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A Online Appendix

Section A.1 includes additional derivations for statements made in Section II. of the
manuscript. Sections A.2-A.6 extend the baseline model in several dimensions mentioned in
the manuscript: Section A.2 endogenizes margin requirements in stablecoin margin loans,
Section A.3 incorporates benefits from additional uses of stablecoins other than their use in
leveraged speculative crypto-trading, and Section A.4 incorporates the motive to borrow
stablecoins to speculate on their collapse. Section A.5 derives the equilibrium token supply
and stablecoin liquidity under non-observability. Section A.6 presents the choice of ` by the
issuer when the liquid asset pays a positive interest. Section A.7 checks the robustness of
using the BTC/USDT perpetual futures funding rate as a measure of speculative demand
considering alternative proxies. Sections A.8 and A.9 report additional figures and tables
with auxiliary results mentioned in the manuscript.

A.1 Additional Derivations

A.1.1 Derivatives of lending rate R with respect to y, m, s, λ

The effect of an increase in the cryptocurrency expected return, y, on the lending rate
R, is

(A.1) dR(λ, s)
dy

= 1
1−m > 0.

Because F ′(e) > y, an increase in the margin, m, yields

(A.2) dR(λ, s)
dm

= y

(1−m)2 −
F ′
(
e− m

1−m(1− λ)s
)

(1−m)2 +
m(1− λ)sF ′′(e− m

1−m(1− λ)s)
(1−m)3 < 0.

An increase in the number of tokens, s, yields

(A.3) dR(λ, s)
ds

=
m2(1− λ)F ′′(e− m

1−m(1− λ)s)
(1−m)2 < 0,

1The views expressed in this paper are those of the authors and do not necessarily represent those of Federal
Reserve Board of Governors, or anyone in the Federal Reserve System.
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while an increase in redemptions, λ, yields

(A.4) dR(λ, s)
dλ

= −
m2sF ′′(e− m

1−m(1− λ)s)
(1−m)2 > 0.

A.1.2 Details steps for derivation of unique θ∗ in global game

Given the private signal, an individual patient investor will update their posterior
about θ, which will be uniform in [xi− ε, xi + ε] and compute the expected payoff differential

(A.5) ∆(xi) =
∫ xi+ε

xi−ε
ν(θ, λ)dθ2ε .

If xi ≥ θ + ε, the individual patient investor can conclude that θ ≥ θ and will not
redeem, independent of their belief about λ (∆(xi) > 0). Similarly, if xi < θ − ε, the
individual patient investor can conclude that θ < θ and will redeem, independent of their
belief about λ (∆(xi) < 0). These are the upper and lower dominance regions for θ, where
the individual action is independent of the beliefs about the actions of others.

For intermediate xi ∈ [θ − ε, θ + ε), the sign of ∆(xi) depends on the beliefs about λ.
To pin down these beliefs, we focus on a threshold strategy that all patient investors follow.
We show that there exists a unique signal threshold x∗, such that every investor redeems if
their private signal xi < x∗ and does not redeem if xi > x∗. Given this threshold, an
individual investor can form well-defined beliefs about the total number of redemptions by
patient investors, denoted by λb(θ, x∗)s, and given by the probability that other investors
receive a private signal below x∗. If θ > x∗ + ε, all patient investors get signals xi > x∗, none
redeem, and λb(θ, x∗) = δ. If θ < x∗ − ε, all patient investors get signals xi < x∗, all redeem,
and λb(θ, x∗) = 1. If x∗ − ε ≤ θ ≤ x∗ + ε, some patient investors get signals xi > x∗, while
others get signals xi < x∗; thus, under the threshold strategy,
λb(θ, x∗) = (1− δ)Pr(xi < x∗) = δ + (1− δ)(x∗ − θ + ε)/(2ε). The following equation
summarizes these beliefs:

(A.6) λb(θ, x∗) =


1 if θ < x∗ − ε

δ + (1− δ)(x∗ − θ + ε)/(2ε) if x∗ − ε ≤ θ ≤ x∗ + ε

δ if θ > x∗ + ε

.

Using (A.6), an investor can compute the expected payoff differential using their
posterior about θ, given the signal xi and an assumed value for x∗:

(A.7) ∆(xi, x∗) =
∫ xi+ε

xi−ε
ν(θ, λb(θ, x∗))dθ2ε .
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Unlike in (A.5), beliefs in (A.7) are uniquely determined and pin down the payoff differential.
Under a threshold strategy, a patient investor does not redeem (∆(xi, x∗) > 0) if

xi > x∗ and redeems (∆(xi, x∗) < 0) if xi < x∗. By continuity, the investor that receives the
threshold signal x∗ is indifferent between not redeeming and redeeming, i.e.,

(A.8) ∆(x∗, x∗) =
∫ x∗+ε

x∗−ε
ν(θ, λb(θ, x∗))dθ2ε = 0.

A threshold strategy also implies thresholds for fundamentals θλ̂ and θλ̄ such that the
issuer is solvent at t = 2 for θ ≥ θλ̂ and has enough liquidity at t = 1 for θ ≥ θλ̄ given signal
threshold x∗ and redemptions λb(θ, x∗). These thresholds are determined by λ̂ = λb(θλ̂, x∗)
and λ = λb(θλ̄, x∗). Using these, the threshold (A.8) can be expanded to

∆(x∗, x∗) =−
∫ θλ̄

x∗−ε

`+ (1− `)ξ
λb(θ, x∗)

dθ

2ε +
∫ θλ̂

θλ̄

θX(1− `)
[
1− λb(θ,x∗)−`

ξ(1−`)

]
1− λb(θ, x∗) − 1

 dθ2ε

+
∫ x∗+ε

θλ̂

[
θR(λb(θ, x∗), s) + (1− θ) max

(
`− λb(θ, x∗)
1− λb(θ, x∗) , 0

)
− 1

]
dθ

2ε = 0.

(A.9)

As is typical in the global game literature, we focus on the limiting case where noise
ε→ 0, which also implies that θλ̂, θλ̄ → x∗. We will denote by θ∗ this common threshold that
the fundamentals’ thresholds, θλ̂, θλ̄, and signal threshold, x∗, converge to. Expressing (A.9)
in terms of θ∗ and changing variables from θ to λ, such that as θ decreases from x∗ + ε to
x∗ − ε, λ uniformly increases from 0 to 1− δ, we get

∆̄∗ =
∫ λ̂

δ

[
θ∗R(λ, s) + (1− θ∗) max

(
`− λ
1− λ, 0

)
− 1

]
dλ

1− δ

+
∫ λ

λ̂

θ∗X(1− `)
[
1− λ−`

ξ(1−`)

]
1− λ − 1

 dλ

1− δ −
∫ 1

λ

`+ (1− `)ξ
λ

dλ

1− δ = 0.

