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A Burgers’ spectra

A.1 Periodic sawtooth waves

In the non-diffusive case (ν = 0), the periodic SW Burgers solution, vi(x, t),

is given by

vi =
VJ(t)

2

(
2x

λ
− sgn(x)

)
x ∈ [−λ

2
,
λ

2
] , (1)

where λ is the wavelength, VJ(t) = V0

1+V0t/λ
is the velocity jump across the

inviscid shock (located in x = 0) and V0 is the velocity jump at t = 0.

Khokhlov derived an exact SW solution of the diffusive Burgers’ equation

(see Gurbatov et al. (2012))

v =
VJ(t)

2

(
2x

λ
− tanh

VJ(t)x

4ν

)
. (2)

This solution is not periodic, but for large Reynolds numbers it becomes

quasi-periodic between x = −λ/2 and x = λ/2, with a diffusive front located

in x = 0.

In figure 1 we present a comparison between the quasi-periodic theoret-

ical solution (2) and the numerical solution of the Burgers’ equation based
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on a Fourier spectral method. We consider the transformation of an ini-

tially sinusoidal wave field into a SW field. Figure 1 shows that there is no

distinguishable difference between theoretical and numerical SW solutions.
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Figure 1: Profile of a periodic Burgers SW at RB = 200. Red line, diffusive
solution (equation 2); black line, non-diffusive solution (equation 1); green
line, diffusive correction C = VJ

2

(
−sgn(x) + tanh VJx

4ν

)
; +, discrete form (ev-

ery 10 points) of the numerical solution (Fourier spectral model) of the Burg-
ers’ equation at dimensionless time U0t/λ = 4.67 (RB = 200), for a sinusoidal
initial condition v(x, t = 0) = 0.5U0 sin (2π/λ) with RB(t = 0) = 1000.

We will now derive an expression for the SW energy spectrum based on

the Khokhlov solution (2). Since v given by this equation is an odd function

of x we can expand v as a sine series

v(x, t) =
∞∑
n=1

vn(t) sin(nkpx) ,

where kp =
2π
λ

and vn is the nth Fourier coefficient

vn(t) =
4

λ

∫ λ/2

0

v(x, t) sin(nkpx)dx .

By decomposing the velocity field into v = vi − C, with C the diffusive

correction given by C = VJ

2

(
−sgn(x) + tanh VJx

4ν

)
, the Fourier coefficients of

the Khokhlov solution (2) can be rewritten as

vn(t) =
4

λ

(∫ λ/2

0

VJ(x, t) sin(nkpx)dx−
∫ λ/2

0

C sin(nkpx)dx

)
.
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As illustrated in figure 1, the diffusive correction C rapidly decreases to

zero as x increases. The upper bound of the second integral can therefore

be replaced by ∞. The approximate integral can then be solved by using

tables of Fourier transforms (e.g., Oberhettinger , 1957). Finally, the Fourier

coefficients can be expressed as

vn(t) = −2νkpcsch

(
2πν

VJ

nkp

)
,

and the energy spectral density, Evn = v2n
2
, as

Evn = 2ν2k2
pcsch

2

(
kn
kν

)
, (3)

where kn = nkp and kν = VJ

2πν
. For kn/kν ≪ 1, Evn follows a k−2

n power law

Evn =
2V 2

J

λ2
k−2
n . (4)

This last relation is also the exact energy spectral density of the non-diffusive

SW solution (1). In the following, the inertial and diffusive subranges will

be defined respectively as k ∈ [kp, kν ] and k ∈ [kν ,∞]. The dimensionless

width of the inertial subrange, (kν −kp)/kp, increases linearly with RB, since

kν/kp = RB/(4π
2).

We now present a comparison between the theoretical spectrum (3) and

spectra obtained from numerical solutions of the Burgers’ equation. We con-

sider the transformation of an initially sinusoidal wave field into a SW field.

As a sawtooth wave evolves, its velocity jump, and consequently, its Reynolds

number decrease. Energy spectra for two Reynolds numbers (RB = 200 and

400) representative of those in the ISZ are presented in figure 2. We can see

that there is no distinguishable difference between the theoretical solution

(3) and the numerical one. In the inertial subrange the energy spectrum

tends to follow the k−2
n power law given by equation (4). The decrease with

time in the inertial subrange width, associated with the decrease in RB, is

illustrated in figure 2.
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Figure 2: Energy spectral density of periodic Burgers SW at RB = 400
and 200. Red line, diffusive solution (equation (3)); green line, non-diffusive
solution (equation (4)); +, numerical solutions of the Burgers’ equation at
dimensionless times V0t/λ = 2.17 (RB = 400) and V0t/λ = 4.67 (RB = 200),
for a sinusoidal initial condition v(x, t = 0) = 0.5V0 sin (2π/λ) with RB(t =
0) = 1000; dotted lines, positions of kν/kp. For the sake of clarity we use
continuous lines to represent the discrete energy spectra (3) and (4).
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A.2 Random sawtooth waves

We now consider freely decaying random solutions v(x, t) which are statis-

tically homogeneous in space with zero mean. The power spectral density

Φ(k, t) is the Fourier transform of the auto-correlation function R(r)

Φ(k, t) =
1

2π

∫ ∞

−∞
R(r) exp(−ikr)dr , (5)

where R(r, t) = ⟨v(x, t)v(x + r, t)⟩. Φ(k, t) being an even function of k,

we limit our analysis to k ≥ 0 and denote Ev(k, t) = 2Φ(k, t) the power

spectral density function. With this notation, the total energy, Ev = ⟨v2⟩ =∫∞
−∞Φ(k)dk, can be expressed as

Ev =

∫ ∞

0

Ev(k)dk .

