Dynamic Adverse Selection and Belief Update in Credit Markets

Online Appendices

Inkee Jang

Kee-Youn Kang

The Catholic University of Korea Yonsei University

Online Appendix A: Proof

Proof of Lemma 1. The proof is done by showing that $0 < \frac{b(\underline{\theta}) - \sqrt{b(\underline{\theta})^2 - 4b(\underline{\theta})r}}{\underline{\theta}} < 1$. First, we observe that $\frac{b(\underline{\theta}) - \sqrt{b(\underline{\theta})^2 - 4b(\underline{\theta})r}}{\underline{\theta}} > 0$ is well-defined because $b(\underline{\theta}) = \left[\frac{1}{\overline{\theta} - \underline{\theta}} \int_{\underline{\theta}}^{\overline{\theta}} \frac{1}{\overline{\theta}} d\theta\right]^{-1} > \left[\frac{1}{\overline{\theta} - \underline{\theta}} \int_{\underline{\theta}}^{\overline{\theta}} \frac{1}{\underline{\theta}} d\theta\right]^{-1} = \underline{\theta} \ge 4r$. Next, note that $\frac{b(\underline{\theta})}{\underline{\theta}} - \sqrt{\left(\frac{b(\underline{\theta})}{\underline{\theta}}\right)^2 - \frac{4r}{\underline{\theta}} \frac{b(\underline{\theta})}{\underline{\theta}}}$ decreases with $\frac{b(\underline{\theta})}{\underline{\theta}}$ and $\frac{b(\underline{\theta})}{\underline{\theta}} > 1$. Thus, we obtain $\frac{b(\underline{\theta})}{\underline{\theta}} - \sqrt{\left(\frac{b(\underline{\theta})}{\underline{\theta}}\right)^2 - \frac{4r}{\underline{\theta}} \frac{b(\underline{\theta})}{\underline{\theta}}} < 1 - \sqrt{1 - \frac{4r}{\underline{\theta}}} \le 1$, which completes the proof.

Proof of Lemma 2. First, consider an entrepreneur in period *s* who has not started a business. If the entrepreneur decides to establish a company and be matched with a lender, this entrepreneur faces the lender's belief $\mu(\cdot, (s, A^{s-1}))$. On the other hand, if the entrepreneur chooses not to establish a company in period *s* but does so in period *s* + 1, then this entrepreneur faces the lender's belief $\mu(\cdot, (s + 1, A^s))$. Note that $\mu(\cdot, (s, A^{s-1})) = \mu(\cdot, (s + 1, A^s))$ due to the restriction

on μ . Therefore, if the entrepreneur has an incentive not to establish in period *s*, then he/she also has the same incentive in period s + 1. Then, by induction, if the entrepreneur has no incentive to establish a company in period *s*, this entrepreneur also does not have such incentive in the future, which results in zero continuation value. However, offering an incentive-compatible contract provides a positive continuation value. Thus, every entrepreneur has the incentive to establish a company immediately when he/she is born.

For the rest of the proof, we show that no entrepreneur will ever temporarily stop running his/her business. Consider any history h_{t-1} and an entrepreneur with h_{t-1} and entrepreneurial productivity θ who is currently running his/her business. Notice that the entrepreneur's period-tdefault decision D_t after offering a contract x_t must satisfy $\left[0, \frac{x_t}{\theta}\right] \subseteq D_t$. The lender's expected payoff from accepting contract x_t satisfies

$$\begin{split} &\int_{\Theta} (1 - |D_t|) x_t d\mu(x_t, h_{t-1}) \\ &\leq \int_{\Theta} \left(1 - \left| \left[0, \frac{x_t}{\theta} \right) \right| \right) x_t d\mu(x_t, h_{t-1}) \\ &\leq \left(1 - \left| \left[0, \frac{x_t}{\bar{\theta}} \right) \right| \right) x_t = \left(1 - \frac{x_t}{\bar{\theta}} \right) x_t \end{split}$$

Since $x_{min} \equiv \frac{\bar{\theta} - \sqrt{\bar{\theta}^2 - 4\bar{\theta}r}}{2}$ is the smallest x_t that satisfies $\left(1 - \frac{x_t}{\bar{\theta}}\right) x_t = r$, it is necessary for incentive compatibility that $x_t \ge x_{min}$, regardless of μ . The above inequality indicates that offering x_{min} is incentive-compatible only if the lender believes that the entrepreneur's productivity is $\bar{\theta}$ for sure and the corresponding default decision satisfies $D_t = \left[0, \frac{x_{min}}{\bar{\theta}}\right]$.

We now show that an entrepreneur has the incentive to offer x_{min} with $D_t = \left[0, \frac{x_{min}}{\bar{\theta}}\right)$ if the lender believes that the entrepreneur's productivity is $\bar{\theta}$ with certainty. The entrepreneur can always choose to offer a contract and default on it, which gives $\frac{\theta}{2}$ units of expected payoff to the type (θ, s) entrepreneur. This implies that $V_{t+1}(\theta, h_t) \ge \frac{\theta}{2}$, where $h_t = (s, \{A^{t-1}, A_t\})$. By assumption 1, we have:

$$\beta V_{t+1}(\theta, h_t) \ge \frac{\beta \theta}{2} \ge \frac{\beta \underline{\theta}}{2} > \frac{b(\underline{\theta}) - \sqrt{b(\underline{\theta})^2 - 4b(\underline{\theta})r}}{2} > \frac{\overline{\theta} - \sqrt{\overline{\theta}^2 - 4\overline{\theta}r}}{2} = x_{min}.$$

Thus, it is optimal to set $D_t = \left[0, \frac{x_{min}}{\overline{\theta}}\right)$.

Note that $V_t(\theta, h_{t-1})$ increases with θ because a more productive entrepreneur is capable of mimicking a less productive entrepreneur. Furthermore, an entrepreneur cannot offer a contract lower than x_{min} as explained above. Therefore, the highest feasible continuation value that an entrepreneur can achieve in the economy is when an entrepreneur with productivity $\bar{\theta}$ consistently faces the lender's belief that his/her productivity is $\bar{\theta}$ with the certainty at every period. In this case, the entrepreneur offers x_{min} and defaults only if $A_t < \frac{x_{min}}{\theta}$. It has been proven in the previous paragraph that this arrangement is incentive-compatible in every period. Let V^* be such the highest continuation value. Then,

$$V^* = \mathbb{E}_{A_t} \left[A_t \bar{\theta} \right] + \left(1 - \left| \left[0, \frac{x_{min}}{\bar{\theta}} \right) \right| \right) \mathbb{E}_{A_t} \left[-x_{min} + \beta V^* \right].$$

This gives $V^* = \frac{\overline{\theta} - 2r}{2 - \beta - \beta \sqrt{1 - \frac{4r}{\overline{\theta}}}}$. Note that the entrepreneur's expected future continuation value cannot exceed V^* in any period.

Now, suppose that the entrepreneur decides not to run their business at some period after the establishment of the company. Because the cost κ to restart the business is higher than V^* , the entrepreneur will never restart the business again, resulting in a zero continuation value for the entrepreneur. Therefore, the entrepreneur would never stop running the business in any period t.

Proof of proposition 1. Consider an entrepreneur with history $h_{t-1} = (s, A^{t-1})$ and let θ be the entrepreneurial productivity of this entrepreneur. Based on lemma 2 and the incentive compatibility condition, the entrepreneur offers a contract in $S \equiv \{\hat{x} : \omega_{\mu}(\hat{x}, D_t, h_{t-1}) \ge r\}$, which is nonempty under the restriction on μ . If S is a singleton, the proof is done. Thus, for the rest of the proof, we assume that S is not a singleton. Let $x_{t,1} = \min S$ and $x_{t,2} \in S \setminus \{x_{t,1}\}$. It follows that $x_{t,2} > x_{t,1}$. Let $D_{t,i}$ denote the default set associated with $x_{t,i}$ for i = 1, 2. By (5), $A_t \in D_{t,i}$ if and only if either $x_{t,i} > \beta V_{t+1}(\theta, h_t)$ or $x_{t,i} > A_t\theta$ for each i = 1, 2, where $h_t = (s, \{A^{t-1}, A_t\})$. Thus, $D_{t,1} \subseteq D_{t,2}$. Further, note, from (5), that $-x_{t,1} + \beta V_{t+1}(\theta, h_t) \ge 0$ whenever $A_t \notin D_{t,1}$, which implies that

$$\mathbb{E}_{A_t} \left[-x_{t,1} + \beta V_{t+1}(\theta, h_t) | A_t \notin D_{t,1} \right] - \mathbb{E}_{A_t} \left[-x_{t,1} + \beta V_{t+1}(\theta, h_t) | A_t \notin D_{t,2} \right]$$
$$= \mathbb{E}_{A_t} \left[-x_{t,1} + \beta V_{t+1}(\theta, h_t) | A_t \in D_{t,2} \backslash D_{t,1} \right] \ge 0.$$

Finally, it is necessary that $[0, 1] \setminus D_{t,2}$ has a positive measure because the lender's expected payoff from accepting $x_{t,2}$ is no less than r.