(A.10)

Existence and Uniqueness of Threshold Equilibrium. ∆̄∗ is continuous in θ∗

because all integrands are continuous and the discontinuity in v occurs only at one discrete
point, λ̂. Then, from the existence of the upper and dominance regions, there exists a θ∗

such that ∆̄∗ = 0. It is, then, easy to show that the expected payoff differential is positive
(negative) for an investor who receives signal xi > θ∗ (xi < θ∗), and hence the threshold
strategy θ∗ is indeed an equilibrium. Intuitively, observing a higher signal shifts probability
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from negative values of v to positive values of v as beliefs about aggregate withdrawals
improve using (A.6); recall that noise is uniformly distributed. Given that v changes
sign—"crosses zero"—only once, it follows that the posterior average of v is higher (lower) for
xi > θ∗ (xi < θ∗) and, hence, positive (negative); we refer the reader to Goldstein and
Pauzner, 2005, and Kashyap et al. 2024 for the technical details and precise exposition.2

Finally, observe that d∆̄∗/dθ∗ > 0, so θ∗ and, hence, the threshold equilibrium strategy are
unique.

A.1.3 Derivatives of θ∗ with respect to y, m, s, `

Total differentiating (A.10) yields the following derivatives:

dθ∗

dx
= −d∆̄∗

dx

[
d∆̄∗
dθ∗

]−1

for x ∈ {y,m, s, `}

Note d∆̄∗/dx =
∫ λ̂
δ θ
∗dR(λ, s)/dxdλ > 0 for x ∈ {y,m, s}, thus they affect ξ∗ only through R.

Using (A.1)–(A.3) and d∆̄∗/dθ∗ > 0, we have

(A.11) dθ∗

dy
< 0 & dθ∗

dm
> 0 & dθ∗

ds
> 0.

Finally,

d∆̄∗
d`

= dλ̂

d`

[
θ∗R(λ̂, s)− 1

] 1
1− δ +

∫ `

δ
(1− θ∗) 1

1− λ
dλ

1− δ

− dλ̂

d`

θ∗X(1− `)
[
1− λ̂−`

ξ(1−`)

]
1− λ̂

− 1
 1

1− δ +
∫ λ

λ̂

X(1/ξ − 1)
1− λ

dλ

1− δ −
∫ 1

λ

1− ξ
λ

dλ

1− δ .

(A.12)

Given that dλ̂/d` > 0 from (7), all the terms in the above condition are positive apart
from the last one, which means that the effect of ` on θ∗ may be ambiguous. This is a
typical property in bank-run models, and it is intuitive: It suggests that in the region of
beliefs about redemptions that a run materializes, higher liquidity increases the payoff from
redeeming because individuals can successfully redeem their tokens with higher probability.
We derive below a (weak) sufficient—not necessary—condition for d∆̄∗/d` > 0, which
requires that the expected lending rate is below a threshold, supported by the data.
2Note that for the existence of a threshold equilibrium the strongest property of one-sided strategic comple-
mentarities is not needed and single-crossing of v suffices as Goldstein and Paunzer (2005) also point out.
Given our focus on threshold equilibria, we do not make further assumptions.
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Under the sufficient condition, we unambiguously obtain

(A.13) ∂θ∗

∂`
< 0.

Note that (A.13) can still hold in alternative parameterizations violating the sufficient
condition but may also not hold. In the latter cases, the issuer would set ` = 0, which is
inconsistent with observed stablecoin reserve portfolios (see Section II.D. for issuer
optimization problem).

Sufficient condition for d∆̄∗/d` > 0. Substituting (9) in (A.12) we get that

d∆̄∗
d`

= dλ̂

d`

[
θ∗R(λ̂, s)− 1

] 1
1− δ +

∫ `

δ
(1− θ∗) 1

1− λ
dλ

1− δ

− 1
`

∫ λ̂

δ

[
θ∗R(λ, s) + (1− θ∗) max

(
`− λ
1− λ, 0

)
− 1

]
dλ

1− δ

− dλ̂

d`

θ∗X(1− `)
[
1− λ̂−`

ξ(1−`)

]
1− λ̂

− 1
 1

1− δ −
1
`

∫ λ

λ̂

θ∗X(1− `)
[
1− λ−`

ξ(1−`)

]
1− λ − 1

 dλ

1− δ

+
∫ λ

λ̂

X(1/ξ − 1)
1− λ

dλ

1− δ + 1
`

∫ 1

λ

ξ

λ

dλ

1− δ .

(A.14)

Given that dλ̂/d` > 0 from (7), the terms in the last two lines in (A.14) are all
positive and, thus, we only need to sign the terms in the first two lines. Add and subtract
dλ̂/d` · (1− θ∗) · (`− δ)/(1− δ)2. Then, because (i) dR(λ, s)/dλ > 0 from (3), (ii)
d(`− λ)/(1− λ)/d` = −(1− `)/(1− λ)2 < 0, and (iii) d(1− λ)−1/dλ > 0, the sum of the terms in
the first two line is strictly higher thandλ̂

d`
− λ̂− δ

`

 [θ∗R(λ̂, s) + (1− θ∗) max
(
`− δ
1− δ , 0

)
− 1

]
1

1− δ

+(1− θ∗) `− δ
(1− δ)2

1− dλ̂

d`

 .
(A.15)

The last term is strictly positive because dλ̂/d` = X(1− ξ)/(X − ξ) < 1. Moreover,

θ∗R(λ̂, s) + (1− θ∗) max
(
`− δ
1− δ , 0

)
− 1 > θR(δ, s) + (1− θ) max

(
`− δ
1− δ , 0

)
− 1 = 0,
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because θ∗ > θ and R(λ̂, s) > R(δ, s). If dλ̂/d`− λ̂− δ/̀ > 0⇒ δ < ξ(X − 1)/X − ξ, then
d∆̄∗/d` > 0 always. For δ lower than that threshold, we can derive a sufficient condition for
the lending rate such that the absolute value of the terms in the first line in (A.15) is lower
than 1/̀

∫ 1
λ
ξ
λ
dλ and, thus, (A.14) is positive. The latter term is strictly higher than 1/̀ ξ̇ log ξ,

while the absolute value of the former is strictly lower than 1/̀ · ξ(X − 1)/(X − ξ) · (maxR− 1),
where we considered the higher possible lending rate and set δ = 0. Thus, it is sufficient that
maxR ≤ − log ξ · (X − ξ)/(X − 1) for d∆̄∗/d` > 0. This condition is easily satisfied. For
example, given an expected yield of 5% for the illiquid asset, i.e., X = 2.1, and a liquidity
discount of 25%, i.e., ξ = 0.75, it is sufficient that the expected lending rate is lower than
35%, which is the case in our data. As mentioned, the sufficient condition on the lending
rate is rather weak and we could be relaxed further if we consider the effect of the other
positive terms in (A.14).

