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S1 Computation methodology
The coupled fluid-solid equations (Eq.(2.1) - Eq.(2.3)) are solved using the sharp-interface immersed
boundary method in 2𝐷. The method has been described in detail by Mittal et al. (2008) and
has been briefly presented here. The fluid flow is solved using the fractional step method on a
two-dimensional non-uniform Cartesian grid. The equations are discretized in space using the cell-
centered, collocated arrangement of pressure and velocity using the finite difference method. The
convective and diffusive terms in Eq.(2.2) are discretized using the second-order central difference
method. The time marching of the advection-diffusion equation is performed using the Crank-
Nicholson scheme to obtain an intermediate velocity field. The pressure Poisson equation is solved
using a geometric multigrid method. Finally, the velocity field is updated by enforcing mass
conservation (Eq.(2.1)) in the flow domain.

The coupled structural vibration equations (Eq.(2.3)) are discretized using the first-order Euler’s
method. While an uncoupled elastically-mounted systems can be solved for structural accelerations
sequentially, the two equations are coupled in this case, and the motion of the two cylinders will
influence each other. Therefore, the two equations are solved simultaneously, as shown in Eq.
(S1). The velocity and displacement are obtained using the first and second order time integral of
acceleration. [

¥𝑦1
¥𝑦2

]𝑛+1
=

[
4𝐹𝑇1/𝜋𝑚
4𝐹𝑇2/𝜋𝑚

]𝑛
−
[
𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2 + 𝑘3

] [
𝑦1
𝑦2

]𝑛
(S1)

where superscript 𝑛 denotes 𝑛𝑡ℎ time step. The flow domain is solved using the Eulerian description
of the pressure and velocity field, and is coupled with the Lagrangian description of the solid surface
through the immersed boundary. The unstructured triangular mesh on the structure surface is used
to identify the immersed boundaries. These immersed boundaries are treated as sharp interfaces,
and the velocity at ghost nodes (nodes near immersed boundary) is interpolated to impose the
boundary condition at the interface (citeMittal2008). The surface forces are calculated at the
immersed boundary and passed to the structure for updating the location of the interface, and the
flow field is updated accordingly. A cut-cell method (Seo & Mittal (2011)) is used to treat spurious
pressure oscillations at the sharp-interface immersed boundary. The FSI solver is second-order
accurate in space and time for the fluid domain and first-order accurate in time for the structural
domain. A detailed description of the sharp-interface immersed boundary method can be found in
Mittal et al. (2008) and the FIV solver can be found in Garg et al. (2018).
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S2 Domain and grid size independence tests
Figure S1 shows the domain and grid independence tests performed for cylinder displacements of
upstream (𝑦1) and downstream (𝑦2) cylinders for the configuration shown in Figure 1 of the main
manuscript. The elastically coupled system with 𝑘1 = 0.1, 𝑘2 = 0.324, 𝑘3 = 0 is considered for
𝑚 = 10 cylinders placed at 𝐺 = 3 in an 𝑅𝑒 = 100 flow. The above configuration corresponds to
𝑈𝑅 = 7.5 of Case 3. This particular case is considered as it shows significantly high amplitude
vibrations for both the cylinders and corresponds to maximum blockage (∼ 6.7%). The domain
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Figure S1: Convergence of domain for the (a) upstream and (b) downstream cylinder, and grid
for (c) upstream and (d) downstream cylinder are plotted. Insets indicate domain and grid size
independence obtained at 85 × 30 and 0.02, respectively.

size independence studies (see Figure S1(a) and (b)) are performed using five domains with varying
domain sizes from 75 to 95 in 𝑥, and from 25 to 35 in 𝑦 direction, using a minimum grid size of
Δ𝑥 = Δ𝑦 = 0.02 and time step size Δ𝑡 = 0.01. The CFL number is always maintained well below
1. Figure S1(a) and (b) shows the variation of the amplitudes 𝑦1 and 𝑦2 within ∼ 1% error bounds.
Therefore, the domain size of 85 × 30 is utilized for all the subsequent simulations.

The grid size independence tests (see Figure S1(c) and (d)) are performed by varying the
minimum grid size from 0.05 to 0.01 on an 85 domain using time step size Δ𝑡 = 0.01 (Δ𝑡 = 0.005
for 0.01 grid size). A uniform Cartesian fine grid is maintained close to the cylinders, with square
cells for enhanced accuracy. The grid is gradually coarsened in the regions away from the two
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cylinders. The CFL number is always maintained well below 1. The variation of the amplitudes 𝑦1
and 𝑦2 is within ∼ 1% error bounds for a grid size of 0.02.

