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Appendix for Section III.A: Computing the Market Equilibrium

The dynamics of instantaneous returns are given by:

dRb =
Divb
Vb

dt+
dVb
Vb

=Λb(η)dt+ Γb(η)dBb −∆b(η)dBg − ψdN ;

dRg =
Divg
Vg

dt+
dVg
Vg

= Λg(η)dt+ Γg(η)dBb + ∆g(η)dBg − ψdN ;

where:

Λb(η) =
1

2pb(η)

{
2αb − θbib(η)2 + 2ib(η) [−η(η − 1)p′b(η) + pb(η)− 1] + 2η(η − 1)ig(η)p′b(η)

+η2(η − 1)2
(
σb

2 + σg
2
)
p′′b (η) + 2η(η − 1)p′b(η)

[
(η − 1)

(
σb

2 + σg
2
)
− µb + µg

]
+ 2µbpb(η)

}
;

Λg(η) =
1

2pg(η)

{
2αg − θgig(η)2 + 2ig(η)

[
η(η − 1)p′g(η) + pg(η)− 1

]
− 2η(η − 1)ib(η)p′g(η)

+η2(η − 1)2
(
σb

2 + σg
2
)
p′′g(η) + 2η(η − 1)p′g(η)

[
η
(
σb

2 + σg
2
)
− µb + µg

]
+ 2µgpg(η)

}
;

Γb(η) = σb + σbη (1− η)
p′b(η)

pb(η)
;

∆b(η) = σgη (1− η)
p′b(η)

pb(η)
;

Γg(η) = σbη (1− η)
p′g(η)

pg(η)
;

∆g(η) = σg − σgη (1− η)
p′g(η)

pg(η)
;

and

Divn = Kn

(
αn − in(η)− θn

i2n(η)

2

)
is the dividend payment made by brown/green firms.

Thus, the wealth process has dynamics:
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dW = [r(η)W − c(η)W + πb(η)Wt (Λb(η)− r(η)) + πg(η)W (Λg(η)− r(η))] dt

+W [πb(η)Γb(η) + πg(η)Γg(η)] dBb +W [−πb(η)∆b(η) + πg(η)∆g(η)] dBg −WψdN,

where c(η), πb(η), πg(η) are the fractions of wealth consumed and invested in the brown and

green firms, respectively; and r(η) is the equilibrium risk-free interest rate.

The value function M (W ; η) = supc,πb,πg
{
E
[∫∞

0
e−ρtu (C(t)) dt

]}
satisfies the HJB

equation:

(IA.1) 0 = max
c(η),πb(η),πg(η)



−ρM (W ; η) + u (c(η)W )

+MW (W ; η)W [r(η)− c(η) + πb(η) (Λb(η)− r(η))

+πg(η) (Λg(η)− r(η))]

+1
2
MWW (W ; η)W 2

[
(πb(η)Γb(η) + πg(η)Γg(η))2

+ (−πb(η)∆b(η) + πg(η)∆g(η))2
]

+Mη (W ; η)Σ(η) + 1
2
Mηη (W ; η) η2 (1− η)2 (σ2

b + σ2
g)

+MWη (W ; η)Wη (1− η) [σb (πb(η)Γb(η) + πg(η)Γg(η))

+σg (πb(η)∆b(η)− πg(η)∆g(η))]

+λη [M (W −Wψ(πb(η) + πg(η)); η)−M (W ; η)]



.

We guess (and subsequently verify) that:

(IA.2) M (W ; η) = f (η)W 1−γ +
W 1−γ − 1

ρ (1− γ)
.

The optimal controls are given by:

(IA.3) c(η) =

[
(1− γ) f (η) +

1

ρ

]−1
γ

;

and

3



πb(η) =
ληψ

[
(1− γ) f (η) + 1

ρ

]
(1− ψ)−γ −X − Y πg(η)− Z

T
;(IA.4)

πg(η) =
ληψ

[
(1− γ) f (η) + 1

ρ

]
(1− ψ)−γ −X ′ − Y πb(η)− Z ′

T ′
,

where

X =

[
(1− γ) f (η) +

1

ρ

]
[Λb(η)− r(η)] ;

Y = (−γ)

[
(1− γ) f (η) +

1

ρ

]
[Γg(η)Γb(η)−∆g(η)∆b(η)] ;

Z = (1− γ) f ′ (η) η (1− η) [σbΓb(η) + σg∆b(η)] ;

T = (−γ)

[
(1− γ) f (η) +

1

ρ

] [
Γ2
b(η) + ∆2

b(η)
]

;

X ′ =

[
(1− γ) f (η) +

1

ρ

]
[Λg(η)− r(η)] ;

Z ′ = (1− γ) f ′ (η) η (1− η) [σbΓg(η)− σg∆g(η)] ;

T ′ = (−γ)

[
(1− γ) f (η) +

1

ρ

] [
Γ2
g(η) + ∆2

g(η)
]
.

