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Figure 1: Values of MSE (solid lines) and KL-divergence (dashed lines) evaluated on five
PCNN models with differing numbers of points m within the input columns for a) ε and b)
χ. Each plot is normalised by its maximum value.

1 Sensitivity to input column height

As described in the manuscript, the local PCNN outputs for ε and χ depend non-locally on
the inputs in a radius m/2 around the output point, where m is a user-specified parameter
in the model. A value of m = 50 is chosen in the main manuscript based on the differential
sensitivity analysis in §4. Here, we provide further evidence for this choice ofm by evaluating
the performance of five different models with different values of m ∈ {10, 25, 50, 100, 200}.
The models are otherwise identical in their structure, and are trained and tested separately
on the same dataset. For the purposes of an evaluation on all time steps from the DNS
simultaneously, the test set here is slightly different to that used in the main manuscript
in the sense that it is generated by randomly sampling approximately 10,000 columns from
each time step of the simulation (which are importantly distinct from the training data
columns). The metrics used for evaluation are the mean squared error (MSE) over the
entire test set, and the Kullback-Leibler (KL) divergence (or relative entropy). The KL
divergence is a measure of the difference between the predicted and true distributions of
dissipation and is defined as ∫ ∞

−∞
P (y) log

(
P (y)

Q(y)

)
dy, (1)

where P and Q are the probability density functions (normalised frequency distribution)
associated with the predicted and true data. As shown in figure 1, there is relatively
little variation in the MSE between models, with more significant differences in the KL
divergence. Ultimately, the choice of m = 50 corresponds to optimising the two error
metrics simultaneously. As explained in the main manuscript, m < 50 will result in a loss
of important non-local information about the background density gradient and therefore
lead to worse predictions. We add here that larger values of m results in a network with
many more trainable parameters than is necessary, potentially more likely to converge on
a sub-optimal function for calculating dissipation. Thus m = 50 is an intermediate optimal
balance.
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