A.1.4 Derivatives of P with respect to y, m, s, `

We show how P changes with the demand and riskiness of cryptocurrencies as well as
the size and liquidity of the stablecoin. We first examine the effect stemming from the
cryptocurrency demand, y, and riskiness, m, as well as the size of the stablecoin s. For
x ∈ {y,m, s} we have

dP

dx
= (1− δ)dR(δ, s)

dx

1− (θ∗)2

2

− dθ∗

∂x

{
(1− δ)

[
θ∗R(δ, s) + (1− θ∗) max

(
`− δ
1− δ , 0

)]
+ δ − (`+ (1− `)ξ)

}
.

(A.16)

Using (A.1)–(A.3) and (A.11), and
θ∗R(δ, s) + (1− θ∗) max ((`− δ)/(1− δ), 0) > 1 > (`+ (1− `)ξ) since θ∗ > θ, we have that

(A.17) dP

dy
> 0 & dP

dm
< 0 & dP

ds
< 0.

In other words, the higher the cryptocurrency demand, the lower the risk, or the smaller the
stablecoin circulation is, the higher P is for two reasons. First, a higher y, and lower m or s,
increase the payoff conditional on a run not occurring (first term in (A.16)). Second, the
probability that a run does not occur increases with y, and decreases with m or s, as the
incentives to run are lower, all else equal (second term in (A.16)).
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Finally, a change in ` changes P according to

dP

d`
=
∫ 1

θ∗
(1− θ) · (` > δ)dθ +

∫ θ∗

0
(1− ξ)dθ

− dθ∗

∂`

[
θ∗R(δ, s) + (1− θ∗) max

(
`− δ
1− δ , 0

)
− (`+ (1− `)ξ)

]
> 0.

(A.18)

In other words, the higher the percentage of liquid assets in stablecoin reserves is, the higher
P is for two reasons. First, a higher ` increases the probability of being paid conditional on a
run occurring (first term in (A.18)). Second, the probability that a run does not occur
increases with `, all else equal (second term in (A.18)).3

A.2 Model Extension: Endogenous Margin Requirements

In the baseline model, we assume that the exchange sets margin m without
considering how it should be chosen optimally between traders and investors. Given that
levered lending takes place after run uncertainty is resolved, m should not depend on θ∗, but
can depend on R. To derive an optimal m we consider a structure—akin to Fostel and
Geanakoplos (2008)—under which traders offer investors a menu of contracts k ∈ K
described by a pair (Rk,mk), where Rk is given, in equilibrium, by (3) for certain mk. That
is, traders offer investors a menu of contracts under all of which they break even. Given that
these contracts are offered after redemptions λs have been observed, they are only
parameterized by different mk. Investors will then choose the contract that maximizes their
utility.

To introduce a trade-off, we suppose for this extension that investors face a cost c for
directly holding the cryptocurrency when the trader defaults. Recall from Section II.A. that
R is the expected lending rate, incorporating the payoff when traders default, and that
traders will default for cryptocurrency payoff realizations ỹ < y′k, i.e., y′k is the threshold
below which investors receive the collateral for margin mk and is given by

(A.19) y′k = (1−m)Rk,c ⇒ y′k = ȳ(1−m)Rk − y′k
2/2

ȳ − y′k
,

where we replaced the contractual lending rate, Rk,c, with the expected lending rate, Rk.
The probability that investors incur the cost c is equal to

∫
ỹ<y′

k
dF (ỹ). We assume

ỹ ∼ U [0, ȳ] for simplicity and, thus, y = ȳ/2. Investor’s payoff from no redeeming is equal to
3As mentioned in Section II.B. if dθ∗/d` > 0 and, hence, dP/d` < 0, then the issuer will choose ` = 0. See
the Online Appendix Section A.1.3 for a sufficient condition to exclude this case.
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θ
(
Rk − c

∫
ỹ<y′

k
dF (ỹ)

)
+ (1− θ) max

(
`−λ
1−λ , 0

)
. In other words, the expected return from

lending the stablecoin, R, is curtailed by the expected cost of holding it when the trader
defaults. Among all available contracts (Rk(mk),mk) ∀k ∈ K, the investor will choose the
one that delivers the higher payoff. Given that Rk is a function of mk, we only need to find
the mk that maximizes the investor’s payoff, which is the solution to

θ
∂Rk

∂mk

− θc ∂y
′
k

∂mk

1
ȳ

+ ψ
k
− ψk = 0

(A.20)

where ψk and ψk are the Lagrange multipliers on mk ≥ 0 and mk ≤ m̄, where m̄ is the
maximum margin traders would be willing to post given by
y − m̄F ′(e− m/1−m(1− λ)s) = 0. Recall that dRk(λ, s)/dmk is given by (A.2) and is negative.
dy′k/dmk is obtained by totally differentiating (A.19)

(A.21) dy′k
dmk

= ȳ

ȳ − y′k

(
(1−m) dRk

dmk

−Rk

)
< 0.

For m→ 0, the first two terms in (A.20) converge to y − (1− c/(ȳ − y′k))F ′(e) and is
positive only if c ≥ c̄ ≡ (ȳ − y′k)(1− y/F ′(e)) > 0 given the assumption F ′(e) > y. For
m→ m̄, the sum of the first two terms converges to
dRk/dmk|mk=m̄(1− c/(ȳ− y′k)(1− m̄)) < 0. Moreover, the sum of the first two terms is strictly
decreasing for F ′′′′ > 0, which is typical for widely used concave technologies such as
Cobb-Douglas production function, and we will assume herein. Hence, the contract that
investors choose is unique and depends on the level of c.
Case I. If c ≤ c̄, then ψ

k
> 0, ψk = 0, and mk = 0, such that our baseline analysis carries

through in its entirety.
Case II. If c ≥ c̄, mk is interior, i.e., ψ

k
= ψk = 0. In this case, mk will be a function of y, λ,

and s, and we need to show that our baseline results do not change. Essentially, we need to
show that the derivatives of Rk with respect to x ∈ {y, λ, s} do not change sign. We show
that this is the case for sufficiently high c. Note that

(A.22) dRk

dx
= ∂Rk

∂x
+ ∂Rk

∂mk

dmk

dx
.

Given that ∂Rk/∂x and ∂Rk/∂mk are given by (A.1)-(A.4), we only need to sign dmk/dx, which
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we can compute by totally differentiating (A.20):

dmk

dy
= −

∂2Rk
∂mk∂y

(ȳ − y′k − c(1−mk)) +
(
2− ∂y′k

∂y

)
∂Rk
∂mk

+ c∂Rk
∂y

∂2Rk
∂m2

k
(ȳ − y′k − c(1−mk)) +

(
2c− ∂y′

k

∂mk

)
∂Rk
∂mk

dmk

dx
= −

∂2Rk
∂mk∂x

(ȳ − y′k − c(1−mk))− ∂y′k
∂x

∂Rk
∂mk

+ c∂Rk
∂x

∂2Rk
∂m2

k
(ȳ − y′k − c(1−mk)) +

(
2c− ∂y′

k

∂mk

)
∂Rk
∂mk

, x ∈ {λ, s}.