Given the above observations, we obtain

$$(1 - |D_{t,1}|) \mathbb{E}_{A_t} [-x_{t,1} + \beta V_{t+1}(\theta, h_t) | A_t \notin D_{t,1}]$$

$$\geq (1 - |D_{t,2}|) \mathbb{E}_{A_t} [-x_{t,1} + \beta V_{t+1}(\theta, h_t) | A_t \notin D_{t,2}]$$

$$> (1 - |D_{t,2}|) \mathbb{E}_{A_t} [-x_{t,2} + \beta V_{t+1}(\theta, h_t) | A_t \notin D_{t,2}]$$

Thus, the expected payoff from offering $x_{t,1}$ is strictly higher than that from offering $x_{t,2}$ as shown (1). As $x_{t,2}$ is chosen arbitrarily, it follows that in equilibrium, the entrepreneur chooses min S regardless of the entrepreneurial productivity level.

Proof of Lemma 3. Take any history $h_{t-1} = (s, A^{t-1})$ such that $\operatorname{supp} \hat{\Omega}_{h_{t-1}} \neq \emptyset$ in equilibrium. For each $\tau = s, \ldots, t$, let $A^{\tau-1}$ be the truncated subsequence of A^{t-1} such that

 $A^{\tau-1} = \{\emptyset, \dots, A_{\tau-1}\}$. If t = s, then $\hat{\Omega}_{h_{t-1}} = U_{[\underline{\theta},\overline{\theta}]}$ because all entrepreneurs with this history established their company in period s. Now suppose that s < t and let $h_{k-1} = (s, A^{k-1})$ for each $k \in \{s, \dots, t-1\}$. Suppose that for some $k \in \{s, \dots, t-1\}$, there exists $\hat{\theta}_k \in \Theta$ such that $\hat{\Omega}_{h_{k-1}} = U_{[\hat{\theta}_{k},\overline{\theta}]}$. Then, the proof is done by induction if we show that there exists $\hat{\theta}_{k+1} \in \Theta$ such that $\hat{\Omega}_{h_k} = U_{[\hat{\theta}_{k+1},\overline{\theta}]}$.

By applying lemma 2 and proposition 1, all entrepreneurs with h_{k-1} offer the same contract in period k, denoted as x_k . Since $\operatorname{supp} \hat{\Omega}_{h_{t-1}} \neq \emptyset$, some entrepreneurs did not default under the realization of A_k in period k. Now suppose that an entrepreneur with entrepreneurial productivity $\theta' \in [\hat{\theta}_k, \bar{\theta}]$ did not default on contract x_k in period k, which implies that $\min \{A_k \theta', \beta V_{k+1}(\theta', h_k)\} \ge x_k$, as stated in (5). Note that for any $\theta'' \ge \theta'$, $V_{k+1}(\theta'', h_k) \ge V_{k+1}(\theta', h_k)$ because an entrepreneur with θ'' is capable of mimicking entrepreneur with θ' , achieving a larger payoff due to higher productivity. Thus, $\min \{A_k \theta'', \beta V_{k+1}(\theta'', h_k)\} \ge x_k$ holds for all $\theta'' \ge \theta'$, indicating that entrepreneur with entrepreneurial productivity larger than θ' also did not default. This implies that there exists $\hat{\theta}_{k+1} \in [\hat{\theta}_k, \bar{\theta}]$ such that entrepreneurs with h_{k-1} did not default on x_k in period t = k if and only if their entrepreneurial productivity is larger than or equal to $\hat{\theta}_{k+1}$. Furthermore, $\hat{\Omega}_{h_{k-1}}$ is uniformly distributed, so the entrepreneurial productivity of the survivors is also uniformly distributed. That is, $\hat{\Omega}_{h_k} = U_{[\hat{\theta}_{k+1},\bar{\theta}]}$ for some $\hat{\theta}_{k+1} \in \Theta$, which completes the proof.

Proof of Lemma 4. Take any history $h_{t-1} = (s, A^{t-1})$ such that $\hat{\Omega}_{h_{t-1}} = U_{[\hat{\theta}_t, \bar{\theta}]}$ for some $\hat{\theta}_t \in \Theta$, i.e., $\hat{\theta}_t = \min \operatorname{supp} \hat{\Omega}_{h_{t-1}}$. According to lemma 2 and proposition 1, all entrepreneurs with h_{t-1} offer the same contract x_t in period t. Thus, the lender's expected payoff from accepting contract x_t is given by (6), which decreases with the measure of default sets D_t . This implies that

$$\begin{split} \omega_{\mu}(x_{t}, D_{t}\left(\cdot, h_{t-1}\right), h_{t-1}) &= \int_{\Theta} \int_{[0,1] \setminus D(\theta, h_{t-1})} x_{t} \mathbf{m}_{[0,1]}(dA_{t}) \mathbf{m}_{\left[\hat{\theta}_{t}, \bar{\theta}\right]}(d\theta) \\ &\leq \int_{\Theta} \int_{\left[\frac{x_{t}}{\theta}, 1\right]} x_{t} \mathbf{m}_{[0,1]}(dA_{t}) \mathbf{m}_{\left[\hat{\theta}_{t}, \bar{\theta}\right]}(d\theta) = x_{t} - \frac{x_{t}^{2}}{b(\hat{\theta}_{t})} \end{split}$$

Using the definition of $x^*(\cdot)$ in (7), we have $x^*(\hat{\theta}_t) = \min\{x : x - \frac{x^2}{b(\hat{\theta}_t)} \ge r\}$. Thus, the lender will never accept x_t if $x_t < x^*(\hat{\theta}_t)$. Therefore, any contract x_t must satisfy $x_t \ge x^*(\hat{\theta}_t)$.

We now show that $x^*(\cdot)$ is a decreasing convex function. From assumption 1, we obtain $\frac{\partial b(\theta)}{\partial \theta} = \frac{\frac{\ddot{\theta}}{\theta} - 1 - \log(\frac{\ddot{\theta}}{\theta})}{(\log \bar{\theta} - \log \theta)^2} > 0 \text{ for all } \theta < \bar{\theta} \text{ and } \frac{\partial b(\theta)}{\partial \theta} \Big|_{\theta = \bar{\theta}} = \lim_{\theta \to \bar{\theta}} \frac{b(\bar{\theta}) - b(\theta)}{\bar{\theta} - \theta} = \lim_{\theta \to \bar{\theta}} \frac{\partial b(\theta)}{\partial \theta} = \frac{1}{2} > 0. \text{ Thus,}$

(16)
$$\frac{\partial x^*(\theta)}{\partial \theta} = \frac{\partial x^*(\theta)}{\partial b(\theta)} \frac{\partial b(\theta)}{\partial \theta} = \frac{1}{2} \left\{ 1 - \frac{b(\theta) - 2r}{\sqrt{b(\theta)^2 - 4b(\theta)r}} \right\} \frac{\partial b(\theta)}{\partial \theta} < 0.$$

Next, by letting $u(\theta) = \frac{\bar{\theta}}{\bar{\theta}} \ge 1$ for each $\theta \in \Theta$, we obtain $\frac{\partial^2 b(\theta)}{\partial \theta^2} = -\frac{(u(\theta)+1)\log u(\theta)-2(u(\theta)-1)}{\theta(\log u(\theta))^3}$. The term $(u(\theta) + 1)\log u(\theta) - 2(u(\theta) - 1)$ increases with $u(\theta) \ge 1$, and it is zero when $u(\theta) = 1$, so $\frac{\partial^2 b(\theta)}{\partial \theta^2} < 0$ for all $\theta < \bar{\theta}$. Additionally, $\frac{\partial^2 b(\theta)}{\partial \theta^2}\Big|_{\theta = \bar{\theta}} = -\frac{1}{6\bar{\theta}} < 0$. Then, from (16), we obtain

$$\frac{\partial^2 x^*(\theta)}{\partial \theta^2} = \frac{\sqrt{b(\theta)^2 - 4b(\theta)r} - (b(\theta) - 2r)}{2\sqrt{b(\theta)^2 - 4b(\theta)r}} \times \frac{\partial^2 b(\theta)}{\partial \theta^2} + 2r^2 \left(b(\theta)^2 - 4b(\theta)r\right)^{-\frac{3}{2}} \left(\frac{\partial b(\theta)}{\partial \theta}\right)^2 > 0,$$

which completes the proof. \blacksquare

Proof of Propositions 2 and 3. Here, we prove propositions 2 and 3 together. Consider the entrepreneur's strategy (x, D) that satisfies the following conditions: For any history h_{t-1} , if $\hat{\Omega}_{h_{t-1}} = U_{[\hat{\theta},\bar{\theta}]}$ for some $\hat{\theta} \in \Theta$, then for all $\theta \in [\hat{\theta},\bar{\theta}]$, $(x(\theta, h_{t-1}), D(\theta, h_{t-1})) = \left(x^*(\hat{\theta}), \left[0, \frac{x^*(\hat{\theta})}{\theta}\right)\right)$, where $x^*(\cdot)$ is defined in (7). We call the entrepreneur's strategy the " S_e^* -strategy" if it satisfies the above conditions.¹

We first introduce and prove the following claim, which provides a useful intermediate step.

