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This supplemental material provides information on the nework generation and meshing,
discusses the details of the network considered in the article. Furthermore, it discusses
the numerical solution of the flow problem and flow boundary conditions, as well as the
numerical solution of the transport problem.

1. Discrete Fracture Network Models: Network Generation and
Meshing

We use the discrete fracture network (DFN) methodology to generate fracture networks
and numerically resolve flow and transport therein. DFN models are best suited for
situations where the fracture network is the primary flow and transport domain and
interactions, mass and energy transfer, with the rock matrix can be neglected. In DFN
models, individual fractures are explicitly represented as co-dimension one objects, e.g.,
lines in two dimensions and planes in three dimensions, due to the large contrast in
fracture aperture compared to their length. Network generation requires a site character-
ization to obtain information about the fracture families. However, the amount of data
required to constrain generation is limited because measuring subsurface properties, both
hydraulic and structural, at the field scale O(103 m) is costly and prohibitive (Bonnet
et al. 2001; National Research Council 1996; Viswanathan et al. 2022; Zimmerman et al.
1993). In turn, fracture networks are constructed stochastically by sampling distributions,
which are parameterized using what limited data is available, for shape, location, and
orientation until target parameters, e.g., fracture intensity and density, are obtained.
Additional details of DFN models and examples are found in Berrone et al. (2013,
2015); Cacas et al. (1990); Davy et al. (2013, 2010); de Dreuzy et al. (2004); Dershowitz
& Fidelibus (1999); de Dreuzy et al. (2012); Erhel et al. (2009); Pichot et al. (2012);
Mustapha & Mustapha (2007).

We use the dfnWorks DFN modeling software (Hyman et al. 2015) to perform
our simulations. dfnWorks uses the Features Rejection Algorithm for Meshing
(FRAM) (Hyman et al. 2014) to create and generate a computational mesh
representation of the networks by coupling the two. The former is performed as described
above via sampling of appropriate probability distributions, To perform the latter,
FRAM uses the near Maximal Algorithm for Poission-disk sampling (nMAPS) (Krotz
et al. 2022) to create a variable resolution conforming Delaunay triangular mesh
representation of the network. The mesh is refined near intersections to help resolve
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the highest gradients in the physics simulations, which typically occur in proximity to
those regions. Upon the fracture planes, the mesh is a two-dimensional manifold, but
at intersections, the mesh is three-dimensional. This multi-dimensional mesh allows for
straightforward integration of numerical discretizations of governing partial diferential
equations without the use of coupling schemes such as Lagrange multipliers or mortar
methods. dfnWorks has been used to explore fundamental aspects of geophysical flows
and transport in fractured media (Hyman 2020; Hyman et al. 2019a,b; Kang et al. 2020;
Makedonska et al. 2016; Sherman et al. 2020) as well as practical applications including
hydraulic fracturing operations (Hyman et al. 2018; Karra et al. 2015; Lovell et al. 2018),
inversion of micro-seismicity data for characterization of fracture properties (Mudunuru
et al. 2017), the long term storage of spent civilian nuclear fuel (Hadgu et al. 2017), and
geo-sequestration of carbon dioxide into depleted reservoirs Hyman et al. (2020).

2. Network Details

We consider a generic network composed of uniformly-sized square fractures with edge
length of 2 meters. We consider a cuboid domain of dimensions 100 m × 10 m × 10 m.
During the generation stage of the network, the domain expanded one meters in every
direction to mitigate low density issues that can arise near the boundaries. Fractures are
placed into the domain using a Poisson process, where the centers c are sampled from a
three-dimensional uniform distribution,

c ∼ U [−1, 101]× U [−1, 11]× U [−1, 11] . (2.1)

The resulting fracture centers are thus uniformly distributed throughout the domain.
After generation is complete, the network is reduced back to the requested domain size,

Ω = [0, 100]× [0, 10]× [0, 10] , (2.2)

where all fracture portions within the domain are retained.

The fracture orientations are sampled from the three-dimensional Fisher distribution,

n(x;µ, κ) =
κ exp(κµTx)

4π sinh(κ)
. (2.3)

where µ is the mean direction vector (T denotes transpose) and κ > 0 is the concentration
parameter that determines the degree of clustering around the mean direction. Values of
κ approaching zero result in a uniform distribution of points on the sphere while larger
values create points with a small deviation from mean direction. The Fisher distribution
is sampled using the algorithm provided by Wood (1994). We select a mean orientation of
µ = (0, 0, 1) and κ value of 0.1, which produces fractures orientations that are uniformly
randomly distributed on the unit sphere and mimic disorderd media (Hyman & Jiménez-
Mart́ınez 2017).