(A.23)

Since F ′′′ > 0, ∂2Rk/∂m2
k < 0, and ∂2Rk/∂mk∂y > 0, ∂2Rk/∂mk∂λ > 0, ∂2Rk/∂mk∂s < 0. Moreover,

by totally differentiating (A.19), we get

dy′k
dy

= 1
ȳ − y′k

(
ȳ(1−m)∂Rk

∂dy
+ 2(1−m)Rk − 2y′k

)

dy′k
dx

= ȳ

ȳ − y′k
(1−m)∂Rk

∂x
, x ∈ {λ, s}.

(A.24)

Consider c→ ȳ/1−mk
+. Then, using (A.21) and (A.24), we get

(A.25) dmk

dy
= −

(2ȳ−2(1−mk)Rk)
(ȳ−y′

k
)

2c− dy′
k

dmk

−
c− ȳ

(ȳ−y′
k
)(1−mk) ∂Rk∂mk

2c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

+ ȳ
(ȳ−y′

k
)Rk

∂Rk/∂y
∂Rk/∂mk

< −
∂Rk/∂y
∂Rk/∂mk

,

(A.26) dmk

dλ
= −

c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

2c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

+ ȳ
(ȳ−y′

k
)Rk

∂Rk/∂λ
∂Rk/∂mk

< −
∂Rk/∂λ
∂Rk/∂mk

,

(A.27) dmk

ds
= −

c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

2c− ȳ
(ȳ−y′

k
)(1−mk) ∂Rk∂mk

+ ȳ
(ȳ−y′

k
)Rk

∂Rk/∂s
∂Rk/∂mk

> −
∂Rk/∂s
∂Rk/∂mk

.

Using the above, we get from (A.22) that dRk/dy > 0, dRk/dλ > 0, and dRk/ds < 0,
which means that qualitatively the derivatives of the lending rate with respect to x are the
same as in the baseline analysis in Section II.A. where the margin was constant.

It follows that away from the limit, but for c ≥ c̄, it also suffices to establish the
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bounds in (A.25)-(A.27). These latter expressions for the bounds hold if

2 ∂2Rk

∂mk∂x

∂Rk

∂mk

>
∂2Rk

∂m2
k

∂Rk

∂x
,

which holds for all x{y, λ, s} using (A.1)-(A.4) and the cross-derivatives above. Hence,
endogenous margins may weaken quantitatively the effect of {y, λ, s} on Rk—because
∂Rk/∂mk—but qualitatively do not matter.

A.3 Model Extension: Payment services from stablecoins

In this section, we introduce an additional source of demand for stablecoins arising
from use cases other than speculation. Such services may accrue from facilitating
cross-country payments, services offered exclusively by the digital-asset ecosystem, or tax
evasion and illicit activities. The value of these services could be aggregated in a convenience
yield V , which can be constant or depend on the number of stablecoins in circulation, that is
V (λ, s) ≡ V ((1− λ)s) with dV/ds < 0 and dV/dλ > 0 following Krishnamurthy and
Vissing-Jorgensen (2012). Then, the stablecoin payoff from not redeeming when the issuer
does not default is given by θ (R(λ, s) + V (λ, s)) + (1− θ) max (`− λ/1− λ, 0). A positive
convenience yield increases the payoff and decreases the probability of a run ceteris paribus.
Moreover, if the convenience yield decreases in the number of stablecoins, then the
stabilization mechanism operating via the redemptions channel is strengthened. The
stabilization mechanism via the liquid portfolio share continues to operate in the absence of
a convenience yield.

A.4 Model Extension: Speculating on Stablecoin Collapse

In the baseline model, we considered that investors lent their stablecoins to traders,
who want to take leverage on cryptocurrencies after run uncertainty has been resolved. Yet,
traders may want to borrow the stablecoins before run uncertainty is resolved so that they
can also speculate on the collapse of the stablecoin. The idea is that promised repayment is
denominated in stablecoins and, thus, if the stablecoin price collapses to zero after a run,
traders would need to repay zero without losing their pledged collateral.

We consider a very simple extension of the model to introduce this motive. There are
two types of traders and investors: A and B. Both types are identical with the difference
that type A traders borrow stablecoins from type A investors before t = 1, while type B
traders borrow stablecoins from type B investors after t = 1. We assume that the tokens lent
early are circulated back to other stablecoin investors, who want to lend them after run
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uncertainty is resolved at t = 1. Type A investors are of mass 1− δ, which is equal to patient
type B investors. Traders of both types have the same endowment and each type has its own,
distinct, outside technology. A-traders still need to pledge collateral, thus they buy the
cryptocurrency on margin as in the baseline model. Thus, the return on the outside options
is given by ρA = F ′[e− m/(1−m)(1− δ)s] for A-traders and ρB = F ′[e− m/(1−m)(1− δ)s] for
B-traders, in equilibrium when a run does not occur. The run decision for the B-investors is
the same as in Section II.B. and the stablecoin price they are willing to offer is given by (11)
with the difference that the lending rate will be different. Next, we derive the lending rate
and the participation decision for the A-investors.

Denote by R̂ the expected lending rate for borrowing before t = 1. As before,
A-traders will break even with their outside option but in this case, they additionally do not
need to repay anything when the stablecoin collapses in a run or when the issuer default
conditional on a run not occurring, because the price of tokens goes to zero. Hence, their
participation constraint is

∫ 1

θ∗
[θ(y − (1−m)R̂) + (1− θ)y]dθ +

∫ θ∗

0
ydθ = mρA,

(A.28)

yielding

(A.29) R̂ = y −mρA
1−m

2
1− θ∗2

.

The first term in the left-hand side of (A.28) is the payoff to A-traders conditional that a
run does not occur: with probability θ (≥ θ∗) the issuer is solvent and A-traders need to
repay their stablecoin-denominated loan, while with probability 1− θ the issuer is insolvent
and tokens are worth zero, so A-traders can pocket the cryptocurrency return in its entirety.
The second term in the left-hand side of (A.28) is the payoff to A-traders conditional on a
run: A-traders pocket the whole cryptocurrency return because their stablecoin-denominated
loan is worth zero. The right-hand side in (A.28) is the outside-option payoff.