Claim 1 Suppose that entrepreneurs adopt the S_e^* -strategy and take any $h_{t-1} = (s, A^{t-1}) \in \mathbb{H}$. For each $\tau = s, \ldots, t$, let $A^{\tau-1}$ denote the truncated subsequence of A^{t-1} such that $A^{\tau-1} = \{\emptyset, \ldots, A_{\tau-1}\}$, and $h_{\tau-1} = (s, A^{\tau-1})$. If $\operatorname{supp} \hat{\Omega}_{h_{t-1}} \neq \emptyset$, then $\hat{\Omega}_{h_{\tau-1}} = U_{[\hat{\theta}_{\tau}, \bar{\theta}]}$ for each $\tau = s, \ldots, t$, where $\hat{\theta}_{\tau}$ is given by (8) in proposition 3.

Proof of claim 1. The statement holds if $\tau = s$ because the initial distribution of the entrepreneurs' productivity at the establishment period is $U_{[\underline{\theta},\overline{\theta}]}$. To prove the claim by induction, assume that the statement holds for $\tau = k \in \{s, \ldots, t-1\}$, namely, $\hat{\Omega}_{h_{k-1}} = U_{[\hat{\theta}_k,\overline{\theta}]}$, where $\hat{\theta}_k$ is derived by the rule in (8). Then, according to the S_e^* -strategy, all entrepreneurs with h_{k-1} offer $x^*(\hat{\theta}_k)$ and default if and only if $A_k\theta < x^*(\hat{\theta}_k)$. Considering the fact that $\operatorname{supp} \hat{\Omega}_{h_{t-1}} \neq \emptyset$, $\frac{x^*(\hat{\theta}_k)}{A_k} \leq \bar{\theta}$ holds; otherwise, all entrepreneurs with h_{k-1} would had defaulted in period k, resulting in $\operatorname{supp} \hat{\Omega}_{h_{t-1}} = \emptyset$. Thus, $\hat{\Omega}_{h_k} = U_{[\max\{\hat{\theta}_k, \frac{x^*(\hat{\theta}_k)}{A_k}\}, \bar{\theta}]} = U_{[\hat{\theta}_{k+1}, \bar{\theta}]}$. Therefore, the statement also holds for $\tau = k + 1$, which completes the proof of claim 1.

¹The S_e^* -strategy does not specify any rules for h_{t-1} if $\hat{\Omega}_{h_{t-1}}$ is not the form of $U_{[\hat{\theta},\bar{\theta}]}$ for some $\hat{\theta} \in \Theta$. Further, without a specification of the lender's belief system, it is not guaranteed at all that S_e^* -strategy solves for (3).

Claim 1 asserts that if an equilibrium exists in which entrepreneurs adopt the S_e^* -strategy, then such an equilibrium satisfies the statements of propositions 2 and 3. Moreover, if an equilibrium where entrepreneurs adopt the S_e^* -strategy exists, it must be the e^* equilibrium, since entrepreneurs offer the lower bound for the set of equilibrium offers, as described in lemma 4.²

We complete the proof by showing the existence of an equilibrium in which entrepreneurs adopt the S_e^* -strategy. Suppose that entrepreneurs adopt the S_e^* -strategy, and the lender's belief system μ satisfies that for any $h_{t-1} \in \mathbb{H}$ in any period t, $\mu(x^*(\hat{\theta}_t), h) = U_{[\hat{\theta}_t, \bar{\theta}]}$, where $\hat{\theta}_t$ is defined by (8) in proposition 3. Then, μ is consistent, according to claim 1. Also, the lender's expected payoff from accepting contract $x^*(\hat{\theta}_t)$ offered by an entrepreneur with h_{t-1} is

$$\int_{\Theta} \left(1 - \left| \left[0, \frac{x^*(\hat{\theta}_t)}{\theta} \right) \right| \right) x^*(\hat{\theta}_t) dU_{[\hat{\theta}_t, \bar{\theta}]} = x^*(\hat{\theta}_t) - \frac{x^*(\hat{\theta}_t)^2}{b(\hat{\theta}_t)} = r$$

Thus, the entrepreneur's strategy is incentive-compatible under μ .

Finally, we show that the S_e^* -strategy is optimal. Consider any $h_{t-1} = (s, A^{t-1}) \in \mathbb{H}$. First, by lemma 2, all entrepreneurs with h_{t-1} offer a contract. Furthermore, according to proposition 1 and the lender's belief system μ constructed in the aforementioned way, it is optimal for all entrepreneurs with h_{t-1} to offer $x^*(\hat{\theta}_t)$ in period t. We finish by showing that $\left[0, \frac{x^*(\hat{\theta}(h_{t-1}))}{\theta}\right)$ is the optimal default decision associated with contract $x^*(\hat{\theta}_t)$. By (5), it suffices to show that $x^*(\hat{\theta}_t) \leq \beta V_{t+1}(\theta, h_t)$, where $h_t = (s, \{A^{t-1}, A_t\})$. By the results of claim 1 and the

²Specifically, consider any $h_{t-1} = (s, A^{t-1}) \in \mathbb{H}$ such that $\operatorname{supp} \hat{\Omega}_{h_{t-1}} \neq \emptyset$. By claim 1, there exists $\hat{\theta} \in \Theta$ such that $\hat{\Omega}_{h_{t-1}} = U_{[\hat{\theta},\bar{\theta}]}$ if entrepreneurs adopt the S_e^* -strategy, and all entrepreneurs with h_{t-1} offer $x^*(\hat{\theta})$. Now, consider another equilibrium in which $\hat{\Omega}_{h'_{t'-1}} = U_{[\hat{\theta},\bar{\theta}]}$ for some $h'_{t'-1} = (s', A'^{t'-1}) \in \mathbb{H}$. According to lemma 4, the contract that entrepreneurs with $h'_{t'-1}$ offer must be no less than $x^*(\hat{\theta})$ in this equilibrium.

way of constructing μ above, entrepreneurs with any history in any equilibrium are capable of offering an incentive-compatible contract. Thus, $V_{t+1}(\theta, h_t) \ge \mathbb{E}_{A_{t+1}}[A_{t+1}\theta] = \frac{\theta}{2}$, because an entrepreneur can always choose to offer an incentive-compatible contract in period t + 1 and default on it, even if it may not be an optimal behavior. Next, given assumption 1, we have

$$\frac{\beta\underline{\theta}}{2} > \frac{b(\underline{\theta}) - \sqrt{b(\underline{\theta})^2 - 4b(\underline{\theta})r}}{\underline{\theta}} \times \frac{\underline{\theta}}{2} = x^*(\underline{\theta}).$$

Further, $x^*(\hat{\theta}_t) \leq x^*(\underline{\theta})$ by lemma 4. As a result, for any $\theta \in \Theta$, we have

$$x^*(\hat{\theta}_t) < \frac{\beta \underline{\theta}}{2} \le \frac{\beta \theta}{2} \le \beta V_{t+1}(\theta, h_t),$$

which completes the proof. \blacksquare

Proof of lemma 5. If suffices to show that $\int_{\Theta} \frac{x^*(\hat{\theta})}{\theta} dU_{[\hat{\theta},\bar{\theta}]}$ decreases with $\hat{\theta}$. Take any $\hat{\theta}^1, \hat{\theta}^2 \in \Theta$ such that $\hat{\theta}^1 < \hat{\theta}^2$. Then, because $x^*(\cdot)$ is a decreasing function, we obtain

$$\begin{split} \int_{\Theta} \frac{x^*(\theta^1)}{\theta} dU_{[\hat{\theta}^1,\bar{\theta}]} = & x^*(\hat{\theta}^1) \left(\log(\bar{\theta}) - \log(\hat{\theta}^1) \right) \\ > & x^*(\hat{\theta}^2) \left(\log(\bar{\theta}) - \log(\hat{\theta}^2) \right) = \int_{\Theta} \frac{x^*(\hat{\theta}^2)}{\theta} dU_{[\hat{\theta}^2,\bar{\theta}]} \end{split}$$

which completes the proof. \blacksquare

Proof of proposition 5. Consider any $A^{t-1} \in \mathbb{A}^{t-1}$ and $s^o, s^y \in \{0, \dots, t\}$ in the e^* equilibrium such that $\operatorname{supp} \hat{\Omega}_{h_{t-1}^o} \neq \emptyset$ and $\operatorname{supp} \hat{\Omega}_{h_{t-1}^y} \neq \emptyset$, where $h_{t-1}^o = (s^o, A^{t-1})$ and $h_{t-1}^y = (s^y, A^{t-1})$. For each $i = \{o, y\}$, let $\hat{\theta}_t^i = \min \operatorname{supp} \hat{\Omega}_{h_{t-1}^i}$ and $\hat{\theta}_{t+1}^i = \min \operatorname{supp} \hat{\Omega}_{h_t^i}$ whenever $\operatorname{supp} \hat{\Omega}_{h_t^i} \neq \emptyset$, where $h_t^i = (s, \{A^{t-1}, A_t\})$. Suppose that $\hat{\theta}_t^y < \hat{\theta}_t^o$, which implies $x^*(\hat{\theta}_t^y) > x^*(\hat{\theta}_t^o)$ by lemma 4. Note that all entrepreneurs with h_{t-1}^y leave the economy after defaulting in period t if $A_t \in \left[0, \frac{x^*(\hat{\theta}_t^y)}{\bar{\theta}}\right)$. Thus, in what follows, we focus on the case with $A_t \in \left[\frac{x^*(\hat{\theta}_t^y)}{\bar{\theta}}, 1\right]$, which implies $\sup \hat{\Omega}_{h_t^i} \neq \emptyset$ for both i = o, y. From proposition 3, we obtain:

(17)
$$\hat{\theta}_{t+1}^o = \max\left\{\frac{x^*(\hat{\theta}_t^o)}{A_t}, \hat{\theta}_t^o\right\} \text{ and } \hat{\theta}_{t+1}^y = \max\left\{\frac{x^*(\hat{\theta}_t^y)}{A_t}, \hat{\theta}_t^y\right\}.$$

We now consider three relevant cases.