The assumption of isotropy implies R(−r) = R(r) and then

Ev(k, t) =
2

π

∫ ∞

0

R(r) cos(kr)dr . (6)

After two integrations by parts equation (6) can be rewritten as

Ev(k, t) =
2

πk2

∫ ∞

0

d2Q

dr2
cos(kr)dr , (7)

where Q(x, t) = 1
2
⟨(v(x+ r, t)− v(x, t))2⟩ and R(r, t) = ⟨v(x, t)2⟩ −Q(x, t).

In order to estimate Ev(k, t) in the SW regime, Saffman (1968) assumed

that the periodic solution (2) reproduces the qualitative features of the small-

scale behavior of random sawtooth waves. He then found that, for r ≪ λm,

Q(r, t) can be estimated by

Q(r, t) =
Vc(t)

2

2λm(t)

(
r coth

(
Vc(t)

4ν
r

)
− 4ν

Vc(t)

)
, (8)

where λm is the mean distance between adjacent wave fronts and Vc the

characteristic scale of velocity jumps at wave fronts.

By substituing (8) into (7) we obtain

Ev(k, t) =
V 2
c

πλmk2

∫ ∞

0

d2

dr2
(r coth(αr)) cos(kr)dr ,
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or

Ev(k, t) =
V 2
c

πλmk2

∫ ∞

0

d2ξ

dr2
cos(kr)dr ,

where ξ(r) = r(coth(αr)− 1) and α = Vc

4ν
. After two integrations by parts

Ev(k, t) =
V 2
c

πλmk2
F (k) ,

where

F (k) = 1− k2

∫ ∞

0

ξ(r) cos(kr)dr .

F (k) can be written

F (k) = 1− k2dG

dk
,

where G(k) =
∫∞
0
(coth(αr)− 1) sin(kr)dr.

By using tables of Fourier transforms (e.g., Oberhettinger , 1957) we have

G(k) = −k−1 +
π

2α
coth(πk/(2α))

then

F (k) = k2 π2

4α2
csch2(πk/(2α))

and finally

Ev(k) = 2ν2kmcsch
2(2πνk/Vc) .

This spectrum law differs slightly from the Saffman (1968) law

ES(k) =
2πν2

L
csch2(πνk/(2Vc)) ,

where Saffman defined L as the averaged distance between wave fronts (i.e.,

λm). We have shown that in fact L = λm/2. We have also corrected a typo

in the csch-term.

B Additional ISZ energy spectra

6



100 101

10-6

10-4

10-2

E
(

) 
[m

3 /s
]

100 101

10-6

10-4

10-2

100 101

10-6

10-4

10-2

E
(

) 
[m

3 /s
]

100 101

10-6

10-4

10-2

100 101

10-6

10-4

10-2

E
(

) 
[m

3 /s
]

100 101

10-6

10-4

10-2

100 101

 [rd/s]

10-6

10-4

10-2

E
(

) 
[m

3 /s
]

100 101

 [rd/s]

10-6

10-4

10-2

Figure 3: Energy spectra at different locations in the ISZ for the vN03-D3
experiment. a, gauge 62, h0 = 6.8 cm; b, gauge 63, h0 = 6.0 cm; c, gauge 64,
h0 = 5.2 cm; d, gauge 65, h0 = 4.4 cm; e, gauge 66, h0 = 3.6 cm; f, gauge
67, h0 = 2.9 cm. Grey line, spectrum at the breaking point; cyan line, ISZ
spectrum at water depth h0; black line, equation (4.2); red line, equation
(4.3). Blue dashed line, position of ωm; red dashed line, position of ων .
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Figure 4: Energy spectra at different locations in the ISZ for the BK94-7
experiment. a, x = 24.50 m, h0 = 7.4 cm; b, x = 24.72 m, h0 = 6.7 cm;
c, x = 24.97 m, h0 = 6.0 cm; d, x = 25.22 m, h0 = 5.3 cm; e, x = 25.50
m, h0 = 4.6 cm; f, x = 25.76 m, h0 = 3.8 cm. Grey line, spectrum at
the breaking point; cyan line, ISZ spectrum at water depth h0; black line,
equation (4.2); red line, equation (4.3). Blue dashed line, position of ωm; red
dashed line, position of ων .
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Figure 5: Energy spectra at different locations in the ISZ for the BK94-8
experiment. a, x = 24.50 m, h0 = 7.5 cm; b, x = 24.72 m, h0 = 6.8 cm;
c, x = 24.97 m, h0 = 6.1 cm; d, x = 25.22 m, h0 = 5.5 cm; e, x = 25.50
m, h0 = 4.8 cm; f, x = 25.76 m, h0 = 3.9 cm. Grey line, spectrum at
the breaking point; cyan line, ISZ spectrum at water depth h0; black line,
equation (4.2); red line, equation (4.3). Blue dashed line, position of ωm; red
dashed line, position of ων .

9



100 101

 [rd/s]

10-6

10-4

10-2

E
(

) 
[m

3 /s
]

a

100 101

 [rd/s]

10-6

10-4

10-2

b

Figure 6: Energy spectra at 2 locations in the ISZ for the MK93 experiment.
a, gauge 10, h0 = 5.3 cm; b, gauge 11, h0 = 3.5 cm. Grey line, spectrum at
the breaking point; cyan line, ISZ spectrum at water depth h0; black line,
equation (4.2); red line, equation (4.3). Blue dashed line, position of ωm; red
dashed line, position of ων .
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