Substituting equations (IA.2), (IA.3), and (IA.4) into equation (IA.1) we obtain:

0 = −ρ

[
(1− γ) f (η) + 1

ρ

]
(1− γ)

+
γ
[
(1− γ) f (η) + 1

ρ

]−(1−γ)
γ

1− γ
(IA.5)

+

[
(1− γ) f (η) +

1

ρ

]
[r(η) + πb(η) (Λb(η)− r(η)) + πg(η) (Λg(η)− r(η))]

−γ
2

[
(1− γ) f (η) +

1

ρ

] [
(πb(η)Γb(η) + πg(η)Γg(η))2 + (−πb(η)∆b(η) + πg∆g(η))2

]
+f ′ (η)Σ(η) +

1

2
f ′′ (η) η2 (1− η)2 (σ2

b + σ2
g)

+ (1− γ) f ′ (η) η (1− η) [σb (πbΓb(η) + πgΓg(η)) + σg (πb∆b(η)− πg∆g(η))]

+λη

[
(1− γ) f (η) + 1

ρ

]
(1− γ)

[
(1− ψ)1−γ − 1

]
.
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In equilibrium, the following market clearing conditions must hold:

(A). Goods market equilibrium condition: ct(η)W = Divb +Divg.

(B). The agent holds both trees in equilibrium and none of the bond: πb(η) = Kbpb(η)
W

,

πg(η) = Kgpg(η)

W
, and πb(η) + πg(η) = 1.

Equating the optimal allocations in equation (IA.4) with condition (B), we have that

in equilibrium the price-to-capital ratios and risk-free interest rate should satisfy:

ηpb(η)

ηpb(η) + (1− η)pg(η)
=

−1

γ [Γ2
b(η) + ∆2

b(η)]

{
ληψ (1− ψ)−γ − [Λb(η)− r(η)](IA.6)

+ [Γg(η)Γb(η)−∆g(η)∆b(η)]
γ(1− η)pg(η)

ηpb(η) + (1− η)pg(η)

− (1− γ) f ′ (η)

(1− γ) f (η) + 1
ρ

η (1− η) [σbΓb(η) + σg∆b(η)]},

and

(1− η)pg(η)

ηpb(η) + (1− η)pg(η)
=

−1

γ
[
Γ2
g(η) + ∆2

g(η)
] {ληψ (1− ψ)−γ − [Λg(η)− r(η)](IA.7)

+ [Γg(η)Γb(η)−∆g(η)∆b(η)]
γηpb(η)

ηpb(η) + (1− η)pg(η)

− (1− γ) f ′ (η)

(1− γ) f (η) + 1
ρ

η (1− η) [σbΓg(η)− σg∆g(η)]}.

In addition, using the optimal consumption in equation (IA.3) together with the firms’

investment decisions in equation (23), we can rewrite the market clearing condition (A) as:

[
(1− γ) f (η) +

1

ρ

]−1
γ

[ηpb(η) + (1− η)pg(η)](IA.8)

= η

[
αb −

(
1

θb
(pb(η)− 1)

)
− θb

2

(
1

θb
(pb(η)− 1)

)2
]

+(1− η)

[
αg −

(
1

θg
(pg(η)− 1)

)
− θg

2

(
1

θg
(pg(η)− 1)

)2
]
.

We solve for pb(η), pg(η), r(η), f (η) that satisfy the system of equations (IA.5)-(IA.6)-
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(IA.7)-(IA.8) using the following procedure: First, we obtain f (η) in terms of pb(η), pg(η)

from equation (IA.8), and r(η) in terms of pb(η), pg(η) from equation (IA.6). Substituting

them into equations (IA.5) and (IA.7), we have a system of ODEs for pb(η), pg(η), of which

the boundary conditions come from the single-sector economy when we replace η = 0 or

η = 1 into the system. Finally, we numerically solve the system of ODEs for pb(η), pg(η),

and subsequently retrieve f (η) and r(η).

Appendix for Section III.B: Computing the Social Planner Solution

We provide a brief description of the social planner’s solution. The planner’s value

function G (Kb;Kg) satisfies the following HJB equation:

(IA.9)

0 = max
ib(η),ig(η)



−ρG (Kb;Kg) + u
(
Kb

(
αb − ib (η)− θb

2
i2b (η)

)
+Kg

(
αg − ig (η)− θg

2
i2g (η)

))
+GKb (Kb;Kg)Kb (ib (η) + µb) + 1

2
GKbKb (Kb;Kg)K

2
bσ

2
b

+GKg (Kb;Kg)Kg (ig (η) + µg) + 1
2
GKgKg (Kb;Kg)K

2
gσ

2
g

+λ Kb
Kb+Kg

[G (Kb −Kbψ;Kg −Kgψ)−G (Kb;Kg)]


.

We guess (and verify) the value function is given by:

(IA.10) G (Kb;Kg) = g

(
Kb

Kb +Kg

)
(Kb +Kg)

1−γ +
(Kb +Kg)

1−γ − 1

ρ (1− γ)
.
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Replacing equation (IA.10) into equation (IA.9) we obtain:

0 = max
ib(η),ig(η)



g (η)
{
−ρ− (1−γ)γ

2

[
σ2
bη

2 + σ2
g (1− η)2

]
+g′ (η) (1− γ) [(ib (η) + µb) η + (ig (η) + µg) (1− η)] + λη

[
(1− ψ)1−γ − 1

]}
+
[
η (1− η) (ib (η) + µb − ig (η)− µg)− γσ2

bη
2 (1− η) + γσ2

gη (1− η)2
]

+1
2
g′′ (η) η2 (1− η)2

(
σ2
b + σ2

g

)
+
[
η
(
αb − ib (η)− θb

2
i2b (η)

)
+ (1− η)

(
αg − ig (η)− θg

2
i2g (η)

)]1−γ



.