First, if $A_t \in \left[\frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}_t^y}, 1\right]$, then $A_t > \frac{x^*(\hat{\theta}_t^o)}{\hat{\theta}_t^o}$ given that $\hat{\theta}_t^y < \hat{\theta}_t^o$ and $x^*(\hat{\theta}_t^y) > x^*(\hat{\theta}_t^o)$. Thus, we have $\hat{\theta}_{t+1}^o = \hat{\theta}_t^o$ and $\hat{\theta}_{t+1}^y = \hat{\theta}_t^y$ from (17), resulting in $\hat{\theta}_{t+1}^y < \hat{\theta}_{t+1}^o$. Second, if $A_t \in \left[\frac{x^*(\hat{\theta}_t^o)}{\hat{\theta}_t^o}, \frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}_t^y}\right]$, then we obtain $\hat{\theta}_{t+1}^o = \hat{\theta}_t^o$ and $\hat{\theta}_{t+1}^y = \frac{x^*(\hat{\theta}_t^y)}{A_t}$ from (17). In this case, we have $\hat{\theta}_{t+1}^y \leq \hat{\theta}_{t+1}^o$ if and only if $A_t \ge \frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}_t^o}$. Third, if $A_t \in \left[\frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}}, \frac{x^*(\hat{\theta}_t^o)}{\hat{\theta}_t^o}\right]$, then $A_t \in \left[\frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}_t^y}, \frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}_t^y}\right]$ is also implied, which leads to $\hat{\theta}_{t+1}^o = \frac{x^*(\hat{\theta}_t^o)}{A_t}$ and $\hat{\theta}_{t+1}^y = \frac{x^*(\hat{\theta}_t^y)}{A_t}$ from (17). In this case, we have $\hat{\theta}_{t+1}^y > \hat{\theta}_{t+1}^o$ because $x^*(\hat{\theta}_t^o) < x^*(\hat{\theta}_t^y)$.

By summarizing the above three cases, we conclude that $\hat{\theta}_{t+1}^y \leq \hat{\theta}_{t+1}^o$ for all $A_t \in \left[\frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}_t^o}, 1\right]$ and $\hat{\theta}_{t+1}^y > \hat{\theta}_{t+1}^o$ for all $A_t \in \left[\frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}}, \frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}_t^o}\right]$. Then, using the fact that $\lambda(h_t^o) \leq \lambda(h_t^y)$ if and only if $\hat{\theta}_{t+1}^y \leq \hat{\theta}_{t+1}^o$ by lemma 5 and letting $A_L = \frac{x^*(\hat{\theta}_t^y)}{\overline{\theta}}$ and $A_H = \frac{x^*(\hat{\theta}_t^y)}{\hat{\theta}_t^o}$, we obtain the results of proposition 5.

Proof of proposition 6. Consider any $A^{t-1} \in \mathbb{A}^{t-1}$ and $s^o, s^y \in \{0, \dots, t\}$ in the e^* equilibrium such that $\operatorname{supp} \hat{\Omega}_{h_{t-1}^o} \neq \emptyset$ and $\operatorname{supp} \hat{\Omega}_{h_{t-1}^y} \neq \emptyset$, where $h_{t-1}^o = (s^o, A^{t-1})$ and $h_{t-1}^y = (s^y, A^{t-1})$. According to lemma 3, there exist $\theta_o, \theta_y \in \Theta$ such that $\hat{\Omega}_{h_{t-1}^i} = U_{[\theta_i,\bar{\theta}]}$ for $i = \{o, y\}$. Assume that $\lambda(h_{t-1}^o) < \lambda(h_{t-1}^y)$, which implies $\theta_o > \theta_y$ by lemma 5. Then, it suffices to show that

$$\mathbb{E}_{A_t}\left[\theta'_o - \theta'_y \mid \operatorname{supp} \hat{\Omega}_{h^o_t} \neq \emptyset \text{ and } \operatorname{supp} \hat{\Omega}_{h^y_t} \neq \emptyset\right] > 0,$$

where $h_t^i = (s^i, \{A^{t-1}, A_t\})$ and $\theta'_i = \min \operatorname{supp} \hat{\Omega}_{h_t^i}$ for each $i = \{o, y\}$ whenever $\operatorname{supp} \hat{\Omega}_{h_t^i} \neq \emptyset$.

By proposition 2, for each $i \in \{o, y\}$, an entrepreneur with h_{t-1}^i and $\theta \in \operatorname{supp} \hat{\Omega}_{h_{t-1}^i}$ plays $\left(x^*(\theta_i), \left[0, \frac{x^*(\theta_i)}{\theta}\right)\right)$, so $\theta'_i = \max\left\{\frac{x^*(\theta_i)}{A_t}, \theta_o\right\}$ if $\operatorname{supp} \hat{\Omega}_{h_t^i} \neq \emptyset$. Consequently, $\operatorname{supp} \hat{\Omega}_{h_t^i} \neq \emptyset$ for both $i \in \{o, y\}$ if and only if $A_t \ge \max\left\{\frac{x^*(\theta_o)}{\theta}, \frac{x^*(\theta_y)}{\theta}\right\} = \frac{x^*(\theta_y)}{\theta}$, given the assumption that

 $\theta_o > \theta_y$. Therefore, the proof is completed by showing that

(18)
$$\Xi \equiv \left(1 - \frac{x^*(\theta_y)}{\bar{\theta}}\right) E_{A_t} \left[\theta'_o - \theta'_y \mid A_t \ge \frac{x^*(\theta_y)}{\bar{\theta}}\right] > 0$$

Let θ^* be such that $\frac{x^*(\theta_y)}{\bar{\theta}} = \frac{x^*(\theta^*)}{\theta^*}$, that is, $\frac{x^*(\theta^*)}{\theta^*} \frac{\bar{\theta}}{x^*(\theta_y)} = 1$. Here, $\theta^* \in (\theta_y, \bar{\theta})$ is uniquely determined because $\frac{x^*(\bar{\theta})}{\bar{\theta}} \frac{\bar{\theta}}{x^*(\theta_y)} = \frac{x^*(\bar{\theta})}{x^*(\theta_y)} < 1$, $\frac{x^*(\theta_y)}{\theta_y} \frac{\bar{\theta}}{x^*(\theta_y)} = \frac{\bar{\theta}}{\theta_y} > 1$, and $\frac{x^*(\theta)}{\theta} \frac{\bar{\theta}}{x^*(\theta_y)}$ decreases with θ . Consequently, $\frac{x^*(\theta_y)}{\bar{\theta}} \leq \frac{x^*(\theta_o)}{\theta_o}$ if and only if $\theta_o \leq \theta^*$.