The hydraulic aperture of each fracture is constant within each fracture and the
same for all fractures, 10−5 m. thus, the fracture permeability is 8.3 · 10−12 m2 and
transmissivity of 9.15 · 10−10 m2/s, assuming the fluid is water at 20 degrees C. The
fractures are meshed using variable resolution mesh with minimum element size of 0.05
m. The primary mesh is made up of 5,808,681 nodes and 11,557,306 triangular elements.
The dual Voronoi mesh has 5,808,681 control volumes.

We initially place 12,000 fractures into the domain. We characterize the network
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fracture intensity, using the definition provided in Dershowitz & Herda (1992)

P32 =
1

V

∑
f∈Ω

Sf . (2.4)

Here V is the domain volume, Sf is the surface area of the fractures, and the summation
over all fractures in the domain. Note that P32 has dimensions of [L−1], and its reciprocal
P32 has dimensions of [L] and is a characteristic length scale of the network, representing
an equivalent fracture spacing in three-dimensional space Maillot et al. (2016). The initial
network has a P32 value of 3.68 m−1, and equivalent spacing of 0.27 m. Next, isolated
fractures and isolated clusters of fractures, those that do not connect inflow to outflow
boundaries, are removed because they do not participate in flow or transport. Detecting
clusters that span the domain and isolated clusters is performed using a graph-based
method (Hyman et al. 2017). The final network contains 5,660 fractures has a P32 value
of 3.12 m−1, and equivalent fracture spacing of 0.32 m.

The fracture network is designed to facilitate insight into and study fundamental
features of flow and solute transport and provide a predictive modeling framework. It is
not meant to be a realization of a particular field site. In order to observe asymptotic
behavior of the transport, we require that the domain be sufficiently long relative to
the characteristic fracture size. However, due to computational limitations, the domain
cannot be as wide as it is long. During a set of preliminary simulations we determined
that our setup is sufficient for observing longitudinal dispersion. We readily acknowledge
that such a domain would be inappropriate to observe transverse dispersion due to the
limited expansion in the lateral directions.

3. Flow Boundary conditions

In this section we present mathematical forms of the boundary conditions applied
within the fractures in the network. We consider a fracture network as a tuple of two
sets, one made up the fractures and composed of their intersections. Let F denote a
network of n fractures F = {fi}ni=1. The boundary of each fracture is denoted ∂f . Next,
let I = {li,j} be a set of pairs associated with the intersection between fractures, that
is, fi ∩ fj 6= ∅ → li,j . The number of intersections depends on the particular shape,
orientation, and geometry of the set of fractures in the network.

Neumann no-flow boundary condition are imposed around the perimeter of all fractures
so there is no flow into the matrix through those boundaries,

Q(x) · n(x) = 0 ∀ x ∈ ∂f (3.1)

where Q(x) is the volumetric flow rate, n is the unit normal vector to the fracture
boundary (∂f), and · is the inner product operator. A similar boundary conditions is
applied so there is no flow normal to the fracture plane into the matrix,

Q(x) · nf (x) = 0 ∀ x ∈ f . (3.2)

Here, nf indicates the normal vector of the plane in which the fracture lies.
Next, one needs to impose pressure continuity along fracture intersections .

P (x)|fi = P (x)|fj ∀ x ∈ li,j . (3.3)

where P (x)|fi denotes the pressure at x on fi along li,j . Likewise, the flow is divergence
free along intersections.

∇ ·Q(x) = 0 ∀ x ∈ li,j . (3.4)
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sNote, that the flux need not be continuous across the line of intersection, as is the case
if the values of aperture on the two intersecting fractures are different.

Dirichlet pressure conditions or Neumann flow conditions are assigned along the inflow
and outflow boundaries. Without loss of generality, we assume to be the inflow and
outflow boundaries to be planes on the sides of the domain. Let x0 denote points on
the inflow boundary and xL denote points on the outflow boundary. Dirichelet pressure
conditions take the form

P (x) = gx0
(x) ∀ x ∈ x0 and P (x) = gxL

(x) ∀ x ∈ xL . (3.5)

Neumann flow conditions take the form

∂Q

∂n
(x) = gx0

(x) ∀ x ∈ x0 and
∂Q

∂n
(x) = gxL

(x) ∀ x ∈ xL

(3.6)

4. Flow Simulations

Once the network is generated and meshed, the governing equations for flow (2.3) are
discretized using a unstructured two-point flux finite volume scheme, which the commu-
nity standard in in subsurface flow and transport simulators including fehm (Zyvoloski
2007), tough2 (Pruess et al. 1999), and pflotran (Lichtner et al. 2015). The mesh
used for computation is the dual of the Delaunay triangulation, the Voronoi tessellation.
The Voronoi tessellation is optimal for two-point flux finite volume solvers, in a certain
sense being k-orthogonal (Eymard et al. 2000). The discrete version of (2.3) along with
boundary conditions(3.1)-(3.4) are used to construct a linear system for pressure at
every node in the Voronoi tessellation that ensures volume conservation locally and
globally on the Voronoi control volumes. This linear system can be solved using either a
direct or iterative method, the choice of which depends on the mesh size and available
computational memory (Greer et al. 2022). For the large network we will consider here,
we use a Krylov solver (Bi-Conguate gradient stabilized with a Bi-Jacobi preconditioner)
implemented within PETSc (Balay et al. 2021) and called by the massively parallel flow
and reactive code pflotran.