Using (1) and (A.29), we can compare the lending rates for lending before and after
t = 1, R and R̂. It is easy to see that R̂ > R. This result is intuitive. Traders face a trade-off
when borrowing early: If the run occurs, they gain a lot and are willing to offer high lending
rates. But, if the run does not occur, they will pay higher lending rates with probability θ.
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A.5 Token Supply and Stablecoin Liquidity Without Observability

In the paper we derive the optimal choice of s and ` under observability. However, as
noted, the choice of ` may not be observable in real time contrary to s. The issuer may still
use a combination of ` and s to maintain the peg in response to crypto-related shocks
between t = 0 and t = 1 but cannot credibly commit to a certain choice of ` given that it is
not observable. This information resembles an incomplete contract whereby the issuer may
deviate from the choice of ` after the peg is stabilized (see Online Appendix in Kashyap et al.
2023). The issuer will maximize the profits accruing to them when choosing ` and s but will
only internalize the effect of s and not ` on the peg stability condition P = 1. Yet, the issuer
will still internalize the effect of both ` and s on the run threshold θ∗, since the run may
happen later at t = 1. Then, the optimality condition with respect to ` is

(A.30) 1− (θ∗)2

2
dΠ(δ)
d`

s− θ∗Π(δ)sdθ
∗

d`
= 0,

which together with P = 1 yields the optimal (`, s). Comparing (A.30) to (14) we see that
former misses a wedge W equal to

(A.31) W = −
dP/d`
dP/ds

Π(δ)
(

1− (θ∗)2

2 − θ∗dθ
∗

ds
s

)
.

For a given s, the issuer will choose a lower (higher) ` if W > 0 (W < 0) when ` is
unobservable compared to the case that it is.4 In turn, this means that the change in s
should be higher (lower) to stabilize the peg for the same level of crypto-related shocks.
Importantly, the issuer will use both stabilization mechanisms to maintain the peg even
when ` is unobservable. The following Proposition shows that the sign of W depends on the
level of run risk.

Proposition 3. There exist a unique θ̂ ∈ (0, 1) such that W in (A.31) is positive for θ∗ < θ̂

and negative for θ∗ > θ̂.

The proof is straightforward. Since dP/ds < 0 and dP/d` > 0 from (A.17) and (A.18),
the sign of W depends on the sum of the terms in the parenthesis, which is continuous in θ∗,
negative for θ∗ → 1 and positive for θ∗ → 0, while dθ∗/ds is positive and increasing in θ∗.
Hence, θ̂ exists and is unique. This result is intuitive. When ` is not observable, the issuer
has an incentive to deviate but at the same time still internalizes how the choice of ` matters
4To see this, note that the solution under observable ` can be implemented in an environment where ` is
not observable under a Pigouvian tax/subsidy on liquid holdings `: A negative (positive) W calls for tax
(subsidy), implying lower (higher) ` than in the unconstrained equilibrium with unobservable `.
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for run risk and, thus, their expected profits. If run risk is low, i.e., θ∗ < θ̂ and W > 0, the
issuer deviates toward a lower `, and vice versa if run risk is high. Investors anticipate this
deviation and respond by redeeming more or fewer tokens compared to the case of observable
`.

Proposition 3 also has implications for the viability of the stablecoin when the
speculative demand for cryptocurrencies wanes. In particular, suppose that there is a shock
pushing y below 1 +m[F ′(e)− 1]. If ` is observable, the issuer would set ` = 1 and keep the
stablecoin running with θ∗ = 0, i.e., no run risk (Proposition 2). But, with unobservable `,
the issuer will have an incentive to deviate toward ` < 1. Investors would anticipate this and
redeem all their tokens immediately; otherwise, they would be exposed to run risk without
the proper compensation. By continuity, the same would hold for y close to, but higher than,
1 +m[F ′(e)− 1], even though expected lending rates would be (somewhat) higher than one
for this level of y. Overall, stablecoins are not viable for low enough y under
non-observability of `, which also provides an additional rationale why issuers may want to
disclose their reserves more frequently during crypto turmoil, similar to what USDC did in
May 2022.

A.6 Positive interest on liquid assets

This section extends the baseline model to allow for a positive interest rate on the
liquid assets. For simplicity and without loss of generality, we assume that the liquid asset
pays off r ≥ 1 from t = 1 to t = 2, while it continues to pay zero interest from t = 0 to t = 1.
The case that r = 1 corresponds to a zero (net) interest rate in the baseline model. This
extension should suffice for the purpose of studying how r matters for the t = 2 profits of the
issuer and, hence, the choice of `. To maintain a risk premium over the liquid asset we also
set the illiquid asset payoff to be a function of r, i.e., X(r).

The issuer’s profits are then given by

∫ 1

θ∗
θ

[
X(r)(1− `)

(
1− (δ − `)+

ξ(1− `)

)
+ (`− δ)+r − (1− δ)

]+

sdθ

+
∫ 1

θ∗
(1− θ)

[
(`− δ)+r − (1− δ)

]+
sdθ.

(A.32)

The issuer will earn an interest rate on remaining liquid assets after repaying impatient
investors, `− δ; should the difference be positive. This may also allow the issuer to remain
solvent even in the bad state that the illiquid asset pays zero. This requires that
r > r̄ = 1−δ

(`−δ)+ . Note that for `→ 1, which implies θ∗ → 0, the profits are (1− δ)(r − 1)s.
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If the issuer remains solvent in the bad state of the world, then investors could lend
their tokens to traders and earn the lending rate. Denote by λ̃ the maximum level of
withdrawals such that the issuer remains solvent in the bad state given by λ̃ = max

(
δ, lr−1

r−1

)
.

The run threshold θ∗ is determined by

∆̄∗ =
∫ λ̃

δ
[R(λ, s)− r] dλ

1− δ +
∫ λ̂

λ̃

θ∗R(λ, s) + (1− θ∗)
(
`− λ
1− λ

)+

r − r

 dλ

1− δ

+
∫ λ

λ̂

θ∗X(1− `)
[
1− λ−`

ξ(1−`)

]
1− λ − r

 dλ

1− δ −
∫ 1

λ

`+ (1− `)ξ
λ

r
dλ

1− δ = 0.

(A.33)

For λ ∈ [δ, λ̃), the issuer is solvent both in the good and bad state, and investors can lend
out their tokens. For λ ∈ [λ̃, λ̂), the issuer defaults in the bad state but may invest any
remaining liquidity (`− λ)+ at t = 1 in the liquid asset to earn r, which increases the payoff
from not withdrawing when the bad state realizes. The payoffs in other regions are as in the
baseline model, though note that the payoff from withdrawing at t = 1 increases with r in all
regions. Also, the cutoffs λ̂ and λ are functionally the same due to the simplifying
assumption that the liquid asset pays interest only from t = 1 to t = 2; however, changing r
affects λ̂ through X(r). It is also easy to show that λ̃ ≤ ` < λ̂, i.e., the level of withdrawals
needed to make the issuer insolvent in the good state is higher than the level needed for
insolvency in the bad state.