First, consider the case where $\frac{x^*(\theta_y)}{\bar{\theta}} \leq \frac{x^*(\theta_o)}{\theta_o}$, i.e., $\theta_o \leq \theta^*$. From (18), we obtain

$$\Xi = \int_{\frac{x^*(\theta_o)}{\theta_o}}^{\frac{x^*(\theta_o)}{\theta_o}} \frac{x^*(\theta_o)}{A_t} dA_t + \theta_o \left(1 - \frac{x^*(\theta_o)}{\theta_o}\right) - \int_{\frac{x^*(\theta_y)}{\overline{\theta}}}^{\frac{x^*(\theta_y)}{\theta_y}} \frac{x^*(\theta_y)}{A_t} dA_t - \theta_y \left(1 - \frac{x^*(\theta_y)}{\theta_y}\right)$$

$$= \theta_o - \theta_y + x^*(\theta_y) - x^*(\theta_o) + x^*(\theta_o) \log\left(\frac{x^*(\theta_o)\overline{\theta}}{\theta_o x^*(\theta_y)}\right) - x^*(\theta_y) \log\frac{\overline{\theta}}{\theta_y}.$$

Now, define a function $F(\theta)$ for each $\theta \in [\theta_y, \theta^*]$ as follows:

(1

(20)
$$F(\theta) = (\theta - \theta_y) + (x^*(\theta_y) - x^*(\theta)) + x^*(\theta) \log\left(\frac{x^*(\theta)}{\theta}\frac{\bar{\theta}}{x^*(\theta_y)}\right) - x^*(\theta_y) \log\frac{\bar{\theta}}{\theta_y}.$$

Note, from (19) and (20), that $F(\theta_o) = \Xi$, so it suffices to show $F(\theta_o) > 0$. Taking the first and

second derivatives of $F(\theta)$ with respect to θ , we have:

(21)
$$F'(\theta) = 1 + \frac{\partial x^*(\theta)}{\partial \theta} \log\left(\frac{x^*(\theta)}{\theta} \frac{\bar{\theta}}{x^*(\theta_y)}\right) - \frac{x^*(\theta)}{\theta}$$

(22)
$$F''(\theta) = \frac{\partial^2 x^*(\theta)}{\partial \theta^2} \log\left(\frac{x^*(\theta)}{\theta} \frac{\bar{\theta}}{x^*(\theta_y)}\right) + \left(\frac{\partial x^*(\theta)}{\partial \theta}\right)^2 \times \frac{1}{x^*(\theta)} - \frac{\partial x^*(\theta)}{\partial \theta} \times \frac{2}{\theta} + \frac{x^*(\theta)}{\theta^2}.$$

From lemma 4, we know that $\frac{\partial x^*(\theta)}{\partial \theta} < 0$ and $\frac{\partial^2 x^*(\theta)}{\partial \theta^2} > 0$. Moreover, since $\frac{x^*(\theta)}{\theta} \frac{\bar{\theta}}{x^*(\theta_y)} \ge 1$ for all $\theta \in [\theta_y, \theta^*]$, we can conclude, from (22), that $F''(\theta) > 0$ for all $\theta \in [\theta_y, \theta^*]$. Consequently, $F'(\theta_o) > F'(\theta_y)$. Since we have $F(\theta_y) = 0$ according to equation (20), if $F'(\theta_y) > 0$, it follows that $\Xi = F(\theta_o) > 0$. Substituting $\theta = \theta_y$ into equation (21), we obtain

$$F'(\theta_y) = 1 + \left. \frac{\partial x^*(\theta)}{\partial \theta} \right|_{\theta = \theta_y} \log\left(\frac{\bar{\theta}}{\theta_y}\right) - \frac{x^*(\theta_y)}{\theta_y}$$

Using the facts that $\frac{\partial}{\partial \theta_y} \left[\frac{x^*(\theta_y)}{\theta_y} \right] < 0, \ b(\underline{\theta}) = \frac{\overline{\theta} - \underline{\theta}}{\log(\frac{\overline{\theta}}{\underline{\theta}})}$, and

$$\frac{\partial}{\partial \theta_y} \left[\frac{\partial x^*(\theta)}{\partial \theta} \bigg|_{\theta = \theta_y} \log\left(\frac{\bar{\theta}}{\theta_y}\right) \right] = \frac{\partial^2 x^*(\theta)}{\partial \theta^2} \bigg|_{\theta = \theta_y} \log\left(\frac{\bar{\theta}}{\theta_y}\right) - \frac{\partial x^*(\theta)}{\partial \theta} \bigg|_{\theta = \theta_y} \frac{1}{\theta_y} > 0,$$

we obtain

$$F'(\theta_y) \ge 1 + \left. \frac{\partial x^*(\theta)}{\partial \theta} \right|_{\theta = \underline{\theta}} \log\left(\frac{\overline{\theta}}{\underline{\theta}}\right) - \frac{x^*(\underline{\theta})}{\underline{\theta}} = 1 - \frac{1}{2\underline{\theta}}G(b(\underline{\theta})),$$

where $G:(4r,\infty)\to\mathbb{R}$ is a function defined as:

$$G(b) = \left(\frac{b-2r}{\sqrt{b^2 - 4rb}} - 1\right)(b-\underline{\theta}) + b - \sqrt{b^2 - 4rb}$$

Note that G'(b) < 0 for all b > 4r. Therefore, we can deduce that

$$F'(\theta_y) \ge 1 - \frac{1}{2\underline{\theta}}G(b(\underline{\theta})) > 1 - \frac{1}{2\underline{\theta}}G(\underline{\theta}) = 1 - \frac{1}{2\underline{\theta}}\left(\underline{\theta} - \sqrt{\underline{\theta}^2 - 4r\underline{\theta}}\right) > 0,$$

which implies $F(\theta_o) > 0$. This completes the proof for the case when $\theta_o \in (\theta_y, \theta^*]$.

Second, let us suppose that $\frac{x^*(\theta_y)}{\bar{\theta}} \ge \frac{x^*(\theta_o)}{\theta_o}$, i.e., $\theta_o \ge \theta^*$. In this case, we have:

$$\Xi = \theta_o \left(1 - \frac{x^*(\theta_y)}{\bar{\theta}} \right) - \int_{\frac{x^*(\theta_y)}{\bar{\theta}}}^{\frac{x^*(\theta_y)}{\theta_y}} \frac{x^*(\theta_y)}{A_t} dA_t - \theta_y \left(1 - \frac{x^*(\theta_y)}{\theta_y} \right)$$
$$= \theta_o - \theta_y + x^*(\theta_y) \left[1 - \frac{\theta_o}{\bar{\theta}} - \log \frac{\bar{\theta}}{\theta_y} \right].$$

Since Ξ increases with θ_o , and we know that $\Xi > 0$ when $\theta_o = \theta^*$ (as shown in the first case), it follows that $\Xi > 0$ when $\theta_o > \theta^*$.

Proof of proposition 7. First, consider the case where $\tilde{A} \in \left(0, \frac{x^*(\theta)}{\bar{\theta}}\right] \cup \left[\frac{x^*(\theta)}{\underline{\theta}}, 1\right]$. Suppose that $\Omega_t = U_{[\underline{\theta},\bar{\theta}]}$ in a given period $t \ge 0$. Notice that Ω_t is the average of $\hat{\Omega}_{h_{t-1}}$ weighted by the mass of entrepreneurs with each history $h_{t-1} \in \mathbb{H}_{t-1}$. Furthermore, according to lemma 3, for all $h_{t-1} \in \mathbb{H}_{t-1}$ such that $\sup \hat{\Omega}_{h_{t-1}} \neq \emptyset$, there must exist $\theta' \in \Theta$ such that $\hat{\Omega}_{h_{t-1}} = U_{[\theta',\bar{\theta}]}$. Therefore, $\Omega_t = U_{[\underline{\theta},\bar{\theta}]}$ implies $\hat{\Omega}_{h_{t-1}} = U_{[\underline{\theta},\bar{\theta}]}$ for all such h_{t-1} , and thus, all entrepreneurs in period t play $\left(x^*(\underline{\theta}), \left[0, \frac{x^*(\underline{\theta})}{\theta}\right)\right)$.

Given that $\Omega_t = U_{[\underline{\theta},\overline{\theta}]}$, if $\tilde{A} \in \left(0, \frac{x^*(\underline{\theta})}{\overline{\theta}}\right)$, all entrepreneurs default in period t. On the other hand, if $\tilde{A} \in \left[\frac{x^*(\underline{\theta})}{\underline{\theta}}, 1\right]$, every entrepreneur survives. In either case, $\Omega_{t+1} = U_{[\underline{\theta},\overline{\theta}]}$. If $\tilde{A} = \frac{x^*(\underline{\theta})}{\overline{\theta}}$, then an entrepreneur survives if and only if $\theta = \overline{\theta}$. Consequently, the mass of defaulted entrepreneurs is 1, and thus, $\Omega_{t+1} = U_{[\underline{\theta},\overline{\theta}]}$. Therefore, for any $\tilde{A} \in \left(0, \frac{x^*(\underline{\theta})}{\overline{\theta}}\right] \cup \left[\frac{x^*(\underline{\theta})}{\underline{\theta}}, 1\right]$,

 $\Omega_t = U_{[\underline{\theta},\overline{\theta}]}$ implies $\Omega_{t+1} = U_{[\underline{\theta},\overline{\theta}]}$. Finally, since $\Omega_0 = U_{[\underline{\theta},\overline{\theta}]}$, $\Omega_t = U_{[\underline{\theta},\overline{\theta}]}$ for all $t \ge 0$ by induction. Therefore, the aggregate production in each period t is given as $\hat{Y}(\tilde{A}^t) = \frac{1}{2}\tilde{A}(\underline{\theta} + \overline{\theta})$.