S3 Code verification tests
The FSI solver has been validated for various benchmark studies (Mittal et al. (2008)). In our
previous studies, flow across stationary cylinders (Sharma et al. (2022b)), FIV of isolated cylinders
(Sharma et al. (2022a)), and FIV of independent tandem cylinders (Garg et al. (2020)) have been
verified against benchmark data. However, the present study includes elastic coupling between the
two cylinders in tandem. Furthermore, the solver has been extended to include the elastic coupling
between the cylinders. Therefore, it is only appropriate to supplement the present verification
study with the past FIV studies of elastically coupled cylinders. We verify the present solver
implementation using the FIV response data reported by Ding et al. (2020) for the elastically
coupled cylinders in a side-by-side configuration. Figure S2 shows the 𝐴𝑚𝑎𝑥 amplitude response
for the considered three cases, using Strouhal frequency (a) close to the first natural frequency, (b)
between the two natural frequencies, and (c) close to the second natural frequency of the structural
system. The 𝐴𝑚𝑎𝑥 response simulated using the present solver shows good agreement with the
results of Ding et al. (2020) for all three cases. Deviations in 𝐴𝑚𝑎𝑥 values of the present study
with respect to Ding et al. (2020) can be attributed to the differences in the numerical methods and
computational grids.
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Figure S2: The FIV response of two elastically coupled cylinders in side-by-side configuration
is compared for the present solver with Ding et al. (2020), using the maximum displacement
amplitude 𝐴𝑚𝑎𝑥 of the cylinders. 𝐴1 (lower cylinder) and 𝐴2 (upper cylinder) of the present study
reasonably agree with Ding et al. (2020) for their three cases corresponding to (a) 𝑓𝑛1 ∼ 𝑆𝑡0, (b)
𝑓𝑛1 < 𝑆𝑡0 < 𝑓𝑛2, and (c) 𝑓𝑛2 ∼ 𝑆𝑡0

S4 Modal analysis
As shown in the main manuscript Eq 2.3, the structural vibration equation for the elastically coupled
cylinder system, shown in Figure 1 in the paper, is as follows,[

1 0
0 1

] [
¥𝑦1
¥𝑦2

]
+
[
𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2 + 𝑘3

] [
𝑦1
𝑦2

]
=

[
4𝐹𝑇1/𝜋𝑚
4𝐹𝑇2/𝜋𝑚

]
(S2)

or
𝑴 ¥𝒙 + 𝑲𝒙 = 𝒇 (S3)
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For calculating the eigenvalues and eigenvectors of the above system, we consider unforced
system configuration, also called the modal equation, as follows,

𝑴 ¥𝒙 + 𝑲𝒙 = 0 (S4)

The natural frequencies and mode shapes of this system are calculated using the eigenvalues
and eigenvectors of 𝑴−1𝑲, and are expressed as follows,

𝑓𝑛1 =
1

2𝜋

√√√
𝑘1 + 𝑘3

2
+ 𝑘2 −

√︄(
𝑘1 − 𝑘3

2

)2
+ 𝑘2

2, 𝜎𝑛1 =

√︄
1 +

(
𝑘1 − 𝑘3

2𝑘2

)2
−
𝑘1 − 𝑘3

2𝑘2
(S5)

𝑓𝑛2 =
1

2𝜋

√√√
𝑘1 + 𝑘3

2
+ 𝑘2 +

√︄(
𝑘1 − 𝑘3

2

)2
+ 𝑘2

2, 𝜎𝑛2 = −

√︄
1 +

(
𝑘1 − 𝑘3

2𝑘2

)2
−
𝑘1 − 𝑘3

2𝑘2
(S6)

and the decoupled form of Eq. (S3) can be expressed as follows,[
𝜎𝑛1 1
𝜎𝑛2 1

] [
¥𝑦1
¥𝑦2

]
+
[
𝑓 2
𝑛1 0
0 𝑓 2

𝑛2

] [
𝜎𝑛1 1
𝜎𝑛2 1

] [
𝑦1
𝑦2

]
=

[
0
0

]
(S7)

where 𝑓𝑛1 and 𝑓𝑛2 are the modal natural frequencies of the elastically coupled system, with [𝜎1, 1]𝑇
and [𝜎2, 1]𝑇 , respectively, as the associated mode shapes of the considered system.

