
Comparison of One-Sided and Diffusion-Limited Evaporation Models for Thin Liquid
Droplets (Supplementary Material)

Christopher Larsson and Satish Kumar

Department of Chemical Engineering and Materials Science, University of Minnesota,
Minneapolis, MN 55455, USA

Here we describe the procedure for solving the axisymmetric Laplace’s equation with the
hybrid spectral-finite-difference method described in §3. For ease of use, we present this
method for a more general problem than that considered in §3.

We wish to numerically solve for the concentration cg governed by

0 = ∇2cg =
∂2cg
∂z∗2

+
1

r

∂

∂r

(
r
∂cg
∂r

)
(1)

on the the semi-infinite domain (r, z∗) ∈ (0, d)× (0,∞). The concentration cg is subject to
the symmetric boundary condition cg(r) = cg(−r) as well as cg(r = d) = 0 and cg → 0 as
z∗ → ∞. At z∗ = 0, it takes on the value cg(r, z

∗ = 0) = f(r). Since equation (1) must be
solved at each time step, the goal of this numerical method is to reduce equation (1) to a
matrix equation that can be quickly and efficiently solved. Note that we do not explicitly
include time-dependence in this derivation because it can be encapsulated in the boundary
data f .

We begin by writing cg as an expansion of Laguerre functions Ln,

cg(r, z
∗) ≈

M−1∑
n=0

an(r)Ln(z
∗), (2)

where the coefficients an(r) vary radially. For now, we assume that there is some set of
coefficients a′′n(r) such that

∂2cg
∂z∗2

=
M−1∑
n=0

an(r)
∂2Ln

∂z∗2
=

M−1∑
n=0

a′′n(r)Ln(z
∗). (3)

Then, substituting equation (2) into equation (1) and applying orthogonality of the Laguerre
functions gives, for each n,

a′′n(r) +
1

r

∂

∂r

(
r
∂an
∂r

)
= 0. (4)

We first determine a′′n, and then show how we discretize in r.

1



The Laguerre functions are defined as

Ln(x) = e−x/2ℓn(x), (5)

where ℓn(x) is the n-th Laguerre polynomial which satisfies

∂ℓn
∂x

= −
n−1∑
k=0

ℓk(x). (6)

Thus, we have

dLn

dx
=

d

dx

(
e−x/2ℓn(x)

)
(7)

= −1

2
e−x/2ℓn(x)− e−x/2

n−1∑
k=0

ℓk(x) (8)

= −1

2
Ln(x)−

n−1∑
k=0

Lk(x). (9)

Defining the lower triangular matrix D and vector of Laguerre functions L as

(D)i,j =

{
0 i ≥ j

1 i < j
, (L)i = Li(x), (10)

we can use equation (9) to write

dL

dx
=

(
−1

2
I−D

)
L, (11)

where I is the identity matrix. Thus,

d2L

dx2
=

(
−1

2
I−D

)2

L =

(
1

4
I+D+D2

)
︸ ︷︷ ︸

Dz

L. (12)

With a vector of coefficients a(r), we have cg = aTL and thus

∂2cg
∂z∗2

= aTDzL, (13)

so the coefficients a′′n are given in vector form by a′′ =
(
aTDz

)T
.

We now discretize each coefficient an(r) into its values at a discrete set of N nodes {rj}
placed in the center of cells. We then apply a positivity-preserving second-order centered
finite-difference method that gives

1

r

∂

∂r

(
r
∂an
∂r

)∣∣∣∣
rj

=
2

rj∆rj
[αjan(rj−1)− (αj + αj+1) an(rj) + αj+1an(rj+1)] , (14)

2



where
αj =

rj−1/2

∆rj +∆rj−1

, (15)

rj−1/2 is the position of the boundary between cells j and j−1, and ∆rj is the width of cell j.
Note that the boundary conditions in r define the values of ghost nodes needed to evaluate
the above expressions near the boundaries of the domain. Defining the N × M coefficient
matrix (A)i,j = aj(ri) and r-derivative matrix Dr as

(Dr)i,j =
2

ri∆ri


αi j = i− 1

− (αi + αi+1) j = i

αi+1 j = i+ 1

0 otherwise

, (16)

the discrete form of the left-hand side of equation (4) is

ADz +DrA. (17)

If a higher order-of-accuracy is desired, one can replace the second-order method here for
one of higher order. Doing so simply changes the entries of Dr and the rest of this method
is unchanged.