Now suppose that $\tilde{A} \in \left(\frac{x^*(\theta)}{\bar{\theta}}, \frac{x^*(\theta)}{\bar{\theta}}\right)$. Consider any $h_{t-1} = (s, \tilde{A}^{t-1}) \in \mathbb{H}$ such that $\hat{\Omega}_{h_{t-1}} = U_{[\underline{\theta},\overline{\theta}]}$. Let $M \in (0,1]$ be the mass of entrepreneurs with h_{t-1} . According to proposition 2, all entrepreneurs with h_{t-1} offer $x^*(\underline{\theta})$, and those with entrepreneurial productivity smaller than $\frac{x^*(\underline{\theta})}{\overline{A}}$ default. Therefore, the mass of survivors with h_{t-1} is $\frac{\overline{\theta} - \frac{x^*(\underline{\theta})}{\overline{A}}}{\overline{\theta} - \theta}M$. Their entrepreneurial productivity is uniformly distributed over $\left[\frac{x^*(\underline{\theta})}{\overline{A}}, \overline{\theta}\right]$, and they offer $x^*\left(\frac{x^*(\underline{\theta})}{\overline{A}}\right)$ in the next period. By lemma 4, we know that $x^*\left(\frac{x^*(\theta)}{\tilde{A}}\right) < x^*(\underline{\theta})$, which implies $\tilde{A}\theta > x^*\left(\frac{x^*(\theta)}{\tilde{A}}\right)$ for all $\theta \in \left[\frac{x^*(\theta)}{\tilde{A}}, \tilde{\theta}\right]$. Therefore, all the survivors with h_{t-1} continue to survive in the next period and remain in the economy for all succeeding periods without defaulting by offering $x^*\left(\frac{x^*(\underline{\theta})}{\tilde{A}}\right)$. The mass of defaulters with h_{t-1} is $\frac{\frac{x^*(\underline{\theta})}{\underline{A}} - \underline{\theta}}{\overline{\theta} - \theta} M$, and they are replaced with new entrepreneurs in the next period. Let $\Delta \equiv \frac{\frac{x^*(\underline{\theta})}{\overline{A}} - \underline{\theta}}{\overline{\theta} - \theta}$. Note that $\Delta \in (0, 1)$, since $\frac{x^*(\underline{\theta})}{\overline{A}} \in (\underline{\theta}, \overline{\theta})$. Additionally, the economy starts with a unit mass of entrepreneurs in period 0 and $\Omega_0 = U_{[\underline{\theta},\overline{\theta}]}$. Then, by induction, in period t > 0, the economy consists of Δ^t mass of entrepreneurs whose entrepreneurial productivities are uniformly distributed over $\left[\underline{\theta}, \overline{\theta}\right]$ and $1 - \Delta^t$ mass of entrepreneurs whose entrepreneurial productivities are uniformly distributed over $\left[\frac{x^*(\underline{\theta})}{\overline{A}}, \overline{\theta}\right]$. Thus, the cdf $\hat{\Omega}_{At-1}$ is given by:

(23)
$$\hat{\Omega}_{\tilde{A}^{t-1}} = \begin{cases} \Delta^t \frac{\theta - \theta}{\bar{\theta} - \underline{\theta}} & \text{if } \theta \in \left[\underline{\theta}, \frac{x^*(\underline{\theta})}{\tilde{A}}\right) \\ \Delta^t \frac{\theta - \theta}{\bar{\theta} - \underline{\theta}} + (1 - \Delta^t) \frac{\theta \tilde{A} - x^*(\underline{\theta})}{\bar{\theta} \tilde{A} - x^*(\underline{\theta})} & \text{if } \theta \in \left[\frac{x^*(\underline{\theta})}{\tilde{A}}, \bar{\theta}\right]. \end{cases}$$

Substituting (23) into (10), we obtain the aggregate production as

 $\hat{Y}(\tilde{A}^t) = \frac{1}{2}\Delta^t \tilde{A}(\underline{\theta} + \overline{\theta}) + \frac{1}{2}(1 - \Delta^t) \left(x^*(\underline{\theta}) + \tilde{A}\overline{\theta}\right), \text{ which completes the proof.} \blacksquare$

Proof of proposition 8. First, suppose that $\tilde{A} \in \left[\frac{x^*(\underline{\theta})}{\underline{\theta}}, 1\right]$. According to proposition 7-1, we have

$$\begin{split} \hat{Y}(\hat{A}^{\eta-1}) &= \frac{\tilde{A}(\underline{\theta}+\bar{\theta})}{2}, \, \Omega_{\eta} = U_{[\underline{\theta},\bar{\theta}]}, \, \text{and every entrepreneur offers } x^{*}(\underline{\theta}) \text{ in period } \eta. \text{ Since} \\ A'\underline{\theta} &> \tilde{A}\underline{\theta} \geq x^{*}(\underline{\theta}), \, \text{all entrepreneurs in period } \eta \text{ make the repayment. Thus, we have} \\ \Omega_{\eta+1} &= U_{[\underline{\theta},\bar{\theta}]}. \text{ Therefore, for all } t \geq \eta+1, \, \text{we have} \, \Omega_{t} = U_{[\underline{\theta},\bar{\theta}]} \text{ and } \hat{Y}(\hat{A}^{t}) = \frac{\tilde{A}(\underline{\theta}+\bar{\theta})}{2} = \hat{Y}(\hat{A}^{\eta-1}). \end{split}$$

Second, consider the case where $\tilde{A} \in \left(\frac{x^*(\underline{\theta})}{\overline{\theta}}, \frac{x^*(\underline{\theta})}{\underline{\theta}}\right)$. According to proposition 7-2, we have $\hat{Y}(\hat{A}^{\eta-1}) = \frac{x^*(\underline{\theta}) + \tilde{A}\overline{\theta}}{2}$, $\Omega_{\eta} = U_{\left[\frac{x^*(\underline{\theta})}{\overline{A}}, \overline{\theta}\right]}$, and every entrepreneur offers $x^*\left(\frac{x^*(\underline{\theta})}{\overline{A}}\right)$ in period η . Note that $\frac{x^*(\underline{\theta})}{\overline{A}} > \underline{\theta}$ because $\tilde{A} < \frac{x^*(\underline{\theta})}{\underline{\theta}}$. Thus, we have $A' \frac{x^*(\underline{\theta})}{\overline{A}} > x^*(\underline{\theta}) > x^*\left(\frac{x^*(\underline{\theta})}{\overline{A}}\right)$, so all entrepreneurs in period η make the repayment. Therefore, $\Omega_{\eta+1} = U_{\left[\frac{x^*(\underline{\theta})}{\overline{A}}, \overline{\theta}\right]}$. As a result, for all $t \ge \eta + 1$, we have $\Omega_t = U_{\left[\frac{x^*(\underline{\theta})}{\overline{A}}, \overline{\theta}\right]}$ and $\hat{Y}(\hat{A}^t) = \frac{x^*(\underline{\theta}) + \tilde{A}\overline{\theta}}{2} = \hat{Y}(\hat{A}^{\eta-1})$.

Third, consider the case where $\tilde{A} \in \left(0, \frac{x^*(\theta)}{\tilde{\theta}}\right]$ and $A' \in \left(\tilde{A}, \frac{x^*(\theta)}{\tilde{\theta}}\right] \cup \left[\frac{x^*(\theta)}{\tilde{\theta}}, 1\right]$. According to proposition 7-1, we have $\hat{Y}(\hat{A}^{\eta-1}) = \frac{\tilde{A}(\tilde{\theta}+\theta)}{2}$, $\Omega_{\eta} = U_{[\underline{\theta},\bar{\theta}]}$, and all entrepreneurs offer $x^*(\underline{\theta})$ in period η . If $A' \in \left(\tilde{A}, \frac{x^*(\theta)}{\tilde{\theta}}\right]$, then all entrepreneurs whose entrepreneurial productivity below $\bar{\theta}$ default because $A'\theta < \frac{x^*(\theta)}{\tilde{\theta}}\bar{\theta} = x^*(\underline{\theta})$ for all $\theta < \bar{\theta}$, which implies $\Omega_{\eta+1} = U_{[\underline{\theta},\bar{\theta}]}$. On the other hand, if $A' \in \left[\frac{x^*(\theta)}{\underline{\theta}}, 1\right]$, then all entrepreneurs make the repayment in period η because $A'\underline{\theta} \geq \frac{x^*(\underline{\theta})}{\underline{\theta}}\underline{\theta} = x^*(\underline{\theta})$, and thus, $\Omega_{\eta+1} = U_{[\underline{\theta},\bar{\theta}]}$. In both cases, the economy returns to the pre-shock level from period $\eta + 1$. Therefore, for all $t \geq \eta + 1$, we have $\Omega_t = U_{[\underline{\theta},\bar{\theta}]}$ and $\hat{Y}(\hat{A}^t) = \frac{\tilde{A}(\underline{\theta}+\overline{\theta})}{2} = \hat{Y}(\hat{A}^{\eta-1})$.