In the present study, two elastically-mounted tandem cylinders connected by an elastic coupling
are subjected to 𝑅𝑒 = 100 free-stream flow and undergo flow-induced vibrations (FIV). Different
values of spring stiffness, 𝑘1, 𝑘2, and 𝑘3, result in the four cases shown in the inset, Case 1 (𝑘2 = 0):
Elastically-mounted tandem cylinders; Case 2 (𝑘3 = 0): Elastically-mounted tandem cylinders with
elastic coupling vibrating in-phase; and Case 3 (𝑘3 = 0): Elastically-mounted tandem cylinders
with elastic coupling vibrating out-of-phase. In-phase and out-of-phase motions in the last two
cases are devised by tuning natural mode frequencies with Strouhal frequency.

S5 Dynamic steady-state identification
As observed by Borazjani & Sotiropoulos (2009), the tandem cylinders may undergo a transfor-
mation in the flow regimes even after approximate steady state attainment. We have also observed
this phenomenon for various tandem cylinder configurations, especially during transition of FIV
regimes. For the same reason, we have considered the minimum simulation time of 𝑡 = 1200,
even if the signal seems to have attained a dynamically steady state. If the cylinder displacement
signal shows signatures of a dynamically transient response, the simulations are continued till a
dynamically steady state or stable quasi-periodic response is attained. As per our observation, the
downstream cylinder response (𝐴2) is a better indicator of the dynamically steady state response.
Some of the signals with the delayed dynamically steady state have been shown in Figure S3.

S6 Flow characteristics for stationary tandem cylinders
As discussed in §1.2, most past studies involving flow across rigid cylinders in tandem have reported
flow structures, flow forces, Strouhal numbers, etc. However, studies by Alam (2016), at 𝑅𝑒 = 200,
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Figure S3: Transient displacements signals 𝑦𝑖 for the tandem cylinders corresponding to (a) Case
1, 𝐺 = 4, 𝑈𝑅 = 8.75 (b) Case 2, 𝐺 = 3, 𝑈𝑅 = 4.75 and (c) Case 3, 𝐺 = 1.1, 𝑈𝑅 = 5.75. Panels on
the right are the initial (𝑡 ∈ [0, 1200]) and final state of the transient signals.

indicate a dependence of lift magnitudes (𝐶𝐿1 and 𝐶𝐿2) on the phase difference between the forces
acting on the two cylinders 𝜙𝐶𝐿12 . Moreover, 𝜙𝐶𝐿12 will eventually influence the phase difference
in the motion of the two cylinders 𝜙𝑦12. Therefore, variation of flow forces (𝐶𝐷𝑖 and 𝐶𝐿𝑖), Strouhal
frequency (𝑆𝑡00), and phase difference (𝜙𝐶𝐿12) of stationary tandem cylinders, with 𝐺, is crucial
for better quantification of the corresponding FIV results. We have calculated the relevant flow
parameters for the stationary cylinders in tandem configuration for the present study at 𝑅𝑒 = 100
by varying 𝐺 ∈ [1.1, 6].

Figure S4(a) shows 𝐶𝐷2 < 0 for 𝐺 < 3.3 with gradually decreasing 𝐶𝐷1. This followed by
a small region of 𝐺 ∈ [3.3, 4] with 𝐶𝐷2 slightly positive. The negative mean drag at small 𝐺 is
also observed in past studies at low 𝑅𝑒 (Alam (2016)) as well as high 𝑅𝑒 (Zdravkovich (1977);
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Figure S4: Flow characteristics of two tandem stationary cylinders as function of gap 𝐺 between
the cylinders (Case 0) (a) 𝐶𝐷1 and 𝐶𝐷2 with bars indicating 𝐶′

𝐷1 and 𝐶′
𝐷2, (b) 𝐶′

𝐿1 and 𝐶′
𝐿2, (c)

𝑆𝑡00, and (d) 𝜙𝐶𝐿12 .