We consider flow primarily aligned with the x coordinate, the longest dimension of the
domain. Specially, apply Dirichlet boundary conditions for pressure to drive flow from
the x0 = 0m face of the domain to the xL = 100m face,

P (x0) = 2 · 106 Pa and P (xL) = 1 · 106 Pa . (4.1)

All nodes in the mesh on the inlet and outlet faces are held constant at these values.
This set up creates a pressure difference of 1 MPa across the x-direction, i.e., a hydraulic
gradient of 1 MPa / 100 m. The particular value of the pressure difference is arbitrary
because our governing equations are linear in ∇P . Therefore, the structure of the steady-
flow field does not change with different pressure differences, which is our primary
interest, only its magnitude, which can be arbitrary rescaled for our purposes. The
selected model set up creates a single principal flow direction, from which the flow within
fractures can deviate.

We use the general mode in pflotran to solve the continuity equation for a single
phase, fully saturated, isothermal flow. The governing equation for mass conservation is
given by

∂

∂t
(ϕη) + ∇ · (ηq) = Qw, (4.2)
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with Darcy flux q is defined as

q = −k
µ
∇ (P − ρgz) . (4.3)

Here, φ denotes porosity [-], η molar water density [kmol m−3], ρ mass water density [kg
m−3], q Darcy flux [m s−1], k intrinsic permeability [m2], µ viscosity [Pa s], P pressure
[Pa], g gravity [m s−2], and Qw is source / sink term. Water density and viscosity are
computed as a function of temperature and pressure through an equation of state for
water. We set parameters so that gravity is not considered and there are no sinks/sources.

So long as the particular theoretical conditions laid out in Zimmerman & Bodvarsson
(1996), i.e., isothermal, laminar, steady flow, are satisfied, then (4.2) is equivalent to
(2.3) in the 3D-DFN formulation. Recall that the mesh representation of each fracture
is two-dimensional, and the geometric dual mesh of this Delaunay triangulation is a
Voronoi tessellation, which is the mesh of control volumes used by PFLOTRAN. To
account for the hydraulic aperture of each fracture, the Voronoi control volumes are
three-dimensional volumes where the vertical extent is the aperture defined on the nodes
of the primary mesh.

We enforce the boundary condition (3.2) by only allowing flow through the lateral
boundaries of each control volume. The permeability of each control volume is given by
the square of the hydraulic aperture at that point, i.e., we apply a local cubic law within
each control volume using

k =
b2

12
(4.4)

By integrating across vertical extent of the control volume, which is the hydraulic
aperture at that mesh point, we obtain a third value of aperture and arrive at (2.3).

5. Transport Simulations

The numerical solution provides values of pressure P at every node in the Voronoi
tessellation and volumetric flow rates Q across the faces of the Voronoi control volumes.
For particle tracking, however, we desire an Eulerian velocity field u(x) defined in
a three-dimensional Cartesian coordinate system. The use of an unstructured mesh
makes this more complicated than dividing Q by A and φ as Q does not align with
the desired Cartesian coordinate system. To this end, we apply the method outlined
in Makedonska et al. (2015) and Painter et al. (2012) that uses a least squares method
based on the control volume geometry and volumetric flow rates to reconstruct u(x)
at all nodes in the primary mesh. Once u(x) is obtained, the kinematic equation (2.6)
is numerically integrated using an adaptive (spatial and temporal) first-order predictor
corrector ordinary differential equation integration method; forward Euler prediction with
a backward Euler correction. Bariocentric interpolation is used to obtain the velocity
at any point in the domain. Particle behavior within fracture intersections is modeled
using a complete mixing assumption where the probability to exit onto a fracture is
proportional to the there-into outgoing volumetric flow rate (Berkowitz et al. 1994;
Stockman et al. 1997; Park et al. 2001, 2003; Kang et al. 2015; Sherman et al. 2018).
Special care is taken during the reconstruction step at intersections to provide vectors
from and onto the corresponding fractures. This stochastic method at intersections leads
to dispersion of particles with the same initial position, which would otherwise follow
the same deterministic pathline through the network. Specifically, we use the numerical
method described in Sherman et al. (2018).

We record the travel time, velocity, and position of particles along each pathline.
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The adaptive space and time integration results in non-isochronic and non-equidistant
samples along the pathline and across the ensemble of particles. To obtain isochronic or
equidistant observations, we use linear interpolation to place all particle pathlines onto
the same space/time mesh. Additional details about the numerical methods used in the
particle tracking are found in (Makedonska et al. 2015; Painter et al. 2012).
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