(IA.11)

The optimal investment rates satisfy:

0 = (θbib (η) + 1)

[
−ib (η) η + αbη −

ηθbi
2
b (η)

2
−

(1− η)
(
θgi

2
g (η) + 2ig (η)− 2αg

)
2

]−γ(IA.12)

+
−1− ρ (1− γ) g (η)− ρ (1− η) g′ (η)

ρ
,

and

0 = (θgig (η) + 1)

[
−ib (η) η + αbη −

ηθgi
2
b (η)

2
−

(1− η)
(
θgi

2
g (η) + 2ig (η)− 2αg

)
2

]−γ(IA.13)

+
−1− ρ (1− γ) g (η) + ρηg′ (η)

ρ
.

For arbitrary values of γ, the system of DAEs (Differential-Algebraic Equations)

(IA.11)-(IA.12)-(IA.13) cannot be reduced to a system of ODEs. The numerical method to

solve the system is discussed in the Appendix for Section IV.A.
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Appendix for Section IV.A

For arbitrary values of γ, we use the following iterative algorithm to solve the social

planner problem and the competitive equilibrium under carbon/investment income taxes.

We begin by setting γ = 1, in which case the system of equations (IA.11)-(IA.12)-(IA.13)

reduces to:

0 = max
ib(η),ig(η)



−ρg (η) + η (1− η) g′ (η)
[
(ib (η) + µb − ig (η)− µg)− σ2

bη + σ2
g (1− η)

]
+1

2
g′′ (η) η2 (1− η)2

(
σ2
b + σ2

g

)
+ log

[
η
(
αb − ib (η)− θb

2
i2b (η)

)
+ (1− η)

(
αg − ig (η)− θg

2
i2g (η)

)]
+1
ρ

{
−1

2

[
σ2
bη

2 + σ2
g (1− η)2

]
+ λη log (1− ψ)

+ [(ib (η) + µb) η + (ig (η) + µg) (1− η)]}



,

(IA.14)

(1− η) g′ (η) +
1

ρ
(IA.15)

=

[
η

(
αb − ib (η)− θb

2
i2b (η)

)
+ (1− η)

(
αg − ig (η)− θg

2
i2g (η)

)]−1
(1 + θbib (η)) ,

and

(IA.16) (1 + θgig (η)) =

[
−ηg′ (η) + 1

ρ

]
[
(1− η) g′ (η) + 1

ρ

] (1 + θbib (η)) .

We solve the system of equations (IA.15)-(IA.16) to obtain ib(η) and ig(η) in terms of

g(η), and replace them into equation (IA.14) to get an ordinary differential equation for

g (η), which we solve numerically together with the following boundary conditions from the
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single-sector economy:

g (0) =
1

2ρ2θg

{
−2
(

1 +
√

1 + 2θgαg + ρ2θ2g

)
+ θg

(
2µg − σ2

g − 2ρ
)

+2ρθg log
[
−ρ
(
ρθg +

√
1 + 2θgαg + ρ2θ2g

)]}
;

g (1) =
1

2ρ2θb

{
−2

(
1 +

√
1 + 2θbαb + ρ2θ2b

)
+ θb

(
2µb − σ2

b − 2ρ
)

+2ρθb log

[
−ρ
(
ρθb +

√
1 + 2θbαb + ρ2θ2b

)]
− 2θbλ log (1− ψ)

}
.

Next, we increase gamma by an increment of 0.1. We use the solution g (η) obtained

above as the initial guess to plug in and solve the system of algebraic equations (IA.12)-(IA.13).

The numerical solutions ib (η) , ig (η) are then replaced back into ODE (IA.11), which we

solve numerically and obtain a new function g (η) . We repeat the process, and stop when

the second norm of the difference between two consecutive iterations is less than the tolerance

level, which we choose to be 10−6. We continue increasing γ by an increment of 0.1, and carry

out the previous steps until we reach the desired level of γ.

The output of the iteration are denoted as iFBb (η), iFBg (η), where the superscript

FB stands for First-Best. Since under carbon/investment income taxes, the competitive

equilibrium investment rates and valuation ratios are identical to the First-Best ones attained

by the social planner, we have that the competitive equilibrium valuation ratios under

taxation are:

pFBb (η) = θbi
FB
b (η) + 1,

pFBg (η) = θgi
FB
g (η) + 1.

The interest rate can be retrieved using equation (47), and the equity premia are

calculated accordingly.
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Appendix for Section V

(a) First, we establish the competitive market equilibrium without taxes where the

two sectors have symmetric technologies, productivity, and adjustment costs.

The stock investor’s problem is as follows:

(IA.17) max
CS,b, CS,g

uS(CS,b, CS,g) = log
(
CεS
S,bC

1−εS
S,g

)
s.t. CS,b ξ(η) + CS,g = CS,

where CS,b and CS,g are the stock investor’s consumption of brown and green output respectively,

and CS is the total consumption expenditure that represents the budget constraint.

The solutions are:

(IA.18) CS,b =
εS CS
ξ(η)

, CS,g = (1− εS)CS.

Therefore,

uS
(
CS,b, CS,g

)
= log

(
CS
)

+ log

[
(1− εS)

(
1− εS
εS

ξ(η)

)−εS]
.

Similarly, for the non-stock investor, his consumption of brown and green outputs

are:

(IA.19) CNS,b =
εNS CNS
ξ(η)

, CNS,g = (1− εNS)CNS,

and

uNS
(
CNS,b, CNS,g

)
= log

(
CNS

)
+ log

[
(1− εNS)

(
1− εNS
εNS

ξ(η)

)−εNS]
.