The stablecoin price is given by

P = (r > r̄) ·
∫ 1

θ∗
{(1− δ)R(δ, s)/r + δ} dθ

+ (r ≤ r̄) ·
∫ 1

θ∗

{
(1− δ)

[
θR(δ, s)/r + (1− θ) max

(
`− δ
1− δ , 0

)]
+ δ

}
dθ

+
∫ θ∗

0
(`+ (1− `)ξ)dθ,

(A.34)

where the t = 2 return from lending the token, R(δ, s), needs to be discounted by r but not
the rest of the cash flow as they accrue at t = 1 and can thus earn r. Note that if r > r̄, the
issuer may be solvent in the bad state, and thus, investors can earn the lending rate in both
states conditional on a run not occurring. Otherwise, if r ≤ r̄, investors receive pro-rata the
remaining liquid resource in the bad state.

The issuer chooses ` and s to maximize (A.32) subject to P = 1, and with θ∗ and P
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be determined by (A.33) and (A.34). Figure A.5 plots the profits of the issuer, for different
levels of ` and r, normalized over the profits for ` = 0.63; this is an illustrative
parametrization of the model, which should not be taken as a realistic calibration.5

Nevertheless, the qualitative properties we highlight are general and do not depend on the
choice of initial parameters. In particular, for both zero and positive but low-enough interest
rates, the issuer optimally sets ` < 1 to maximize profits, thus exposing the stablecoin to run
risk. However, for a high enough interest rate, profits are maximized ` = 1, alleviating any
run risk.

A.7 Robustness for Measuring Expected Returns

We check that using Binance’s BTC/USDT perpetual futures funding rate is a robust
proxy for expected returns. One concern is that using the BTC/USDT perpetual futures as
a proxy of y overweights idiosyncrasies specific to Bitcoin. In Table A.5, we show pairwise
correlations of the BTC/USDT time series with several others. Binance also has perpetual
futures that settle into Binance USD, another stablecoin, and we show that funding rates
across perpetual futures are highly correlated regardless of which stablecoin they settle in.
Another concern is that all futures funding rates on Binance reflect idiosyncrasies specific to
Binance, rather than aggregate expected returns for cryptocurrency beyond Binance. We
compare Binance’s number with another large exchange, FTX, and find that funding rates
are similar across the exchanges, confirming that the funding rates are not principally
capturing exchange-specific factors. Finally, we show that perpetual futures funding rates are
closely linked to expected returns embedded in crypto futures traded on the CME.

To address concerns about idiosyncrasies specific to Bitcoin, USDT, or Binance, we
show correlations across several different contracts (BTC, ETH, and DOGE) settled in
different types of stablecoins (USDT, BUSD, and FTX’s USD) and across both Binance and
FTX. We include DOGE as it is known as a highly speculative currency and was arguably
started as a joke. The last two columns are the expected return measures we infer from
CME futures, which we describe below. Combined, all the series are highly correlated,
indicating that variation in our main measure of y, BTC/USDT on Binance, is not
principally reflecting something specific to BTC, USDT, or Binance instead of speculative
expected returns. measures

We can also proxy for y using the expected return embedded in crypto futures traded
on the CME. Unlike the highly levered offshore perpetual futures, these futures are vanilla
5We have set y = 4, m = 0.1, e = 1, F (x) = ζxα with ζ = 2 and α = 0.5, δ = 0.55, ξ = 0.4, and X = 1.4r+0.6.
We have considered three cases for r: r = 1.0 (zero interest rate), r = 1.2 (positive and low-enough interest
rate), and r = 1.4 (positive and high-enough interest rate).
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futures and like equity index futures. The CME sets the rules for the derivatives, and they
have standard monthly expirations. These crypto futures are widely used by U.S.-based
institutional investors who want to speculate on the price of Bitcoin or Ether but are
unwilling or unable to hold cryptocurrencies directly. While the futures have embedded
leverage, they are considerably less levered than the offshore perpetual futures.6

We calculate expected returns y for Bitcoin and Ether using the futures prices. Let
Ft,t+n denote the price of a future at time t with delivery at t+ n, and let zt,t+n denote the
n-period discount factor implied by the risk-free rate. We can infer expected returns using a
no-arbitrage argument comparing the present value of Ft,t+n and Ft,t+n+1. The expected
return is

(A.35) Et,t+n→t+n+1[y] ≡
(
zt,t+n+1

zt,t+n

)
Ft,t+n+1

Ft,t+n

We use the overnight-indexed swap curve to estimate the n-period discount factors:
zt,t+n = 1/(1 + yOIS

t,t+n/12)(1/12) where yOIS
t,t+n is the n-month OIS yield. We prefer to use

consecutive futures rather than the front-month future versus the spot because the futures
include leverage which may introduce a bias relative to the spot price.

In principle, we can use the ratio of contracts with any expiration to calculate
expected returns between the two contracts’ expirations. We focus on the first and second
front-month contracts for two reasons. First, using the shortest maturity contracts helps
control for any distortions introduced by an upward-sloping term structure of risk premia.
Second, the liquidity of derivative contracts falls considerably at longer terms.

Figure A.6 plots our measure of expected returns for Bitcoin and Ether. Given the
tremendous bull market in cryptocurrencies over the past several years, expected returns are
almost always positive, although they dipped negative in late 2018 and briefly during the
2020 pandemic. The average expected return for Bitcoin using the measure is 5.0% from
December 2017 to November 2022, ranging from −10.8% in December 2018 to 23.5% in
February 2021. The ETH expected return has a shorter history because the future was
introduced later, but from February 2021 to November 2022 it averaged 4.8% with a
standard deviation of 7.3% compared to BTC’s 3.9% average and 5.3% standard deviation
over the same period.

We test the model’s prediction that lending rates are increasing in y by regressing
6As of June 2022, the CME requires 50 percent (60 percent) margin for BTC (ETH) futures, allowing roughly
1× (0.67×) leverage. See https://www.cmegroup.com/markets/cryptocurrencies.html.
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Tether’s lending rate on FTX on our measure of expected returns using

USDT Lending Ratet = α + βE[RetBTC ] + γXt + εt

where Xt is a vector of controls. Table A.6 shows the regression results. A 1pp increase in
E[RetBTC ] increases the stablecoin lending rates by between 0.8 and 1.4pp, depending on the
control variables. Across all specifications, there is a positive and significant relationship
between lending rates and expected returns. Figure A.7 is a scatter plot between expected
returns on Bitcoin and Tether lending rates showing a positive relationship.