From now on, consider the case where $\tilde{A} \in \left(0, \frac{x^*(\theta)}{\bar{\theta}}\right]$ and $A' \in \left(\frac{x^*(\theta)}{\bar{\theta}}, \frac{x^*(\theta)}{\bar{\theta}}\right)$. Define $\theta'(A') = \frac{x^*(\theta)}{A'} \in (\underline{\theta}, \overline{\theta})$. Given that $\tilde{A} \in \left(0, \frac{x^*(\theta)}{\bar{\theta}}\right]$, all entrepreneurs with entrepreneurial productivity below $\bar{\theta}$ who establish their companies in period $\eta + 1$ or later will offer $x^*(\underline{\theta})$ and eventually default. Consequently, in periods $t \ge \eta + 1$, the economy consists of at most two

groups of entrepreneurs: 1) Those who have survived since period η (existing entrepreneurs), and 2) those who established their companies in period t (new entrepreneurs).³

In period η , all entrepreneurs offer $x^*(\underline{\theta})$. Among them, those with entrepreneurial productivity $\theta \ge \theta'(A')$ repay the debt, while the rest default. Consequently, in period $\eta + 1$, there are $\frac{\overline{\theta} - \theta'(A')}{\overline{\theta} - \underline{\theta}}$ mass of the existing entrepreneurs and $\frac{\theta'(A') - \underline{\theta}}{\overline{\theta} - \underline{\theta}}$ mass of new entrepreneurs. The cdf of the entrepreneurial productivity for the existing entrepreneurs is $U_{[\theta'(A'),\overline{\theta}]}$, and that of the newly established entrepreneurs is $U_{[\underline{\theta},\overline{\theta}]}$, respectively.

Note from proposition 7 that $\hat{Y}(\hat{A}^{\eta-1}) = \frac{\tilde{A}(\underline{\theta}+\overline{\theta})}{2}$. Then, given the common productivity in period $\eta + 1$ as \tilde{A} , we obtain

$$\hat{Y}(\hat{A}^{\eta+1}) = \frac{\bar{\theta} - \theta'(A')}{\bar{\theta} - \underline{\theta}} \times \frac{\tilde{A}(\theta'(A') + \bar{\theta})}{2} + \frac{\theta'(A') - \underline{\theta}}{\bar{\theta} - \underline{\theta}} \times \hat{Y}(\hat{A}^{\eta-1})$$
$$= \hat{Y}(\hat{A}^{\eta-1}) + \frac{\bar{\theta} - \theta'(A')}{\bar{\theta} - \underline{\theta}} \times \frac{\tilde{A}(\theta'(A') - \underline{\theta})}{2}.$$

In period $\eta + 1$, the existing entrepreneurs offer $x^*(\theta'(A'))$, and those with entrepreneurial productivity $\theta \ge \frac{x^*(\theta'(A'))}{\tilde{A}}$ repay the debt while the others default. This leads to three relevant cases.

First, if $\tilde{A} \geq \frac{x^*(\theta'(A'))}{\theta'(A')}$, all the existing entrepreneurs make the repayment in period $\eta + 1$ and remain in the economy for all succeeding periods by offering $x^*(\theta'(A'))$. Thus,

 $\hat{Y}(\hat{A}^t) = \hat{Y}(\hat{A}^{\eta+1}) \text{ for all } t \geq \eta+2.$

Second, if $\frac{x^*(\theta'(A'))}{\bar{\theta}} > \tilde{A}$, then all the existing entrepreneurs default in period $\eta + 1$. As a

³We can neglect entrepreneurs who establish their companies in period $\eta + 1$ or later whose entrepreneurial productivity is $\overline{\theta}$, as they constitute a negligible portion of the overall representation.

result, the economy starts with all new entrepreneurs in the morning in period $\eta + 2$, and thus

$$\hat{Y}(\hat{A}^t) = \frac{\tilde{A}(\bar{\theta} + \underline{\theta})}{2} = \hat{Y}(\hat{A}^{\eta - 1}) \text{ for all } t \ge \eta + 2.$$

Finally, if $\frac{x^*(\theta'(A'))}{\bar{\theta}} \leq \tilde{A} < \frac{x^*(\theta'(A'))}{\theta'(A')}$, then the existing entrepreneurs with entrepreneurial productivity above $\frac{x^*(\theta'(A'))}{\bar{A}}$ make the repayment in period $\eta + 1$, while those with entrepreneurial productivity below $\frac{x^*(\theta'(A'))}{\bar{A}}$ default. Consequently, in period $\eta + 2$, there are $\frac{\bar{\theta} - \frac{x^*(\theta'(A'))}{\bar{A}}}{\bar{\theta} - \underline{\theta}}$ mass of the existing entrepreneurs and $\frac{\frac{x^*(\theta'(A'))}{\bar{A} - \underline{\theta}}}{\bar{\theta} - \underline{\theta}}$ mass of newly established entrepreneurs in period $\eta + 2$, and the cdf of the entrepreneurial productivities for these two groups are given by $U_{\left[\frac{x^*(\theta'(A'))}{\bar{A}}, \overline{\theta}\right]}$ and $U_{[\underline{\theta}, \overline{\theta}]}$, respectively. Thus, we obtain

$$\hat{Y}(\hat{A}^{\eta+2}) = \frac{\bar{\theta} - \frac{x^*(\theta'(A'))}{\bar{A}}}{\bar{\theta} - \underline{\theta}} \times \frac{\tilde{A}\left(\frac{x^*(\theta'(A'))}{\bar{A}} + \overline{\theta}\right)}{2} + \frac{\frac{x^*(\theta'(A'))}{\bar{A}} - \underline{\theta}}{\bar{\theta} - \underline{\theta}} \times \frac{\tilde{A}(\underline{\theta} + \overline{\theta})}{2}$$
$$= \frac{\tilde{A}(\underline{\theta} + \overline{\theta})}{2} + \frac{\tilde{A}\overline{\theta} - x^*(\theta'(A'))}{\tilde{A}(\overline{\theta} - \underline{\theta})} \times \frac{x^*(\theta'(A')) - \tilde{A}\underline{\theta}}{2}.$$

Furthermore, note that the existing entrepreneurs will offer $x^*\left(\frac{x^*(\theta'(A'))}{\tilde{A}}\right) < x^*(\theta'(A'))$ and repay the debt without defaults for all periods $t \ge \eta + 2$. Therefore, $\hat{Y}(\bar{A}^t) = \hat{Y}(\hat{A}^{\eta+2})$ for all $t > \eta + 2$.

Note that $\frac{x^*(\theta'(A'))}{\theta'(A')}$ increases in A' because $\theta'(A')$ decreases in A' and $x^*(\cdot)$ is a decreasing function. Moreover, $\lim_{A'\to 0} \frac{x^*(\theta'(A'))}{\theta'(A')} = 0$, $\lim_{A'\to \frac{x^*(\theta)}{\overline{\theta}}} \frac{x^*(\theta'(A'))}{\theta'(A')} = \frac{x^*(\overline{\theta})}{\overline{\theta}}$, and $\lim_{A'\to \frac{x^*(\theta)}{\overline{\theta}}} \frac{x^*(\theta'(A'))}{\theta'(A')} = \frac{x^*(\theta)}{\overline{\theta}} > \frac{x^*(\theta)}{\overline{\theta}}$. Thus, there exists B^* such that $\tilde{A} = \frac{x^*(\theta'(B^*))}{\theta'(B^*)}$. Here, if $\tilde{A} \in \left(\frac{x^*(\overline{\theta})}{\overline{\theta}}, \frac{x^*(\theta)}{\overline{\theta}}\right)$, while B^* is weakly below $\frac{x^*(\theta)}{\overline{\theta}}$ when $\tilde{A} \in \left(0, \frac{x^*(\overline{\theta})}{\overline{\theta}}\right]$. By defining $A^* = \max\left\{\frac{x^*(\overline{\theta})}{\overline{\theta}}, B^*\right\} \in \left[\frac{x^*(\theta)}{\overline{\theta}}, \frac{x^*(\theta)}{\overline{\theta}}\right)$, we obtain that $\tilde{A} \ge \frac{x^*(\theta'(A'))}{\theta'(A')}$ if and only if $A' \le A^*$.

By combining the above cases using the definition of A^* , we obtain the results of proposition 8.

Proof of proposition 9. First, consider the case where $\tilde{A} \in \left[\frac{x^*(\underline{\theta})}{\underline{\theta}}, 1\right]$ and $A' \in \left(\frac{x^*(\underline{\theta})}{\overline{\theta}}, \frac{x^*(\underline{\theta})}{\underline{\theta}}\right)$.

