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1. Supplementary section: General expression of the yield stress
terms mk,ij
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For clarity, we have made the summations above explicit.

2. Supplementary section: Three-dimensional linear stability analysis

2.1. Normal mode approach

The linear system of perturbation equations (3.1)-(3.2) is homogeneous in the axial di-
rection z and the perturbation (u, p, h) is 2π periodic in the azimuthal direction, generic
perturbations can therefore be decomposed into Fourier modes with axial wavenumber
k and azimuthal wavenumber m:

(u, v, w, p, h) = (u(r, t), v(r, t), w(r, t), p(r, t), h(t)) ei(mθ+k z). (2.1)
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The linear system of perturbation equations in Fourier space reads:

D∗u+
imv

r
+ ikw = 0 , (2.2)
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In the above equations, D(.) = d(.)/dr and D∗(.) = d(.)/dr + (.)/r.
If the fluid is fully yielded in all the annular space, the boundary conditions are:

u = v = w = 0 at r = R1, R2 . (2.9)

If the fluid is partially yielded, the boundary conditions are

u = v = w = 0 at r = R1, Ry (2.10)

We have also to add the compatibility conditions at the yield surface as well as the
associated equation to its perturbation h:

Du = Dw = 0 at r = Ry , (2.11)

Dv = −hD2Vb at r = Ry . (2.12)

In the usual fashion, we consider a normal mode approach and we assume the solution
of the form

(u, v, w, p, h) = (U11(r), V11(r),W11(r), P11(r), H11) e
st . (2.13)

The initial value problem (2.3)-(2.5) is transformed into a generalized eigenvalue problem,
where the complex frequency s is the eigenvalue. Its real part sr is the growth rate of the
perturbation and its imaginary part si is its oscillation frequency. The eigenvalue value
problem can be re-written in terms of u and v if k 6= 0 or in terms of u and w if m 6= 0.
The spatial discretization is achieved through a standard Chebyshev spectral collocation
method (Schmid & Henningson 2000). At a fixed Re2, the critical values of the axial
wavenumber k and the azimuthal wavenumber m are associated with the minimum value
of Re1 for which sr,max = 0 with an accuracy of 10−4. The principle of exchange of
stability holds, i.e. si = 0.

2.2. Validation of the numerical method used in the linear stability analysis

The numerical computations were validated by comparison with Agbessi et al. (2015),
Chen et al. (2015), Alibenyahia et al. (2012) and Landry et al. (2006). As an example of
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Supplementary Figure 1: Variation of Re1c as a function of B at η = 0.5 and for Re2 =
100, 300. Our results are in continuous line. The circles are data taken from figure 6a in
Landry et al. (2006).

-4000 -3000 -2000 -1000 0 1000
0

500

1000

1500

2000

(a) (b)

Supplementary Figure 2: Marginal stability curves at (a) η = 0.4 and (b) η = 0.883.
Effect of Bingham number: (1) B = 0, (2) B = 1, (3) B = 5 and (4) B = 10

validation of the numerical procedure used, we have represented in figure 1, the variation
of the critical Reynolds number Re1c as a function of the Bingham number at η = 0.5
and for two values of Re2: 100 and 300. The convergence of our results has been checked
by increasing the number of Chebychev polynoms from N = 27 to N = 41. The values
obtained by Landry et al. (2006), read from their figure 6a, are represented by circles.
There is a good agreement. The maximum difference is 1% at Re2 = 100 and 2% at
Re2 = 300.

2.3. Results

Marginal stability curves in the plane (Re2, Re1) are shown in figure 2 for a narrow
(η = 0.883) and a wide gap (η = 0.4). The minimum of the marginal stability curves
moves slightly towards counter-rotating cylinders as B increases. It can be observed
that for stationary outer cylinder as well as for counter-rotating cylinders, the critical
Reynolds number increases monotonically with B for a narrow and a wide gap (see also
figure 3(a)). However for co-rotating cylinders, a nonmonotonicity of Re1c is observed
as it is illustrated for instance by figure 3(b). For η = 0.4 and Re2 = 300, Re1c decreases
first with increasing B, reaches a minimum at B = 1.5 and then increases with B. For
a narrow gap, the nonmonotonicity can be observed at much higher outer Reynolds
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(a) (b)