Igarashi (1981); Alam et al. (2003)). 𝐶′
𝐷1, 𝐶′

𝐷2 and 𝐶′
𝐿1 remain negligible for 𝐺 < 4, with 𝐶′

𝐿2
gradually increasing from 0 to ∼ 0.3 for 𝐺 ∈ [2.3, 4]. Interestingly, 𝑆𝑡00 decreases from 0.14
to 0.11 for 𝐺 < 2.3, and then remains steady for 𝐺 ∈ [2.3, 4]. 𝜙𝐶𝐿12 almost linearly increases
with 𝐺, indicating an increasing time delay in vortices reaching from the upstream cylinder onto
the downstream cylinder for larger 𝐺. All variables, 𝐶𝐷𝑖, 𝐶′

𝐷𝑖
, 𝐶′

𝐿𝑖
, 𝑆𝑡00 and 𝜙𝐶𝐿12 , show sudden

jumps at 𝐺 = 4. Large 𝐶′
𝐷2 and 𝐶′

𝐿2 indicate strong incident vortices from the upstream cylinder.
𝑆𝑡00 ∼ 0.15 for 𝐺 > 4 indicates the tandem cylinder Strouhal frequency approaching isolated
cylinder 𝑆𝑡0. This corresponds to the critical gap ratio (𝐺𝑐 = 4) for vortex formation between the
two tandem cylinders, and is consistent with studies by Mahir & Rockwell (1996); Carmo et al.
(2010). Further, 𝜙𝐶𝐿12 ≈ 0° (in-phase) at the critical gap ratio (𝐺𝑐 = 4) is consistent with previous
studies by Sakamoto et al. (1987); Alam et al. (2003); Alam (2016). 𝜙𝐶𝐿12 shows a linear increment
with 𝐺 for 𝐺 > 4 as well. Overall, the stationary tandem cylinder results show good agreement
with the past literature, and these data will be used as a reference in subsequent sections.

S7 Variation of fluid flow forces
Figure S5(a) and (b) show the variation of maximum transverse force on the upstream (𝐶′

𝑇1) and
downstream (𝐶′

𝑇2) cylinder, respectively, for Case 1. Similar to variation of 𝐴1 described earlier,
𝐶′
𝑇1 signal (??(a)) in Case 1 (𝐺 ≥ 2) closely resembles VIV characteristics of an isolated cylinder

(Sharma et al. (2022a)). A narrow IB regime shows a sharp increase in 𝐶′
𝑇1, followed by a gradual

reduction in 𝐶′
𝑇1 in the UB lock-in regime. Interestingly, 𝐶′

𝑇1 reaches up to ∼ 2.0 (𝐺 = 2) in the IB
regime, which is much larger than ∼ 1.0 observed for isolated cylinder VIV at 𝑅𝑒 = 100 (Sharma
et al. (2022a)). The UB to LB regime transition results in a further sudden drop in 𝐶′

𝑇1. The LB
regime shows an almost stagnant 𝐶′

𝑇1, with minor jumps near FD or WIV transition. The FD/WIV
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regime shows 𝐶′
𝑇1 ∼ 0.05 for 𝐺 = 2 (FD), and 𝐶′

𝑇1 ∼ 0.3 for 𝐺 ≥ 3 (WIV), implying a gap vortex
formation at 𝐺 ≥ 3 for high 𝑈𝑅. 𝐺 = 1.1 configuration also shows a VIV-like variation of 𝐶′

𝑇2
at low 𝑈𝑅. However, 𝐺 = 1.1 exhibits 𝐶′

𝑇1 ∼ 0.5 at high 𝑈𝑅, which is the largest among the
considered gap ratios and is attributed to the galloping vibrations.
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Figure S5: Variation of 𝐶′
𝑇𝑖

with reduced velocity 𝑈𝑅 for upstream cylinder (left column) and
downstream cylinder (right column) for Case 1 (a - b), Case 2 (c - d), and Case 3 (e - f). Difference
cases of gap ratio 𝐺 are compared in each panel.

The downstream cylinder shows a large 𝐶′
𝑇2 for a narrow IB regime. However, for 𝐺 ≥ 3, 𝐶′

𝑇2
remains very small throughout the UB and LB lock-in regime, followed by a rapid increase in 𝐶′

𝑇2
in the FD/WIV regime. A similar behavior is exhibited by the 𝐺 = 1.1 system, irrespective of
the stark differences in 𝐴2 response. The only exception from this behavior is 𝐺 = 2, indicating a
larger 𝐶′