When an agent decides how to choose his/her consumption in a given state of the

world, he/she ignores the second part because it is taken as given. Thus, for a given budget
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set, the preferences will be the same as with log(C) preferences.

Therefore, at the partial equilibrium level, both agents will consume a constant

fraction of her wealth:

(IA.20) CS = ρ κW, CNS = ρ (1− κ)W.

The aggregate consumption of green and brown goods respectively are:

(IA.21) Cb = CS,b + CNS,b =
ρ
(
1− ε̃

)
Wt

ξ(η)
, Cg = CS,g + CNS,g = ρ ε̃W,

where ε̃ = (κ− 1)εNS − κ εS + 1.

The clearing conditions for the markets of green and brown goods require the above

aggregate consumptions to equate the supplies of brown output Sb and green output Sg. Let

us denote by zb(η) = Zb(η)
Kb

and zg(η) = Zg(η)

Kg
the fractions of brown and green output that

are not sold for consumption but instead used to produce investment goods. Then:

(IA.22) Sb(η) =
(
α− zb(η)

)
Kb, Sg(η) =

(
α− zg(η)

)
Kg.

From equations (IA.22) and (IA.21), by equating the supply and demand of each type of

output, we obtain:

ρW
(

(1− κ)εNS + κεS

)
ξ(η)

=
(
α− zb(η)

)
Kb

⇐⇒ ξ(η) =
ρ (1− ε̃) p̃(η)

η
(
zb(η)− α

) ,(IA.23)

and

ρW
(

1− (1− κ)εNS − κεS
)

=
(
α− zg(η)

)
Kg

⇐⇒ zg(η) = α+
ρ ε̃ p̃(η)

1− η
,(IA.24)

11



where p̃(η) = (η − 1) pg(η)− η pb(η), and ε̃ = (κ− 1) εNS − κ εS + 1.

By equation (31), it follows that:

(IA.25) Zg(η) = Zb(η) ⇐⇒ zb(η) = zg(η)

(
1− η
η

)
,

and thus the price of a unit of investment goods is:

(IA.26) χ(η) =
ξ(η) + 1

2
.

The market clearing condition for the investment goods market requires:

2 zg(η)Kg = 2 zb(η)Kb = g
(
ib(η)

)
Kb + g

(
ig(η)

)
Kg(IA.27)

⇐⇒ zg(η) =

[(
ξ(η) + 1

)2 − 4 η p2b(η) + 4 (η − 1) p2g(η)
]

4 θ
(
η − 1

) (
ξ(η) + 1

)2 ,(IA.28)

where g(in) = in + θ i2n
2

.

The value function of the stock investors, GS (Kb;Kg) = sup ib,ig

{
E
[∫∞

0 e−ρt log
(
CεSS,bC

1−εS
S,g

)
dt
]}

,

satisfies the HJB equation:

(IA.29) 0 = max
ib(η),ig(η)



−ρGS (Kb;Kg) + log
(
CεSS,bC

1−εS
S,g

)
+GSKb (Kb;Kg)Kb [ib (η) + µ] +GSKg (Kb;Kg)Kg [ig (η) + µ]

+1
2G

S
KbKb

(Kb;Kg)K
2
b σ

2
b + 1

2G
S
KgKg

(Kb;Kg)K
2
gσ

2
g

+λ η
[
GS
(
Kb −Kb ψ;Kg −Kg ψ

)
−GS

(
Kb;Kg

)]


.

Following equations (IA.18), (IA.19), (IA.22) and (IA.27), the consumption must satisfy:

(IA.30) CS,b =
κ εS (α− zb(η))Kb

κ εS + (1− κ)εNS
=
κ εSKb

[
α− 1

2

(
g
(
ib(η)

)
+ 1−η

η
g
(
ig(η)

))]
κ εS + (1− κ)εNS

,
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and

(IA.31)

CS,g =
κ (1− εS) (α− zg(η))Kg

κ (1− εS) + (1− κ) (1− εNS)
=
κ (1− εS) Kg

[
α− 1

2

(
η

1−ηg
(
ib(η)

)
+ g
(
ig(η)

))]
κ (1− εS) + (1− κ) (1− εNS)

.

We guess (and subsequently verify) that:

(IA.32) GS (Kb;Kg) = fS
(

Kb

Kb +Kg

)
+

log(Kb +Kg)

ρ
.

Substitute equations (IA.30), (IA.31), and (IA.32) into equation (IA.29) we obtain:

(IA.33)

0 = max
ib(η),ig(η)



1
2
η2 (η − 1)2

(
σ2
b + σ2

g

)
fS
′′
(η)− η (η − 1)

(
ib − ig − ησ2

b + (1− η)σ2
g

)
fS
′
(η)

−ρfS(η) + εS log

[
εS ×

−η(−4α+θib2+2ib)+θ(η−1)ig2+2(η−1)ig
θ(1−ε̃)

]
+ (1− εS) log

[
(1− εS)× 4α−η(4α+θi2b+2ib)+θ(η−1)ig2+2(η−1)ig

θε̃

]
+η ib+(1−η) ig

ρ
− η2σ2

b+(η−1)2σ2
g

2ρ
+ λη log(1−ψ)

ρ
+ log

(
κ θ
4

)
+ µ

ρ


.