One concern is that we confound expected speculative returns with the term
structure of risk premium. We control for this problem by including an expected return for
the SPX equity index using the same logic: we compare the present value of the first and
second front-month for the SPX. Including this control in column (6) does not change the
statistically strong relationship between expected returns and lending rates.
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A.8 Appendix Figures
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Figure A.1: Speculation and USDT Market Cap. Figure plots the monthly average of the daily perpetual future funding rate and daily change
in Tether’s market cap.
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Figure A.2: Prime Money-Market Mutual Fund Holdings of Treasuries and ONRRPs. Figure the ratio of total prime money fund assets
held in Treasuries or in Treasuries plus investments at the Federal Reserve. Data from the Office of Financial Research’s U.S. Money Market Fund
Monitor.
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Figure A.3: Tether Redemptions and Issuance. Left panel plots the daily redemptions and issuance of Tether as a percent of its face value.
Redemptions are defined as the change in the face value of the stablecoin’s market capitalization on date t divided by the face value on date t− 1 for
days with net redemptions, and zero otherwise. Right panel plots the analogous measure for days with net issuance, and zero otherwise.
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Figure A.4: PYUSD and Kamino. Figure plots the market capitalization of PYUSD before and after the introduction of the Kamino lending
platform in Solana.
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Figure A.5: Stablecoin issuer’s profit for different ` and r.
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Figure A.6: Futures-Implied Expected Returns Figure plots the one-month/one-month expected return on Bitcoin and Ether estimated using
the difference in present values for one-month futures prices relative to two-month futures prices. Present values are calculated using OIS interest rates,
and futures prices are CME future prices.
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Figure A.7: Stablecoin Lending Rates and Futures-Implied Expected Returns. Figure plots a binscatter of the one-month/one-month
expected return on Bitcoin against USDT’s margin lending rate on the FTX exchange.
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A.9 Appendix Tables

Haircut (%) Coin Ticker FTX Binance Bitfinex Kraken

Major Coins Bitcoin BTC 5 5 0 0
Ether ETH 10 5 0 0
Cardano ADA n.a. 10 70 10
Ripple XRP 10 15 50 n.a.
Solana SOL 15 10 30 10
Dogecoin DOGE 10 5 80 n.a.
Litecoin LTC 10 10 0 30
Avalanche AVAX 15 20 80 50
Tron TRX 15 50 70 50

Stablecoins Tether USDT 5 0 0 10
USD Coin USDC 0 0 0 10
Binance USD BUSD 0 0 n.a. n.a.
Dai DAI 15 n.a. 25 10

Average Major Coins 11 14 42 21
Stablecoins 5 0 8 10

Table A.1: Haircuts. The Table gives haircuts across FTX, Binance, Bitfinex, and Kraken. FTX haircut
is 1 minus the initial weight; Binance haircut is 1 minus the collateral rate. Average is an unweighted average
of the haircuts in the corresponding rows above. Collateral haircuts updated as of November 2022, except
Binance numbers are October 2022. A lower haircut implies that a larger share of the asset’s nominal price
can be used to back a levered position. While there is heterogeneity across exchanges, stablecoins have lower
haircuts. Note that exchange deposits are economically equivalent to a non-tradeable stablecoin issued by
the exchange and have similarly low haircuts. Suppose a trader wants to use ten times leverage to buy $100
of BTC. The margin requirement depends on the trader’s collateral. Using Binance haircuts, if the trader
posts AVAX as collateral, they must provide $10/(1− 20%) = $12.5 of AVAX. If, however, the trader posts
USDT as collateral, they need to post only $10/(1− 0%) = $10 of USDT. Posting a stablecoin as collateral
requires 20% less equity capital from the trader.
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1 Largest 3 Largest 5 Largest 10 Largest All

1 2 3 4 5

FTX Tether Lending Ratet 0.05∗∗∗ 0.03∗∗∗ 0.02∗∗ 0.03∗ 0.03∗∗∗

(23.77) (2.70) (2.04) (1.91) (4.39)

N 273 673 1,074 1,989 5,668
R2 0.31 0.14 0.04 0.03 0.09
TVL Weighted No No No No Yes
Avg. TVL ($ millions) 183 150 104 65 15

Table A.2: FTX Lending Rates and Defi Lending Rates. Table presents regression RDefij,t = α + β1R
USDT
t + εi,t where RUSDTt is Tether’s

margin lending rate from the FTX exchange and RDefij,t is the lending rate at the Defi lending platform j. Defi lending rates from DefiLlama, spanning
all protocols in the lending category that include Tether. Observations are daily, and we winsorize defi lending rates at the 5 and 95 percentile to
reduce the influence of outliers. Protocols are calculated using their average 2022 total value lock (TVL) in US dollars. Column 5 includes all protocols
in the sample and weights the regression by the protocol’s average 2022 TVL. “Avg. TVL” row provides the average total value lock of the protocols in
the given sample. Constant omitted. t-statistics are reported in parentheses using robust standard errors, where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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USDT DAI

∆EFFRt ∆EFFRt

∆Ri,t −0.007 0.000
(0.87) (0.99)

N 486 450

Table A.3: Correlation of FTX Lending Rates and Fed Funds Rate. Table presents the correlation of FTX lending rates for stablecoin i,
Ri,t, with the effective federal funds rate where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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USDT USDT and DAI

1 2 3 4 5 6

∆ ln(si,t) −2.65∗∗ −3.65∗∗ −4.42∗∗∗ −1.03∗ −1.23∗∗ −1.33∗∗

(−2.57) (−2.55) (−3.00) (−1.89) (−2.07) (−2.18)
Bitcoin Implied Volatilityt −10.66 −9.25

(−1.42) (−1.25)
∆ ln(si,t−1) 1.01 −0.55

(0.69) (−1.22)
ln(si,t−1) −4761.72∗∗∗ −806.44∗∗

(−2.69) (−2.28)

N 704 704 704 1,353 1,353 1,353
R2 0.01 0.02 0.04 0.00 0.01 0.01
Month FE No Yes Yes No Yes Yes
Coin FE n/a n/a n/a No Yes Yes

Table A.4: Outside Option Return and Stablecoin Volume. Table presents regression ∆ρt = α+ β1∆ ln(si,t) + γ′X + ai + bt + εi,t where ∆ρt
is the change in the outside option ρt, ∆ ln(si,t) is the change in the log change in the face value of stablecoin i (either USDT or USDT and DAI), X is
a set of controls, ai is a stablecoin fixed effect, and bt is a time fixed effect. We define the outside option ρt = yt − (1−m)Rt where yt is proxied by the
future funding rate, Rt is the FTX lending rate for the given stablecoin, and we assume m = 0.2. t-statistics are reported in parentheses using robust
standard errors and clustered by week, where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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BTC/USDT ETH/USDT BTC/BUSD DOGE/BUSD BTC/USD ETH/USD E[RBTC] E[RETH]
Binance Binance Binance Binance FTX FTX CME CME