Supplementary Figure 3: Variation of the critical Reynolds number as a function of
Bingham number for a wide and a narrow gap: (a) case of stationary outer cylinder and
(b) case of co-rotating cylinders with Re2 = 300.

number (Re2 > 2000).
The co-rotating cylinders is the only one situation where the yield stress has a
destabilizing effect for a small-moderate range of B. This result was first observed by
Landry (2003) and Peng & Zhu (2004). An explanation based on the energy equation
was proposed by Landry et al. (2006). Globally, the destabilizing effect corresponds to
the situation where the production term in the energy equation is amplified via the
increase in the strain-rate at the inner wall and dominates the increase of the viscous
dissipation.
Concerning the critical azimuthal and axial wavenumbers (figure 4), for a narrow
gap, in the co-rotating regime, the critical mode remains axisymmetric at least up
to Re2 = 2000, i.e. the primary bifurcation leads to stationary TVF. In the case of
counter-rotating regime, the critical azimuthal wavenumber increases with |Re2|. There
is a limit Re2ℓ below which the primary bifurcation leads to spiral vortices (mc > 1).
Spiral vortices are traveling waves in axial and azimuthal directions. It is worth noting
that when the yield stress is increased, the primary bifurcation remains axisymmetric
for a wide range of negative Re2. The axial wavelength, λz = 2π/kc, decreases with
increasingly negative Re2. This may be attributed to the decrease of the “effective gap”
where the Rayleigh instability criterion holds, i.e. the gap between the inner cylinder
and the “nodal surface” where Vb = 0. Similar trends are observed for a wide gap, except
that the axial wavelength is shorter and decreases significantly with increasing Bingham
number. This is due to the appearance of a plug zone attached to the outer wall.
Note that for a Newtonian fluid, the linear theory of spiral vortices has been well studied
(Krueger et al. 1966; Langford et al. 1988; Tagg et al. 1990; Tagg 1994) and the results
are in good agreement with experiments (Snyder 1968; Langford et al. 1988). The
nonlinear behavior of such vortices has also been investigated by several authors, we cite
for instance Demay & Iooss (1984) and Edwards et al. (1991).

Some features of the critical mode are shown in figure 5 for Newtonian and Bingham
fluids. We have represented contours of the stream function on one wavelength. It can be
noted that the isolines are more concentrated near the inner wall with increasing Bingham
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Supplementary Figure 4: Critical azimuthal and axial wave numbers for a Bingham fluid
with two radius ratios η = 0.883 (figures on the left (a) and (c)) and η = 0.4 (figures on
the right (b) and (d)). Effect of Bingham number: (1) B = 0, (2) B = 1, (3) B = 5 and
(4) B = 10.

number, indicating the presence of steep velocity gradient as well as an unaffected plug
zone attached to the outer wall.

3. Supplementary section: Operators and matrix coefficients

3.1. The operator C

C =





DD∗ +
∂2

∂z2
0

0 1



 (3.1)
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Supplementary Figure 5: Contours of the stream function associated with the critical
mode at Re2 = 0, η = 0.4 for three values of Bingham numbers (a) B = 0, (b) B = 1,
(c) B = 5. The arrows indicate the rotation direction of the rolls. (+) clockwise rotation
and (-) anti-clockwise rotation

3.1.1. The sub-scales C0 and C1

C0 ≡ C , C1 =





2
∂2

∂z∂Z
0

0 0



 (3.2)

3.2. The operator LI

LI =







0 −2
Vb

r

∂

∂z

D∗Vb
∂

∂z
0






(3.3)

3.2.1. The sub-scales LI0, LI1 and LI2

LI0 ≡ LI , LI1 =







0 −2
Vb

r

∂

∂Z

D∗Vb
∂

∂Z
0






, LI2 = 0. (3.4)

3.3. The operator LV

The coefficients of the 2× 2 matrix LV are:

LV =

(

LV11 0
0 LV22

)

(3.5)
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with

LV11(φ) = (DD∗)
2
φ+ 2

∂2

∂z2
DD∗φ+

∂4φ

∂z4
, (3.6)

LV22 (v) =
1

r2
∂

∂r

[

r2
(

Dv −
v

r

)]

+
∂2v

∂z2
(3.7)

