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Appendix

A. Proof of Proposition 1

Assume the true stock excess return generating process for security i:

(A.1) Rit+1 = BimeRme+rr + BintRuer1 + €t
where Ry +41 is the market excess return, Ry .1 is the return of the hedge portfolio, &; ;41 is the
true idiosyncratic shock for security i (which has mean zero by definition) and f;,  and S;y , are

the corresponding loadings:
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Suppose that econometricians only use a simple (misspecified) CAPM model to estimate

the idiosyncratic risk:

(A.3) Rit41 = biptRyes1 + Mit+1s

where b;y ¢ 1s the market beta for security i defined as b;y , = is the misspecified

idiosyncratic return. It can be shown that:
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The conditional mean of the misspecified stock idiosyncratic return is given by:
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Based on the ICAPM, the risk premia associated with the market portfolio and the hedge

portfolio are given by:
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Equations (A.5) and (A.6) imply the following relation:
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Similarly, the conditional variance of the misspecified firm idiosyncratic return is given by:
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This completes the proof.



B. Proof of Corollary 1.1
Based on Proposition 1, the average idiosyncratic variances IV and IV, corresponding
to two different sets of weights, w{;, and w;’;, can be expressed as different combinations of
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where A7 = Zl 1 Wi, tﬁLH thine, BY = Zl 1Wi, tﬁLH thive, Q= Zl 1Wz tas - From (A.9) and

(A.10), we can express 07 ; and gy, as linear combinations of IVF and IV defined as:
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This completes the proof.

C. Proof of Proposition 2



The proposition can be derived from Corollary 1.1 and the ICAPM pricing relationships.
Plugging the expression for o)y . 1n equation (12) to the right-hand side of equation (4), we

obtain the following expression for the conditional equity risk premium:
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This completes the proof of the first equality in Proposition 2.

As to the second approximate equality, the proof makes use of the first order Taylor

expansion of In(x):

(A.14) n(x) = In(xo) + 5 (x = x0) + 0(x?),

when x is close to xo. We apply (A.14) to x =CF x IVF or x =C$ x IV, around the following

point P, as xg:

(A.15) Yo = E(CfXWtF);-E(CEXinS).

When estimating C/ and C# using an expanding window, we find that Cf' x IV is on
average close to CF x IV,S. For example, the average CF' x IV over the sample period is -
0.0146, while the average C7 x IV, is -0.0098. Their time-series standard deviations are 0.0061

and 0.0044 respectively. The Taylor expansion gives:

— 1 —

In(CF x IVF) ~ In(y,) + w—c{ x IV -1

(A.16) 10 .

In(CE x V7)) = In(o) + 1/)_Cts x VS —1
0



Taking the difference between the two equations above:
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Plugging (A.17) into (A.13), we obtain equation (13) stated in Proposition 2. This completes the

proof.

D. Proof of Proposition 3

The tail index proposed by Kelly and Jiang (2014) is:
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where 1y 141 1s the kth daily residual return that falls below an extreme value threshold w4
during month #+1, u; 4 is the 5th percentile of the cross-section of individual stock residual
returns, and K; 4 is the total number of these exceedances within month #+1. The residual
returns are obtained after removing the exposures individual stock returns to common return
factors under a benchmark factor model such as the CAPM. Based on (A.1), (A.3), and

Proposition 1, we have:
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From the two equations in (A.20), the covariance risk oy + can be identified from

E;(M¢41) and E¢(Ugyq):
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where J, = —D?Gg‘—DyGf and J; DTGE-DRGT To link the right-hand side of (A.18) to (A.21), we

apply the first order Taylor expansion of In(x) in (A.14) with x 2]? Nesq OF X =JfUs4q around

the following point Y, as x,:

(A.22) Wy = E(]tﬁr_)t+1);'E(]yut+1) .

When estimating ]tﬁ and J{* using an expanding window, we find that, ]tr_’ Mepq 1S ON

average close to Jfu,, ;. For example, the average ]tﬁ M¢+1 over the sample period is 0.0328,
while the average J{'u; 1 is 0.0335. Their time-series standard deviations are 0.0320 and 0.0288

respectively. The Taylor expansion gives:
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Taking the difference between the two equations above gives:

(A.24) s = Jiuess ~ Yo ln( ) +apo In (222).

Ut+1

From (A.21) and (A.24), the conditional covariance risk can be approximated by:
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Similar Taylor expansion gives:
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where ¢g = E; (nk ”1) Thus, the tail index of Kelly and Jiang (2014) can be approximated as:
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(A.25) and (A.27) lead to the following relationship between the conditional covariance gy ¢

and the tail index of Kelly and Jiang (2014):
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This is equivalent to Proposition 3:
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where e;,; has mean zero. Thus, the tail index of Kelly and Jiang (2014) is proportional to the

conditional covariance o)y ; under the ICAPM. This completes the proof.