The FOCs for ib and ig result in:

0 = η (1− η)fS
′

(η)− 2 η (εS − 1) (1 + θ ib)

(η − 1)
(
4α− θ ig2 − 2ig

)
+ η

(
θ ib

2 + 2ib
)(IA.34)

+
2 η εS (1 + θ ib)

η
(
−4α + θ ib

2 + 2ib
)
− (η − 1)

(
θ ig

2 + 2ig
) +

η

ρ
,

and

0 = −2(η − 1) (εS − 1) (1 + θ ig)− 2η (εS − 1) (1 + θ ib)

(η − 1)
(
4α− θ ig2 − 2ig

)
+ η

(
θ ib

2 + 2ib
)(IA.35)

+
2(η − 1) εS (1 + θ ig)− 2η εS (1 + θ ib)

η
(
−4α + θ ib

2 + 2ib
)
− (η − 1)

(
θ ig

2 + 2ig
) − 1

ρ
.

The system of differential-algebraic equations (IA.33)-(IA.34)-(IA.35) thus characterizes the

market equilibrium.
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Under condition (1), we provide a full analytical characterization of the steady-state market

equilibrium. In this case, the law of motion of η is:

(IA.36) dη = η (1− η)
[
ib(η)− ig(η)

]
dt.

At the steady state η = ηSS, it must be that dη = 0. Thus, firms’ investment rates

satisfy:

(IA.37) ib(ηSS) = ig(ηSS) ⇐⇒ pb(ηSS) = pg(ηSS),

following equation (33).

In addition, since both sectors share the same exposure to the climate risk, at the

steady state, the (after-tax) dividend yields for both types of firms have to be identical:

α ξ(ηSS)− χ(ηSS) g
(
ib(ηSS)

)
pb(ηSS)

=
α− χ(ηSS) g

(
ig(ηSS)

)
pg(ηSS)

⇐⇒ zg(ηSS) = − α (ηSS − 1 + ε̃)

(ηSS − 1) (2 ε̃− 1)
.(IA.38)

Evaluating equations (IA.23), (IA.24), (IA.25), (IA.26), (IA.28) at ηSS , and combining

them with equations (IA.37), (IA.38), we obtain:

pb(ηSS) = pg(ηSS) = pSS = −ρ θ +
√

2α θ + ρ2 θ2 + 1,(IA.39)

ηSS =
1

2
−
ρ
(
2 ε̃− 1

)
pSS

2α
,

zg(ηSS) =
α2 − α ρ pSS

α + ρ
(
2 ε̃− 1

)
pSS

,

zb(ηSS) =
α2 − α ρ pSS

α− ρ
(
2 ε̃− 1

)
pSS

,

χ(ηSS) = ξ(ηSS) = 1,

where ε̃ = (κ− 1) εNS − κ εS + 1.
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The equilibrium interest rate is:

rSS =
α
[
2 (κ− ψ) (pSS + ρ θ + µ θ − 1)− κ θ λψ

]
+ κ θ λψ ρ

(
2 ε̃− 1

)
pSS

2α θ (κ− ψ)
.

We verify that under conditions (1), ηSS ∈ (0, 1), and zg(ηSS), zb(ηSS) ∈ (0, α). The steps

are as follows: First,

zb(ηSS)

zg(ηSS)
=
α + ρ

(
2 ε̃− 1

)
pSS

α− ρ
(
2 ε̃− 1

)
pSS

.

Thus,

zb(ηSS)

zg(ηSS)
+ 1 =

2α

α− ρ
(
2 ε̃− 1

)
pSS

=
1

ηSS

⇐⇒ zb(ηSS)

zg(ηSS)
=

1

ηSS
− 1.

If 0 < ηSS < 1 holds, then zb(ηSS) has the same sign as zg(ηSS). Therefore, if one of

them is non-negative, so is the other.

Next, note that as 2 ε̃− 1 < 1,

ηSS =
α− ρ

(
2 ε̃− 1

) (
−ρ θ +

√
2α θ + ρ2 θ2 + 1

)
2α

> 0,

thanks to conditions (1).

We also have ηSS < 1 if and only if:

(IA.40) α + ρ
(

2 ε̃− 1
) (
−ρ θ +

√
2α θ + ρ2 θ2 + 1

)
> 0.

In addition, zg(ηSS) > 0 if and only if:

(IA.41)
α2 − α ρ pSS

α + ρ
(

2 ε̃− 1
)
pSS

> 0.
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If inequality (IA.40) holds, then inequality (IA.41) also holds if and only if:

α− ρ pSS > 0

⇐⇒ α

ρ
> −ρ θ +

√
2α θ + ρ2 θ2 + 1,(IA.42)

which is satisfied under conditions (1). Because of inequality (IA.42), for inequality (IA.40) to

hold, it is sufficient to have:

1− 2 ε̃ ≤ 1

⇐⇒ ε̃ = (κ− 1) εNS − κ εS + 1 ≥ 0,

which is indeed true.

It is trivial that zg(ηSS) < α, and zb(ηSS) < α. Hence, under conditions (1), ηSS ∈ (0, 1),

and zg(ηSS), zb(ηSS) ∈ (0, α).

