÆ
¨

,81

where N exactly corresponds to the matrix obtained when the fluidisation by the pore gas82

pressure is not modeled. The term ib comes from the pressure gradient r? 5 involved in83

the momentum equation (4.6) whereas the last line of the matrix M corresponds to the84

equation (S.3.1).85

In Barker et al. (2017), it is proved that the conditions (5.7), (5.8) and (5.9) imply that86

all eigenvalues of the matrix N are positive. Since 2 |b |2 > 0, these same conditions ensure87

the negativity of all the eigenvalues of the matrix M, i.e. the stability of the solution88

(q0
, u

0
, ?

0
, ?

0
5
).89

R����� 2. The second condition (5.8) is not exactly the same as the one given in Barker90

et al. (2017), which is stronger since it requires a strict inequality m� / > 0. Looking in details91

at the proof in Barker et al. (2017), it is clear that the result remains valid if �m� / + / > 0.92

Indeed, this condition is used to show that the trace of a matrix, namely93

Tr(M + N) =
⇣
�m�.

2k⇡¢k + .

2k⇡¢k
⌘
|b |2 + 1

�

⇣
(1 + ⌫)2

b
2
1 + (1 � ⌫)2

b
2
2

⌘
,94

is strictly positive. Note the above equation is written with the notations used in Barker et al.95

(2017, Proof of lemma 4.1). Since � > 0, according to (5.9), the second term in the right-hand96
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side of the above equality is always strictly positive. Therefore, the condition �m�. +. > 0 is97

su�cient to ensure the positiveness of the trace. This condition (5.8) does not alter the rest of98

the proof proposed in Barker et al. (2017). In particular, we still have Det(M +N) > 0. Note99

that the conditions for the linear stability of the model established in Barker et al. (2017) are100

only su�cient conditions. There is no evidence that they are optimal.101
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