𝑇2 during UB (partial) and LB regimes.
The𝐶′

𝑇1 and𝐶′
𝑇2 variation for Case 2 (see Figure S5(c) and (d)) support the previous predictions

of 𝐴1 ≪ 𝐴2 in §4.2 due to differences in fluid flow forces. 𝐶′
𝑇1 < 𝐶′

𝑇2 for 𝐺 ≥ 3 with individual
variations qualitatively similar to the VIV system: 𝐶′

𝑇
is increasing during the IB regime, reducing

during LN regime and nearly constant during FD regime. Like Case 1, 𝐶′
𝑇2 is significantly higher

in the WIV regime (𝐺 ≥ 4). While 𝐶′
𝑇2 is significantly lower in FD regime (𝐺 < 4), it is still

higher than 𝐶𝑇1. 𝐺 = 1.1 response is also similar to other low 𝐺 FIV responses due to the absence
of galloping in Case 2.

Figure S5(e) shows a sharp jump in 𝐶′
𝑇1 and 𝐶′

𝑇2 in MM regime (𝐺 > 4), and relatively much
weaker jumps for ID regime of Case 3. Further, 𝐶′

𝑇1 and 𝐶′
𝑇2 attain an extra maxima (with cycle-
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to-cycle fluctuations) at low 𝑈𝑅 for 𝐺 ≥ 4, similar to 𝐴1 and 𝐴2. 𝐶′
𝑇1 drops from ∼ 1.6 to ∼ 0.35

during MM to LN transition, whereas the IB to LN transition shows a more gradual variation in𝐶𝑇1.
Interestingly, 𝐶′

𝑇2 becomes plateau at higher 𝑈𝑅 and shows negligible sensitivity to 𝑈𝑅, especially
for 𝐺 ≥ 3. This variation is a characteristic of the WIV regime (Assi et al. (2013)), in which the
wake stiffness (constant for given 𝑅𝑒) dominates over the structural stiffness and governs the FIV
characteristics. No specific trend is seen in 𝐶𝑇1 and 𝐶𝑇2 signals, especially in the LN regime of
Case 2 and 3 due to the elastic coupling (discussed in §5).

𝐶′
𝑇1 shows some interesting features in Case 1 at extremely lower and higher 𝑈𝑅. For small 𝑈𝑅

(ID regime), 𝐶′
𝑇1 remains ∼ 0, up to 𝐺 = 5. Similarly, at high 𝑈𝑅 (regime 4), 𝐶′

𝑇1 reaches ∼ 0.3
for 𝐺 ≥ 3 (WIV regime). As shown in §3, 𝐶′

𝐿1 reaches ∼ 0.4 for stationary cylinders at 𝐺 ≥ 4 at
𝑅𝑒 = 100. This trend indicates that the stiffness domination suppresses (increases 𝐺𝑐) and inertia
domination encourages (reduces 𝐺𝑐) the gap vortex formation between the tandem cylinders, even
though 𝐴1 is negligible (< 0.05) in those regimes.

S8 Variations in lock-in characteristics with 𝐺

This section presents the data of variation of transient FIV characteristics with 𝐺 for Case 1 UB
regime, Case 1 LB regime, Case 2 LN regime, and Case 3 LN regime. Further, those section shows
the variation of DMD characteristics with 𝐺 in the Case 1 UB regime.
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Figure S6: Transient FIV characteristics of Case 1 UB regime. First, second and third columns
correspond to 𝐺 = 2, 3, and 4, respectively. 𝑦1, 𝑦2, 𝐶𝑇1, and 𝐶𝑇2 are plotted in first row. Transient
variation of𝑊1,𝑊2 and 𝐹𝑔 is plotted in the second row. Subfigures in rows 5 to 9 show the transient
snapshots of near wake marked in the above signal plots. The black vectors on the line joining the
cylinders indicate normal gap flow velocity 𝑐𝑔, and the arrows on the cylinder surface show the
surface pressure variation.
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Figure S7: Transient FIV characteristics of Case 1 LB regime. Rest of the caption is same as Figure
S6
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Figure S8: Transient FIV characteristics of Case 2 LN regime. Rest of the caption is same as Figure
S6
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Figure S9: Transient FIV characteristics of Case 3 LB regime. Rest of the caption is same as Figure
S6
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Figure S10: DMD characteristics for Case 1 UB regime. First, second and third columns cor-
respond to 𝐺 = 1, 2 and 3. First row plots the DMD amplitudes for the individual dominant
frequencies present in the wake. Second row shows the actual wake, with third row showing the
wake reconstructed using the considered DMD wake modes. The fourth and fifth row show the
reconstructed wake for 𝑓0 +