(b) Second, after characterizing the market equilibrium without taxes, we move

onto the equilibrium under the budget-neutral carbon tax scheme δ = (δg, δb) that satisfies

condition (24). In this case, equation (IA.38) changes to:

α ξ(ηSS)− χ(ηSS) g
(
ib(ηSS)

)
− α δb

pb(ηSS)
=
α− χ(ηSS) g

(
ig(ηSS)

)
− α δg

pg(ηSS)

⇐⇒ zg(η
δ
SS) =

α
[
ε̃ (δb η

δ
SS − ηδSS + 1)− (1− ηδSS)2

]
(ηδSS − 1)

[
(ηδSS − 1) (2 ε̃− 1)− δbε̃

] .(IA.43)

The steady-state equilibrium ηδSS arising from the system of equations (IA.23), (IA.24),

(IA.25), (IA.26), (IA.28), (IA.37), (IA.43) is the solution to the fixed-point problem:

ηδSS =
4α (ηδSS − 1)2(δb − ηδSS + 1)2 + ρΩ (δb − 2 ηδSS + 2) (Θ − Ψ)

8α (ηδSS − 1)4
(

δb
1−ηδSS

+ 1
)2 ,
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where:

Ω = (δb − 2 ηδSS + 2) (ε̃− 1) + δb − ηδSS + 1,

Ψ =
√

4 (ηδSS − 1)2(2α θ + 1) (δb − ηδSS + 1)2 +Θ2,

Θ = θρ (δb − 2 ηδSS + 2)
[
δb (ε̃− 1) + δb − ηδSS + 1

]
.

In addition, other steady-state quantities are:

ξ(ηδSS) = 1 +
δb

1− ηδSS
,

χ(ηδSS) = 1 +
δb

2
(
1− ηδSS

) ,
zb(η

δ
SS) =

(
1

ηδSS
− 1

)
zg(η

δ
SS),

pb(η
δ
SS) = pg(η

δ
SS) = pδSS =

(ηδSS − 1)
(
zg(η

δ
SS)− α

)
ρ ε̃

.

(c) To show Proposition (5), we first note that under conditions (1), the value function

of the non-stock investor is:

(IA.44)

fNS
(
ηδSS
)

=
µ+ iδSS + λ ηδSS log(1− ψ) + ρ log

(
p̂δSS

)
− ρ εNS log

[
ξ(ηδSS)

(
1
εNS
− 1
)]

ρ2
,

where iδSS =
pδSS−χ(η

δ
SS)

θ χ(ηδSS)
, and p̂δSS = ρ (κ− 1) (εNS − 1) pδSS.

Introducing an (infinitesimally) small carbon tax would make the non-stock investor

strictly worse off if and only if:

∂fNS

∂δb
|δb=0 ≤ 0.

Taking the derivative of fNS with respect to δb, and evaluating at 0, we rewrite the
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above inequality as:

0 ≥ 1

4ρ θ α2 Φ (Φ− ρ)

{
λ log(1− ψ)

[
− 4 ρ2 θ2 (Φ− ρ)

(
2(ε̃− 1)ε̃+ 1

)
+ 2α θ

(
4ρ (ε̃− 1) ε̃+ 3ρ− Φ

)

+ 4ρ (ε̃− 1) ε̃+ 3ρ− Φ
]
−

4ακ (εNS − εS)
(
ρ θ2 (ρ− Φ) + 2α θ + 1

)
θ



⇐⇒ 0 ≥ λ log(1− ψ)
[
4ρ2θ2 (ρ− Φ)

(
2 (ε̃− 1) ε̃+ 1

)
+ (2α θ + 1)

(
4ρ (ε̃− 1) ε̃+ 3ρ− Φ

)](IA.45)

−
4ακ (εNS − εS)

[
ρ θ2 (ρ− Φ) + 2α θ + 1

]
θ

,

where ε̃ = (κ− 1) εNS − κ εS + 1, and Φ =
√

2α
θ

+ 1
θ2

+ ρ2.

Note that 2α θ + 1 = θ2 (Φ2 − ρ2). Inequality (IA.45) is equivalent to:

4ακ (εNS − εS)

θ λ log(1− ψ)
≤

4ρ2 (ρ− Φ)
(

2 (ε̃− 1) ε̃+ 1
)

+ (Φ2 − ρ2)
(

4ρ (ε̃− 1) ε̃+ 3ρ− Φ
)

ρ (ρ− Φ) + (Φ2 − ρ2)

⇐⇒ 4ακ (εNS − εS)

θ λ log(1− ψ)
≤ ρ (2 ε̃− 1)2

(
1− ρ

Φ

)
+ ρ− Φ.(IA.46)

For inequality (IA.46) to hold, it is sufficient to have the following equivalent of (39):

4ακ (εNS − εS)

θ λ log(1− ψ)
≤ ρ− Φ.

Alternative production functions in the investment goods market

With Cobb-Douglas production function for the investment good:

I = Zζ
b Z

1−ζ
g ,
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equation (IA.25) changes to:

(IA.47)
Zb ξ̃(η)

Zg
=

ζ

1− ζ
⇐⇒ zb(η) =

zg(η)

ξ̃(η)

(
1− η
η

)(
ζ

1− ζ

)
,

where ξ̃(η) denotes the price of brown output. Hence, the price of a unit of investment goods

is:

(IA.48) χ̃(η) =

[(
1−ζ
ζ

)
ξ̃(η)

]ζ
1− ζ

.