BTC/USDT, Binance 1.00
ETH/USDT, Binance 0.89∗∗∗ 1.00
BTC/BUSD, Binance 0.81∗∗∗ 0.70∗∗∗ 1.00
DOGE/BUSD, Binance 0.64∗∗∗ 0.59∗∗∗ 0.65∗∗∗ 1.00
BTC/USD, FTX 0.83∗∗∗ 0.79∗∗∗ 0.76∗∗∗ 0.59∗∗∗ 1.00
ETH/USD, FTX 0.75∗∗∗ 0.87∗∗∗ 0.65∗∗∗ 0.51∗∗∗ 0.80∗∗∗ 1.00
E[RBTC] 0.65∗∗∗ 0.62∗∗∗ 0.55∗∗∗ 0.50∗∗∗ 0.66∗∗∗ 0.61∗∗∗ 1.00
E[RETH] 0.65∗∗∗ 0.62∗∗∗ 0.57∗∗∗ 0.55∗∗∗ 0.64∗∗∗ 0.56∗∗∗ 0.83∗∗∗ 1.00
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A.5: Correlation of Expected Return Proxies. Table presents the pairwise correlations of several perpetual futures funding rates and the
expected return inferred using CME crypto futures. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Bitcoin Ether Both

1 2 3 4 5 6

E[RetBTC] 1.05∗∗∗ 0.51∗∗∗ 0.55∗∗∗ 0.64∗∗∗

(7.64) (3.16) (2.76) (2.87)
RetBTC 0.23∗∗∗ 0.37∗∗∗

(2.86) (3.01)
E[RetETH] 0.78∗∗∗ 0.15 0.45∗∗∗ −0.14

(8.10) (0.94) (4.06) (−0.73)
RetETH 0.09 −0.15

(1.35) (−1.52)
E[RetS&P] 0.05

(0.60)

N 924 924 868 868 868 868
R2 0.35 0.51 0.35 0.50 0.38 0.52
Month FE No Yes No Yes No Yes
Coin FE No Yes No Yes No Yes

Table A.6: Stablecoin Interest Rates and Expected Returns. Table presents regression Rt,i = α+ β1Et[Reti] + β2Ret
i + ai + bt + εi,t where

Rt,i is the lending rate for stablecoin i, either USDT or DAI, Et[Retj ] is the one-month/one-month expected returns for coin j—either Bitcoin and
Ether—Retj is the contemporaneous price returns on Bitcoin and Ether, ai is a stablecoin fixed effect, and bt is a time fixed effect. Observations are
daily; the Bitcoin-only sample in columns (1) and (2) runs from December 2020 to November 5, 2022, and the remaining columns with Ether run from
February 2021 to November 5, 2022. t-statistics are reported in parentheses using robust standard errors and clustered by week, where ∗ p < 0.10, ∗∗
p < 0.05, ∗∗∗ p < 0.01.
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Lending Rate Rt

USDT DAI
1 Day 1 Week 4 Weeks 1 Day 1 Week 4 Weeks

1 2 3 4 5 6

̂Futures Funding Ratet 0.182 0.207 0.315 0.178 0.131∗∗ −0.153
(1.540) (1.339) (0.654) (1.479) (2.019) (−0.710)

Rt−1 0.606∗∗∗ 0.519∗∗∗ 0.437 0.500∗∗∗ 0.556∗∗∗ 0.674∗∗∗

(4.761) (2.992) (1.005) (6.712) (7.221) (4.719)
Bitcoin Implied Volatilityt −0.033 −0.039 0.009 −0.060 −0.044 0.011

(−0.733) (−0.725) (0.181) (−1.193) (−1.506) (0.468)
∆ ln(si,t) −0.007∗ −0.004 −0.005 −0.003 0.000 0.006

(−1.773) (−1.332) (−0.569) (−0.922) (0.031) (1.256)

N 258 258 258 258 258 258
F -stat 1.88 1.25 0.33 2.45 1.47 0.96
Time FE Yes Yes Yes Yes Yes Yes

Table A.7: Instrumental Variables Placebo Regression of Futures Funding Premia and Lending Rates. Instrumental variables regression
using the mean household rating of MLB games on a given day in the future as an instrument to predict the perpetual futures funding premium. Table
presents several placebo tests using viewership data from the future as the instrumental variable: either 1 day, 1 week, or 4 weeks in the future. Time
FE indicates day of week, month of year, and year fixed effects. Kleibergen-Paap rk Wald F statistics reported. t-statistics are reported in parentheses
using robust standard errors and clustered by week where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Instrument: Household Rating × Championship Leverage Index

Lending Rate Rt

USDT DAI

1 2 3 4

̂Futures Funding Ratet 0.342∗∗∗ 0.217∗∗∗ 0.252∗∗∗ 0.162∗∗∗

(10.872) (3.280) (4.019) (3.660)
Bitcoin Implied Volatilityt 0.032 0.030 −0.028 −0.027

(0.366) (0.424) (−0.597) (−0.860)
∆ ln(si,t) −0.008 −0.005 −0.009∗∗∗ −0.006∗∗

(−1.246) (−1.149) (−2.673) (−2.331)
Rt−1 0.406∗ 0.512∗∗∗

(1.925) (6.302)

N 245 245 245 245
F -stat 24.84 7.11 22.48 21.01
Time FE Yes Yes Yes Yes

Table A.8: Instrumental Variables Regression of Futures Funding Premia and Lending Rates with Championship Leverage Index.
Instrumental variables regression using the mean household rating of MLB games on a given day as an instrument to predict the perpetual futures
funding premium. Instrument is the product of the Household Rating and the Championship Leverage Index. The Championship Leverage Index (cLI)
is a common sabermetrics estimate of the importance of a game to a team’s chances of winning the World Series. cLI data provided by Baseball
Reference for the regular season, and we manually calculate it for playoff games. The cLI is standardized so that its value is 1 for the average game.
Time FE indicates day of week, month of year, and year fixed effects. Kleibergen-Paap rk Wald F statistics reported. t-statistics are reported in
parentheses using robust standard errors and clustered by week where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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BTC ETH DOGE

1 2 3 4 5 6

Rating 0.14 0.15 0.23 0.23 0.36∗ 0.40∗∗

(1.18) (1.27) (1.29) (1.29) (1.93) (2.25)
Constant −0.14 −0.13 −0.11 −0.01 −0.27 0.26

(−0.56) (−0.43) (−0.34) (−0.01) (−0.81) (0.34)

N 258 258 258 258 258 258
R2 0.00 0.04 0.00 0.04 0.01 0.04
Day-of-Week FE No Yes No Yes No Yes

Table A.9: Speculative Returns and Household Rating. Table presents regression Reti,t = α+ βHousehold Ratingt + bt + εi,t where Reti,t is
the price return of coin i—where i is Bitcoin, Ether, or Dogecoin—Household Ratingt is the household rating of nationally televised MLB games on
date t, and bt are day of week fixed effects. Observations are daily. t-statistics are reported in parentheses using robust standard errors and clustered
by week, where ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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