Unfortunately the form of equation (17) is not computationally useful since the coefficient
matrix A is both left and right multiplied by other matrices. However, we can remedy this
by stacking the matrix A into a vector and expressing the right multiplication as a left
multiplication. Define the mapping vectors I and J and coefficient vector u (all with lengths
NM) such that

(u)i = aJi(rIi) = (A)Ii,Ji . (18)

Note that Ji ∈ {1, ...,M} and Ii ∈ {1, ..., N}. Now, we can use the stacked z-derivative
matrix

(D∗
z)i,j =

{
(Dz)Jj ,Ji Ii = Ij

0 otherwise
. (19)

To see this matrix gives the desired result (left multiplication instead of right), note that

(D∗
zu)i =

NM∑
j=1

(D∗
z)i,j (u)j =

∑
j

Ii=Ij

(D∗
z)i,j aJj(rIj) =

∑
j

Ii=Ij

(Dz)Jj ,Ji aJj(rIi). (20)

Now, for a given index i, there are precisely M indices j such that Ii = Ij (i.e., I contains
each value in {1, ..., N} exactly M times). These indices must be distinct, and furthermore,
the corresponding Jj cover {1, ...,M}. Thus, the above sum can be replaced by

(D∗
zu)i =

M∑
j=1

(Dz)j,Ji aj(rIi) = (ADz)Ii,Ji . (21)

3



Thus, we have turned the right multiplication by a derivative matrix into a left multiplication.

We can similarly form the stacked r-derivative matrix

(D∗
r)i,j =

{
(Dr)Ii,Ij Ji = Jj

0 otherwise
. (22)

By arguments similar to those above, one can show that

(D∗
ru)i = (DrA)Ii,Ji . (23)

Therefore, equation (4) can also be written

D∗
zu+D∗

ru = (D∗
z +D∗

r)︸ ︷︷ ︸
K

u. (24)

The boundary conditions in r are encoded in the r-derivative matrix Dr. The boundary
condition cg → 0 as z∗ → ∞ is naturally satisfied by the Laguerre function expansion, but
the boundary condition at z∗ = 0 is not. For this, we use boundary bordering. Noting that
Ln(0) = 1, we have

cg(rk, z
∗ = 0) =

M−1∑
n=0

an(rk) = f(rk) (25)

for each k. Thus, we redefine K and define the boundary data vector c as

(K)i,j =


1 Ji = M, Ii = Ij

0 Ji = M, Ii ̸= Ij

(D∗
z +D∗

r)i,j otherwise

, (c)i =

{
f(rIi) Ji = M

0 otherwise
, (26)

giving the linear system
Ku = c. (27)

This enforces that the quantity in equation (24) vanishes except for a set of N equations that
are replaced with equation (25) for each k (the choice of Ji = M is heuristic; formally, we can
replace any set of N equations). While K has (NM)2 components, it is strongly banded with
proper choice of the mapping vectors I and J, so equation (27) can be quickly solved by a
banded-system solver. While this must be done every time the boundary data f(r) changes,
K is constant and can be precomputed (and factorized using banded LU factorization).

With equation (2), the evaporative flux J is given by

J = − ∂cg
∂z∗

∣∣∣∣
z∗=0

≈ −
M−1∑
n=0

a′n(r). (28)

In discrete matrix form, the coefficients a′n are (from equation (11))

A′ = A

(
−1

2
I−D

)
. (29)

One then computes the sum −
∑

j (A
′)i,j to obtain the evaporative flux J(ri) at each node

position ri.

4