The market clearing condition for the investment goods implies:

(
zb(η)Kb

)ζ(
z(η)Kg

)1−ζ
= g
(
ib(η)

)
Kb + g

(
ig(η)

)
Kg

⇐⇒ zg(η) =

[(
1−ζ
ζ

)
ξ̃(η)

]−ζ [
(1− ζ)2

(
η − 1

)
p2g(η) + (1− ζ)2 η p2b(η)−

((
1−ζ
ζ

)
ξ̃(η)

)2ζ ]
2θ
(
η − 1

) .

(IA.49)

At the steady state ηδ∗SS under the budget-neutral carbon tax scheme δ∗ = (δ∗g , δ
∗
b ), the

(after-tax) dividend yields for both types of firms have to be identical, which requires:

α ξ̃(ηδ∗SS)− χ̃(ηδ∗SS) g
(
ib(η

δ∗
SS)
)
− α δ∗b

pb(ηδ∗SS)
=
α− χ̃(ηδ∗SS) g

(
ig(η

δ∗
SS)
)
− α δ∗g

pg(ηδ∗SS)

⇐⇒ zg(η
δ∗
SS) =

α
[
ε̃ (δ∗b η

δ∗
SS − ηδ∗SS + 1)− (1− ηδ∗SS)2

]
(ηδ∗SS − 1)

[
(ηδ∗SS − 1) (2 ε̃− 1)− δ∗b ε̃

] .(IA.50)

Evaluating equations (IA.23), (IA.24), (IA.47), (IA.48), (IA.49) at ηδ∗SS , and combining them
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with equations (IA.37), (IA.50), we obtain:

ξ̃(ηδ∗SS) = 1 +
δ∗b

1− ηδ∗SS
,

χ̃(ηδ∗SS) =

[(
1−ζ
ζ

)(
1 +

δ∗b
1−ηδ∗SS

)]ζ
1− ζ

,

zb(η
δ∗
SS) =

(
1

ηδ∗SS
− 1

)(
ζ

1− ζ

)
zg(η

δ∗
SS)

1 +
δ∗b

1−ηδ∗SS

,

pb(η
δ∗
SS) = pg(η

δ∗
SS) = pδ∗SS =

(ηδ∗SS − 1)
(
zg(η

δ∗
SS)− α

)
ρ ε̃

.

In this case, ηδ∗SS is the solution to the fixed-point problem:

ηδ∗SS =

(ηδ∗SS − 1)

[
Θ′
√
Ξ − α(ζ − 1) θρ2

(
Ω′

ζ(ηδ∗SS−1)

)ζ
(ζ + ε̃− 1)(−δ∗b ε̃+ ηδ∗SS − 1) + α2(ζ − 1)2ζ Ψ ′

]
α2(ζ − 1)2 Ψ ′2

,

where:

Ξ =

α2(ζ − 1)2
(
α ζ2(ηδ∗SS−1)

Ω′

)−ζ [
2α θ (Υ −Π) +

(
αΩ′

ηδ∗SS−1

)ζ (
Ψ ′2 + θ2ρ2(−δ∗b ε̃+ ηδ∗SS − 1)2

)]
θ(ηδ∗SS − 1)Θ′

,

Ω′ = (ζ − 1)(δ∗b − ηδ∗SS + 1),

Ψ ′ = δ∗b (ζ − 1) + ηδ∗SS − 1,

Θ′ = θρ2(ηδ∗SS − 1)(ζ + ε̃− 1)2,

Υ = (α ζ)ζ
[
δ∗2b (ζ − 1)2 + 3 δ∗b ζ (ηδ∗SS − 1)− ζ (ηδ∗SS − 1)2

]
,

Π = (α ζ)ζ (ηδ∗SS − 1)
[
δ∗b
(
ζ2 + 2

)
− ηδ∗SS + 1

]
.

Carbon taxes would fail to gain a political majority under the following condition:

(IA.51)
∂f̃NS

∂δ∗b
|δ∗b=0 ≤ 0,

where f̃NS denotes the standardized value function of the non-stock investor.
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The form of f̃NS is identical to the one in equation (IA.44), which is:

(IA.52) f̃NS
(
ηδ∗SS

)
=

µ+ iδSS + λ ηδ∗SS log(1− ψ) + ρ log
(
p̂δ∗SS

)
− ρ εNS log

[
ξ̃(ηδ∗SS)

(
1
εNS
− 1
)]

ρ2
,

where iδSS =
pδ∗SS−χ̃(η

δ∗
SS)

θ χ̃(ηδ∗SS)
, and p̂δ∗SS = ρ (κ− 1) (εNS − 1) pδ∗SS .

Taking the derivative of f̃NS
(
ηδ∗SS
)

and evaluate at δ∗b = 0, we can rewrite inequality

(IA.51) as:

0 ≥M = −p (α, ζ, κ, λ, ψ, θ, ρ, λ) (εNS − εS)2 − q (α, ζ, κ, λ, ψ, θ, ρ, λ) (εNS − εS)(IA.53)

−s (α, ζ, κ, λ, ψ, θ, ρ, λ, εNS, ε̃) ,

where:

p (α, ζ, κ, λ, ψ, θ, ρ, λ) =
2 θ2 κ2 λ log(1− ψ)(α− α ζ)ζ

2 θ α2(ζ − 1)(α ζ)ζ − (α− α ζ)ζ (1 + ρ2 θ2)
,

q (α, ζ, κ, λ, ψ, θ, ρ, λ) =
κ

α ρ
+

2κ θ2λ log(1− ψ)(1− ζ)ζ−1 (−2 ζ2 + (2 εNS + 1)(ζ − 1))