3.3.1. The sub-scales LV0, LV1 and LV2 are:

LV0 ≡ LV (3.8)

LV
(1)
11 (φ) = 4DD∗

∂2φ

∂z∂Z
+ 4

∂4φ

∂z3∂Z
(3.9)

LV
(1)
22 (v) = 2

∂2v

∂z∂Z
(3.10)

LV
(2)
11 (φ) = 2DD∗

∂2φ

∂Z2
+ 6

∂4φ

∂z2∂Z2
(3.11)

LV
(2)
22 (v) =

∂2v

∂Z2
(3.12)

3.4. The operator LY

LY =

(

LY11 0
0 LY22

)

(3.13)

with

LY11 =

(

DD∗ −
∂2

∂z2

)

m1,rz +
∂

∂z
(Dm1,zz −D+m1,rr) +

1

r

∂

∂z
m1,θθ , (3.14)

LY22 =
∂

∂z
m1,θz , (3.15)

3.4.1. The sub-scales LY0, LY1 and LY2 are:

LY0 ≡ LY (3.16)

LY
(1)
11 (φ) = −2DD∗

(

1

γ̇(Ub)

∂2φ

∂z∂Z

)

−
2

γ̇(Ub)
DD∗

∂2φ

∂z∂Z
+

4

γ̇(Ub)
(3.17)

+ 4D

(

1

γ̇(Ub)
DD∗

∂2φ

∂z∂Z

)

+ 4D∗

(

1

γ̇(Ub)

)

D
∂2

∂z∂Z

∂2φ

∂z∂Z
(3.18)

−
4

r2γ̇ (Ub)
, (3.19)

LY
(1)
22 (v) =

2

γ̇ (Ub)

∂2v

∂z∂Z
, (3.20)
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3.5. The vector NI2

NI2 =

(

NI2,1

NI2,2

)

(3.21)

where,

NI2,1 =
∂

∂r

[

∂φ

∂z
DD∗φ− (DD∗φ)

(

DD∗

∂φ

∂z

)]

+
∂

∂z

[

∂φ

∂z

∂2φ

∂r∂z
−D∗φ

∂2φ

∂z2
−

v2

r

]

, (3.22)

NI2,2 =
∂φ

∂z

∂v

∂r
+

v

r

∂φ

∂z
−D∗φ

∂v

∂z
. (3.23)

4. Supplementary section: Boundary conditions

4.1. Case (III) of base solutions

In the case where the fluid is fully yielded in the annular space (case III of the base
solution), appropriate boundary conditions come from the no-slip conditions at the wall:

u = 0 at r = R1, R2 . (4.1)

4.2. Case (II) of base solutions

In the case where we have a partially yielded fluid, i.e. a case (II) of base solution,
the condition (4.1) is satisfied at the inner wall. However, the outer wall is no longer the
boundary of the computational domain for the stability problem: it is the yield surface.
The yield surface position has been perturbed from Ry to

r = Ry + δh1 + δ2h̄2 + δ3h3 +O(δ4) . (4.2)

Both continuity and yield conditions need to be evaluated at the perturbed yield surface,
then linearized onto r = Ry.
The continuity of the velocity through the yield surface reads

[Ub + u]

(

[

Ry + δh(1) + δ2h(2) + δ3h(3) + ...
]

−

, z, t

)

= [Ub + u]

(

[

Ry + δh(1) + δ2h(2) + δ3h(3) + ...

Here the superscripts± indicate that the limit is taken from each side of the yield surface.
The condition of the velocity continuity has to be linearized onto r = Ry. Note that we
retain the base flow in these expressions, since the base flow is discontinuous in its second
derivative at the yield surface. By continuity from the outer wall, u = 0 uniformly within
the plug. On writing

u = δu1 + δ2u2 + δ3u3 + ... (4.4)

the following conditions on the primitive variables are derived at r = R−

y

u1 = 0 , (4.5)

u2 = −h1
∂u1

∂r
−

h2
1

2

d2Vb

dr2
eθ (4.6)

u3 = −h1
∂u2

∂r
− h̄2

∂u1

∂r
−

h2
1

2

∂2
u1

∂r2
− h1h̄2

d2Vb

dr2
eθ −

h3
1

6

d3Vb

dr3
eθ . (4.7)
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Additional compatibility conditions are also imposed at the yield surface. Indeed, due to
the yield criterion, each component of the strain rate tensor of the perturbed flow vanishes
at the yield surface. Expanding both about the base solution and about the base flow
yield surface, we obtain the following hierarchical system of compatibility conditions:

γ̇ij(u1) = 0 ij 6= rθ, θr (4.8)

γ̇ij(u1) + h1
∂

∂r
γ̇ij(Ub) = 0 , ij = rθ, θr , (4.9)

γ̇ij(u2) + h1
∂

∂r
γ̇ij(u1) = 0 , ij 6= rθ, θr , (4.10)

γ̇ij(u2) + h1
∂

∂r
γ̇ij(u1) + h2

∂

∂r
γ̇ij(Ub) +

h2
1

2

∂2

∂r2
γ̇ij(Ub) = 0 ij = rθ, θr (4.11)

γ̇ij(u3) + h1
∂

∂r
γ̇ij(u2) + h2

∂

∂r
γ̇ij(u1) +

h2
1

2

∂2

∂r2
γ̇ij(u1) = 0 ij 6= rθ, θr (4.12)

γ̇ij(u3) + h1
∂

∂r
γ̇ij(u2) + h2

∂

∂r
γ̇ij(u1) +

h2
1

2

∂2

∂r2
γ̇ij(u1) +

h3γ̇ij(Ub) + h1h2
∂2

∂r2
γ̇ij(Ub) +

h3
1

6

∂3

∂r3
γ̇ij(Ub) = 0 ij = rθ, θr . (4.13)

Combining the velocity continuity conditions (4.5-4.7) and yield conditions (4.8-4.13)
leads to the following set of conditions at r = Ry:
At order δ

u1 = v1 = w1 = 0 , (4.14)

∂u1

∂r
=

∂w1

∂r
= 0 , (4.15)

∂v1
∂r

= −h1
d2Vb

dr2
. (4.16)

At order δ2

u2 = 0 , (4.17)

v2 =
h2
1

2

d2Vb

dr2
, (4.18)

w2 = 0 , (4.19)

∂u2

∂r
= −h1

∂2u1

∂r2
, (4.20)

∂w2

∂r
= −h1

∂2w1

∂r2
, (4.21)

∂v2
∂r

= −h1
∂2v1
∂r2

− h̄2
d2Vb

dr2
−

h2
1

2

d3Vb

dr3
(4.22)
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At order δ3

u3 =
h2
1

2

∂2u1

∂r2
, (4.23)

v3 =
h2
1

2

∂2v1
∂r2

+
h3
1

3

d3Vb

dr3
+ h1h̄2

d2Vb

dr2
, , (4.24)

w3 =
h2
1

2

∂2w1

∂r2
, (4.25)

∂u3

∂r
= −h1

∂2u2

∂r2
− h̄2

∂2u1

∂r2
−

h2
1

2

∂3u1

∂r3
, (4.26)

∂v3
∂r

= −h1
∂2v2
∂r2

− h̄2
∂2u1

∂r2
−

h2
1

2

∂3u1

∂r3
−

h1h̄2

R0

d2Vb

dr2
− h1h̄2

d3Vb

dr3
−

h3
1

6R0

d3Vb

dr3
,(4.27)

∂w3

∂r
= −h1

∂2w2

∂r2
− h̄2

∂2w1

∂r2
−

h2
1

2

∂3w1

∂r3
(4.28)

5. Supplementary section: Validation of procedure used in the
weakly nonlinear analysis

In figure 6(a), the radial velocity profile obtained for a Newtonian fluid with η = 0.5 is
compared with that obtained by Fasel & Booz (1984) using a direct numerical simulation.
The outer cylinder is fixed and Re1 = 72.5 which corresponds to a relative distance to
the onset of vortices ǫ = 6.3%. The maximum difference is 2.5%. In figure 6(b), the radial
velocity variation along the axial line through a vortex center obtained for a Bingham
fluid with B = 0.8547 is compared with that obtained numerically by Jeng & Zhu (2010).
The radius ratio is η = 0.5 Re1c = 117.008 and ǫ = 2.56%. The maximum difference is
5.5%. Note that for these parameters, the fluid in the annular space is fully yielded. It
is also interesting to note in figure 6(b), that the radial outflow (u > 0) is narrower and
stronger than that corresponding inflow (u < 0).
Hence, it appears that for a Newtonian and Bingham fluid, a good agreement is found
with the literature.