∑
𝑓1 and 𝑓0 +

∑
𝑓2, respectively.
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S9 Energy harvesting potential
As the present system does not include any structural damping or energy harvesting element, a
direct estimation of the energy harvesting output cannot be estimated. However, assuming a small
damping coefficient, we have quantified the mean power dissipated per unit reduced damping, for
small damping coefficient values. This is based on the assumption that the damping coefficient is
sufficiently small so that the FIV amplitude response of the damped system is nearly identical to the
undamped system. The non-dimensional expression for mean power dissipated per unit of reduced
damping is given as

𝑃𝑖

𝑐𝑖
=

1
𝑇

∫ 𝑇

0

𝑃𝑖

𝑐𝑖
𝑑𝑡 =

1
𝑇

∫ 𝑇

0

𝐹𝑖 ¤𝑦𝑖
𝑐𝑖

𝑑𝑡 =
1
𝑇

∫ 𝑇

0
( ¤𝑦𝑖)2𝑑𝑡 (S8)

where 𝑃𝑖 = 2 ∗ 𝑃∗
𝑖
/(𝜌∗

𝑓
𝑢∗3

0 𝐷∗𝐿∗), 𝑐𝑖 = 𝑐∗
𝑖
𝐷∗/𝑚∗

𝑠𝑢
∗
0 and 𝑇 = 𝑇∗𝑢∗0/𝐷

∗ are the non-dimensional
power dissipation, reduced damping coefficient, and time period of FIV, respectively. The values
¤𝑦1, ¤𝑦2 and ¤𝑦12 = ( ¤𝑦1 − ¤𝑦2) correspond to 𝑃𝑖/𝑐𝑖 of the energy harvesting system situated on the
upstream, downstream, or between the cylinders, respectively.
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Figure S11: Non-dimensional average power per unit reduced damping for Case 1 (a1-a3), Case 2
(b1-b3) and Case 3 (c1-c3) for energy dissipation from the upstream (a1-c1), downstream (a2-c2) or
between (a3-c3) the cylinders.

Figure S11 shows that the energy harvesting potential for 𝑃12/𝑐12 configuration is maximum
for all three Cases ( ≥ 𝑃1/𝑐1 + 𝑃2/𝑐2). Further, among the three Cases considered, Case 3 shows
maximum 𝑃12/𝑐12. Additionally, it is relatively difficult to realize a 𝑃12/𝑐12 configuration in Case
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1 without introducing an intermediate stiffness between the cylinders, thus transforming them into
Cases 2 or 3. Another point to be highlighted here is the fact that the Case 3 configuration utilizes
a single energy harvesting unit, as compared to the two energy harvesting units utilized in the Case
1 counterpart, thus reducing the cost of energy generation.

S10 Computer animations
For a more detailed observation of the FIV response vortex shedding patterns of different regimes
discussed in the §7, some additional computer animations are provided as follows:

1. ID regime for 𝐺 = 5 of Case 1 at 𝑈𝑅 = 4 (movie1.mp4).

2. IDG regime for 𝐺 = 5 of Case 2 at 𝑈𝑅 = 4 (movie2.mp4).

3. FD regime for 𝐺 = 2 of Case 1 at 𝑈𝑅 = 18 (movie3.mp4).

4. WIV regime for 𝐺 = 5 of Case 1 at 𝑈𝑅 = 18 (movie4.mp4).

5. UB regime for 𝐺 = 3 of Case 1 at 𝑈𝑅 = 6 (movie5.mp4).

6. LB regime for 𝐺 = 3 of Case 1 at 𝑈𝑅 = 7.5 (movie6.mp4).

7. LN regime for 𝐺 = 3 of Case 2 at 𝑈𝑅 = 6.5 (movie7.mp4).

8. LN regime for 𝐺 = 4 of Case 3 at 𝑈𝑅 = 9 (movie8.mp4).

9. GD regime for 𝐺 = 1.1 of Case 1 at 𝑈𝑅 = 16 (movie9.mp4).

10. GD regime for 𝐺 = 1.1 of Case 3 at 𝑈𝑅 = 16 (movie10.mp4).

The contour plots indicate vorticity variation, green/brown arrows represent negative/positive
surface pressure on the cylinders’ surface, and black arrows represent gap flow velocity along the
line joining the two cylinders.
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