2α2 θ(ζ − 1)ζζ − (1− ζ)ζ (1 + ρ2 θ2)
,

and

s (α, ζ, κ, λ, ψ, θ, ρ, λ, εNS, ε̃) =

−λ log(1− ψ)
(

α
1−ζ

)1−ζ/2
α3 ρ

[
2α θ(ζ − 1)ζζ − (1− ζ)ζ (1 + ρ2θ2)

] [2 θ ζ1+ζ (1− ζ)3−ζ/2 α2+ζ/2

+ ζ (1− ζ)2+ζ/2 α1+ζ/2 + ρ θ ϑ ζ2(1− ζ)ζ
(
2 + 3 ρ2 θ2

)
− ρ2 θ ζ−ζ αζ/2 (1− ζ)3ζ/2

(
1 + ρ2 θ2

)
(3 ζ + ε̃− 2)ζ̃

+ ρ2 θ2 ζ(1− ζ)ζ/2 αζ/2+1
(
7 ζ2 − 2 ζ − 4 ζ εNS − 1

)
+ 2 ρ2 θ2 (ζ − 1) (1− ζ)ζ/2 (ε2NS + εNS)αζ/2+1

+ ρ θ ϑ (1− ζ)ζ
[(

(2ζ − 1)(ε̃− 1)− ζ
)

+ ρ2 θ2
(
(ε̃− 1)(4ζ + ε̃− 2)− ζ

)]
+2α ρ θ2

[
2 ζ ρ (α− αζ)ζ/2

(
1− 2ζ + (ζ − 2)(ε̃− 1)

)
− ϑ ζζ (ζ − 1)(2 ζ − 1) ζ̃

]]
,
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ϑ = 1
θ

√
ζ−2ζ

[
(α− α ζ)ζ (1 + ρ2 θ2)− 2α θ (ζ − 1) (αζ)ζ

]
, ζ̃ = ζ+ ε̃−1, and ε̃ = (κ−1) εNS−

κ εS + 1.

Suppose that 0 ≤ ζ ≤ 1−ε, where ε is arbitrarily small, so that all the above functions

are well-behaved. We observe that p (α, ζ, κ, λ, ψ, θ, ρ, λ) > 0. There are three possibilities

with regards to the polynomial M on the right-hand side of inequality (IA.53), which we

consider separately below:

- If∆∗ = q (α, ζ, κ, λ, ψ, θ, ρ, λ)2−4p (α, ζ, κ, λ, ψ, θ, ρ, λ)×s (α, ζ, κ, λ, ψ, θ, ρ, λ, εNS, ε̃) <

0, then:

∂f̃NS

∂δ∗b
|δ∗b=0= M < 0.

- If ∆∗ = 0,then:

∂f̃NS

∂δ∗b
|δ∗b=0= M ≤ 0.

- If ∆∗ > 0,for M ≤ 0, for inequality (IA.53) to hold, it is sufficient to have:

(IA.54) εNS − εS ≥
−q (α, ζ, κ, λ, ψ, θ, ρ, λ) +

√
∆∗

2p (α, ζ, κ, λ, ψ, θ, ρ, λ)
= u (α, ζ, κ, λ, ψ, θ, ρ, λ, εNS, ε̃) .

The function on the right-hand side is continuous on its compact domain. By Weierstrass

Theorem, it attains the maximum u∗,which is the upper bound of u. The above sufficient condition

then becomes:

(IA.55) εNS − εS ≥ u∗.

Note that even though u depends on εNS and εS, u∗ is independent of those two

parameters. As long as inequality (IA.55) is satisfied, inequality (IA.54), and in turn inequality

(IA.51), is going to hold. Therefore, under all the above three possible circumstances, if

εNS − εS≥ u∗, carbon taxes would fail to gain a political majority.

Under specific values for ζ, we can obtain an estimate for u∗. Let us illustrate by
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considering the case of ζ = 1/2, under which inequality (IA.51) simplifies to:

−λ log(1− ψ)

4ακρ

2θρ2
(
θρ−

√
θ (α + θρ2) + 1

)
(2ε̃− 1)2√

θ (α + θρ2) + 1
+ α

 ≤ εNS − εS.

Since 0 ≤ ε̃ ≤ 1, an estimate for the upper bound of the left-hand side is:

LHS ≤ −λ log(1− ψ)

4κρ
.

Hence, the sufficient condition for inequality (IA.51) to hold is :

−λ log(1− ψ)

4κρ
≤ εNS − εS,

which follows the same line of economic intuitions under the Leontief production function

(39) because:

- As the intensity (λ) or severity of climate disaster (ψ) increases, there need to be a

bigger gap between the preference for the carbon tax not to be supported by the non-stock

investors. As they are affected more by climate disasters, the benefits delivered to them by

carbon taxes grow. As a result, they only oppose to such a tax if its impact on the price of

brow output is high enough to outweigh the benefits, or when they have a stronger preference

for the brown goods.

- As investors are more patient, they care more about the climate change that may

destroy their future consumption. Thus, they are more likely to support carbon taxes, which

is reflected by a higher chance of the above inequality being satisfied.

- When the population of the non-stock investors grows, their total consumption of

the brown output rises, and the brown sector inflates. This contributes to more frequent

climate disasters, which renders carbon taxes more valuable in curbing those extreme events

that destroy future consumption. Hence, non-stock investors are more likely to support

carbon pricing.
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