6. Supplementary section: Comparison between the contributions of
non-homogeneous boundary conditions and non-linear inertia
terms to the value of the Landau constant.

In figure 7, the contribution of nonhomogeneous boundary condition, g1NH to the
value of the Landau constant is compared to that of nonlinear inertial terms g1I . It can
be observed that g1NH is almost 103 times smaller than −g1I .

7. Supplementary section: Contributions of nonlinear inertial and
nonlinear yield stress terms

According to equation (4.55), g1I and g1Y can be written formally as

g1I = g1,01I + g−1,2
1I , g1Y = g1,01Y + g−1,2

1Y + g1,1,−1
1I , (7.1)

where g1,01I and g1,01Y are the feedback of the mean flow correction onto the fundamental

mode through the nonlinear inertial and nonlinear yield stress terms, respectively, g−1,2
1I

and g−1,2
1Y are the feedback of the second harmonic onto the fundamental mode, etc...A

detailed study of these terms is given in table 1. The data show that the feedback of the
mean flow correction onto the fundamental mode plays an important role.
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Supplementary Figure 6: (a) Radial velocity profile in Newtonian fluid fluid with η =
0.5, Re2 = 0, Re1 = 72.5, ǫ = 6.3% at z = 0: (continuous line) our results, (circles) Fasel
& Booz (1984) results. (b) Radial velocity along the axial line through a vortex center in
a Bingham fluid with η = 0.5, B ×Re1c = 100, Re1 = 120: (continuous line) our results,
(circles) Jeng & Zhu (2010) results. Here λ = 2π/kc.

Supplementary Figure 7: The ratio g1NH/(−g1I) as a function of B for different radius
ratios: (1) η = 0.4, (2) η = 0.5, (3) η = 0.6, (4) η = 0.7, (5) η = 0.8, (6) η = 0.883 and
(7) η = 0.9. The vertical dashed line represents the value of B from which a static layer
appears on the outer wall. Before these dashed lines g1NH = 0.

8. Supplementary section: Variation of ηℓ as a function of Re2

Variation of the radius ratio limit ηℓ above which the primary bifurcation remains
supercritical, as a function of Re2 in co- and counter-rotation of the outer cylinder.
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B g1 gI1 gV1 gI12 gV12 gI10 gV10 gV1−11

0.0 -874.785 -874.785 0 -236.14 0 -637.69 0 0
0.5 -1061.4 -1257.2 195.79 -470.14 222.41 -787.07 106.53 -133.14
1.0 -414.4 -1781.5 1367.1 -686.81 621.76 -1094.6 1136.8 -391.46
2.0 -321.2 -2837 2515.8 -944.78 1138.3 -1892.3 2133.1 -755.58
3.0 -186.9 -3865.4 3678.5 -1168.3 1669.3 -2697.1 3150.9 -1141.7
4.0 -34.2 -4893.1 4858.9 -1374 2219.4 -3519.1 4188.9 -1549.5
5.0 127.1 -5929.5 6056.6 -1568.8 2789.2 -4360.7 5244.7 -1977.3
6.0 290.9 -6979.2 7270.1 -1756 3377.7 -5223.2 6315.6 -2423.3
7.0 459.7 -8041.9 8501.6 -1938.9 3986.3 -6103 7402.1 -2886.8
8.0 623.2 -9121.9 9745.1 -2117.6 4611.7 -7004.3 8498.8 -3365.5
9.0 790 -10216 11006 -2294.2 5255.6 -7922.3 9609.4 -3859.4
10.0 952 -11327 12279 -2469 5916.6 -8857.7 10729 -4366.9

Table 1: The first Landau constant g1 and the contributions of nonlinear inertial and
nonlinear viscous terms for different values of the Bingham number. The radius ratio
η = 0.5.

Supplementary Figure 8: Variation of the radius ratio limit ηℓ above which the primary
bifurcation remains supercritical, as a function of Re2.

9. Supplementary section: Torque

The determination of the torque T̂ applied on the inner cylinder is of great interest.
It provides information about the energy dissipation. Dubrulle & Hersant (2002) and
Eckhardt et al. (2007) defined a dimensionless torque as the ratio of T̂ to a nominal

torque 2πρ̂ν̂2ℓ̂, where ν̂ is the kinematic viscosity and ℓ̂ the height of the inner cylinder
immersed in the fluid. By analogy with the heat transfer in Rayleigh-Bénard convection,
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(a) (b)

Supplementary Figure 9: Torque applied on the inner cylinder as a function of ǫ at
different values of B. (a) Wide gap η = 0.4: (1) B = 0, (2) B = 0.5, (3) B = 0.9, (4)
B = 1 and (5) B = 2. (b) Narrow gap η = 0.883: (1) B = 0, (2) B = 1, (3) B = 5, (4)
B = 7.2.

the previous authors defined a pseudo-Nusselt number, Nu∗ for a Taylor Couette flow
as the ratio of G to the dimensionless torque evaluated in the laminar regime Gb:

Nu∗ =
G

Gb
=

∫ 2π/kc

0
(τrθ (Ub + u))R1

dz

(2π/kc) (τrθ (Ub))R1

, (9.1)

where

τrθ (Ub + u) = τrθ (Ub) + γ̇rθ(u) +Bm1rθ(u) +Bm2rθ (u, u) +O(|A|4) . (9.2)

The pseudo-Nusselt number, Nu∗, represents the dimensionless angular velocity flux or
momentum flux (Eckhardt et al. 2007). Greater Nu∗ implies that that the torque per
unit height or the momentum flux is larger.
In the laminar regime, the radial flux of the angular momentum is diffusive and Nu∗ = 1.
In the TVF regime, using equations (2.28), (2.30), (2.31) and (2.33), Nu∗ can be written
as

Nu∗ = 1+

[

DV02

τrθ (Ub)

]

R1

|A|2 −Bsgn (γ̇rθ (Ub))

[

|D2F11|
2

τrθ (Ub) [γ̇ (Ub)]
2

]

R1

|A|2 +O
(

|A|4
)

.

(9.3)

In the case where k = kc, using equation (5.2), the pseudo-Nusselt number can be
written formally as:

Nu∗ = 1 +Kǫ, (9.4)

where K depends on Bingham number. For a Newtonian fluid, we have

K = −
1

τ0g1

[

DV02

γ̇rθ (Ub)

]

R1

with (γ̇rθ (Ub))R1
= −

2

η (1 + η)
(9.5)

Figure 9 shows the variation of Nu∗ as a function of the distance to the onset of vortices
for a wide and a narrow gap at different values of B. Again we find the same trends as
in the description of the flow structure. Namely, the nonlinear inertial terms, which are
dominant for weak values of B have a stabilising effect, and as soon as the nonlinear
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yield stress terms become more important, the torque applied to the inner cylinder
increases strongly. Furthermore, the numerical results show that the increase in Nu∗ is
due to the term DV02, which is a correction second order correction in amplitude of the
azimuthal profile of the base state. The contribution of the third term in equation (9) is
quite weak.

Remark
The term pseudo-Nusselt number was introduced by Eckhardt, Grossmann and Lohse
(Europhys. Lett. 2007, J. Fluid Mech. 2007) to describe the analogy between the heat
transport in Rayleigh-Bnard convection and the transport of angular momentum in a
Taylor-Couette flow. Indeed, in the same way that we define a Nusselt number in a
Rayleigh-Bénard convection as the ratio between the heat flux across the fluid layer to
that obtained when the fluid is static (diffusive flux), Eckhardt, Grossmann and Lohse
(2007a, 2007b) define a pseudo-Nusselt number as the ratio of the angular momentum
flux to that obtained in a laminar regime (diffusive flux). This theory describes an angular
momentum, which is constant over all radii with

Jw = r3
(

〈uω〉A,t − ν ∂t 〈ω〉A,t

)

(9.6)

where the brackets 〈.〉A,t describe a mean over a cylindrical surface at radius r over
time. In equation (9.6), ν is the kinematic viscosity and ω, the angular velocity. At the
inner wall (r = R1), the first part of this equation equals zero (u = 0). The second one
corresponds to a linear function of the torque C. The ratio of the dimensionless torque
(denoted G in the first version) to that obtained in laminar regime (denoted Gb in the
first version) is the pseudo-Nusselt number.
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