According to the proof of proposition 7, the population of entrepreneurs consists of two parts: $\frac{\bar{\theta} - \frac{x^*(\underline{\theta})}{A'}}{\bar{\theta} - \underline{\theta}} \text{ mass of survivors whose entrepreneurial productivity is uniformly distributed over} \left[\frac{x^*(\underline{\theta})}{A'}, \bar{\theta}\right], \text{ and } \frac{\frac{x^*(\underline{\theta})}{A'} - \underline{\theta}}{\bar{\theta} - \underline{\theta}} \text{ mass of new entrepreneurs in period } \eta + 1. \text{ Since } \tilde{A} \ge \frac{x^*(\underline{\theta})}{\underline{\theta}}, \text{ all}$

entrepreneurs make repayments and remain in the economy for all periods $t \ge \eta + 1.^4$ Thus,

$$\hat{Y}(\hat{A}^t) = \frac{\frac{x^*(\underline{\theta})}{A'} - \underline{\theta}}{\overline{\theta} - \underline{\theta}} \times \frac{\tilde{A}(\underline{\theta} + \overline{\theta})}{2} + \frac{\frac{x^*(\underline{\theta})}{A'} - \underline{\theta}}{\overline{\theta} - \underline{\theta}} \times \frac{\tilde{A}\left(\frac{x^*(\underline{\theta})}{A'} + \overline{\theta}\right)}{2}$$

for all $t \ge \eta + 1$. By letting $\Delta' = \frac{\frac{x^*(\theta)}{A'} - \theta}{\overline{\theta} - \underline{\theta}}$ and rearranging the above analysis, we obtain the first part of proposition 9.

Next, consider the case where $\tilde{A} \in \left(\frac{x^*(\theta)}{\tilde{\theta}}, \frac{x^*(\theta)}{\tilde{\theta}}\right)$ and $A' \in \left(0, \frac{x^*(\tilde{\theta})}{\tilde{\theta}}\right]$. By proposition 7-2, $\Omega_{\eta} = U_{[\tilde{\theta}, \tilde{\theta}]}$, where $\tilde{\theta} \equiv \frac{x^*(\theta)}{\tilde{A}}$, and every entrepreneur offers $x^*(\tilde{\theta})$ in period η . Since $A'\bar{\theta} \leq x^*(\tilde{\theta})$, all entrepreneurs with entrepreneurial productivity below $\bar{\theta}$ default in period η , so $\Omega_{\eta+1} = U_{[\theta, \tilde{\theta}]}$. Then, by proposition 7-2, $\hat{Y}(\tilde{A}^t) = \Delta^{t-\eta-1}\frac{\tilde{A}(\theta+\tilde{\theta})}{2} + [1 - \Delta^{t-\eta-1}]\frac{x^*(\theta)+\tilde{A}\tilde{\theta}}{2}$ for $t \geq \eta + 1$, where $\Delta = \frac{\frac{x^*(\theta)}{\tilde{A}-\theta}}{\tilde{\theta}-\theta}$. Now, consider the case where $\tilde{A} \in \left(\frac{x^*(\theta)}{\tilde{\theta}}, \frac{x^*(\theta)}{\tilde{\theta}}\right)$ and $A' \in \left(\frac{x^*(\tilde{\theta})}{\tilde{\theta}}, \frac{x^*(\tilde{\theta})}{\tilde{\theta}-\tilde{\theta}}\right)$. In this case, entrepreneurs with entrepreneurial productivity in $\left[\tilde{\theta}, \frac{x^*(\tilde{\theta})}{A'}\right]$ default and are replaced with new entrepreneurs in period $\eta + 1$, and the other entrepreneurs with entrepreneurial productivity in $\left[\frac{x^*(\tilde{\theta})}{\tilde{\theta}-\tilde{\theta}}, \tilde{\theta}\right]$ survive. The mass of defaulted and surviving entrepreneurs are given as $\frac{x^*(\tilde{\theta})}{\tilde{\theta}-\tilde{\theta}}$ and $\frac{\tilde{\theta}-\frac{x^*(\tilde{\theta})}{\tilde{\theta}-\tilde{\theta}}}{\tilde{\theta}-\tilde{\theta}}$, respectively. Thus,

$$\hat{Y}(\hat{A}^{t}) = \frac{\frac{x^{*}(\tilde{\theta})}{A'} - \tilde{\theta}}{\bar{\theta} - \tilde{\theta}} \left[\Delta^{t-\eta-1} \frac{\tilde{A}(\underline{\theta} + \bar{\theta})}{2} + [1 - \Delta^{t-\eta-1}] \frac{x^{*}(\underline{\theta}) + \tilde{A}\bar{\theta}}{2} \right] + \frac{\bar{\theta} - \frac{x^{*}(\tilde{\theta})}{A'}}{\bar{\theta} - \tilde{\theta}} \frac{\tilde{A}}{2} \left(\frac{x^{*}(\tilde{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{A}(\underline{\theta})}{2} + \frac{\tilde{\theta} - \tilde{A}(\underline{\theta})}{\bar{\theta} - \tilde{\theta}} \frac{\tilde{A}(\underline{\theta})}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{A}(\underline{\theta})}{2} + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} - \tilde{\theta}}{2} \left(\frac{x^{*}(\underline{\theta})}{A'} + \bar{\theta} \right) + \frac{\tilde{\theta} -$$

⁴Surviving entrepreneurs offer $x^*\left(\frac{x^*(\underline{\theta})}{A'}\right) < \tilde{A}\underline{\theta}$ and new entrepreneurs offer $x^*(\underline{\theta}) \leq \tilde{A}\underline{\theta}$.

By letting $\tilde{\Delta}' = \min\left\{1, \frac{\frac{x^*(\tilde{\theta})}{A'} - \tilde{\theta}}{\tilde{\theta} - \tilde{\theta}}\right\}$ and combining the two cases aforementioned with $\tilde{A} \in \left(\frac{x^*(\underline{\theta})}{\bar{\theta}}, \frac{x^*(\underline{\theta})}{\underline{\theta}}\right)$, we obtain the second part of proposition 9.

We continue with the remaining parts of the proof. First, suppose that $\tilde{A} \in \left[\frac{x^*(\theta)}{\theta}, 1\right]$ and $A' \in \left(0, \frac{x^*(\theta)}{\theta}\right] \cup \left[\frac{x^*(\theta)}{\theta}, \tilde{A}\right)$. In this case, we have $\Omega_t = U_{[\theta,\bar{\theta}]}$ and $\hat{Y}(\hat{A}^t) = \frac{\tilde{A}(\theta+\bar{\theta})}{2} = \hat{Y}(\hat{A}^{\eta-1})$ for all $t \ge \eta + 1$. Next, suppose that $\tilde{A} \in \left(\frac{x^*(\theta)}{\bar{\theta}}, \frac{x^*(\theta)}{\bar{\theta}}\right)$ and $A' \in \left[\frac{x^*(\bar{\theta})}{\bar{\theta}}, \tilde{A}\right)$. By proposition 7-2, $\Omega_\eta = U_{[\bar{\theta},\bar{\theta}]}$, where $\tilde{\theta} \equiv \frac{x^*(\theta)}{\bar{A}}$, and every entrepreneur offers $x^*(\bar{\theta})$ in period η . Moreover, all entrepreneurs survive for all $A' \in \left[\frac{x^*(\bar{\theta})}{\bar{\theta}}, \tilde{A}\right)$. Thus, $\hat{Y}(\hat{A}^t) = \frac{\tilde{A}(\bar{\theta}+\bar{\theta})}{2} = \frac{x^*(\theta)+\tilde{A}\bar{\theta}}{2} = \hat{Y}(\hat{A}^{\eta-1})$ for all $t \ge \eta + 1$. Finally, suppose that $\tilde{A} \in \left(0, \frac{x^*(\theta)}{\bar{\theta}}\right]$, which implies that $A' \in \left(0, \frac{x^*(\theta)}{\bar{\theta}}\right)$. In this case, by proposition 7-1, we have $\Omega_t = U_{[\theta,\bar{\theta}]}$ and $\hat{Y}(\hat{A}^t) = \frac{\tilde{A}(\theta+\bar{\theta})}{2} = \hat{Y}(\hat{A}^{\eta-1})$ for all $t \ge \eta + 1$.

Proof of proposition 10. Note that $\sum_{t=0}^{\eta-1} \beta^t \hat{Y}(\hat{A}^t) = \sum_{t=0}^{\eta-1} \beta^t \hat{Y}(\tilde{A}^t)$ and $\hat{Y}(\hat{A}^\eta) < \hat{Y}(\tilde{A}^\eta)$. Thus, if $\hat{Y}(\hat{A}^t) \le \hat{Y}(\tilde{A}^t)$ for all $t \ge \eta + 1$, then we have $\sum_{t=0}^{\infty} \beta^t [\hat{Y}(\hat{A}^t) - \hat{Y}(\tilde{A}^t)] < 0$. Therefore, for a negative shock to be constructive, there must exist a time period $\tau > \eta$ such that $\hat{Y}(\hat{A}^\tau) > \hat{Y}(\tilde{A}^\tau)$. Based on proposition 9, it suffices to focus on the following two cases: 1) $\tilde{A} \in \left[\frac{x^*(\theta)}{\theta}, 1\right]$ with a shock $A' \in \left(\frac{x^*(\theta)}{\theta}, \frac{x^*(\theta)}{\theta}\right)$ and 2) $\tilde{A} \in \left(\frac{x^*(\theta)}{\theta}, \frac{x^*(\theta)}{\theta}\right)$ with a shock $A' \in \left(\frac{x^*(\theta)}{\theta}, \frac{x^*(\theta)}{\theta}\right)$. From proposition 9,

we obtain the expression:

$$\beta^{-\eta} \sum_{t=0}^{\infty} \beta^t [\hat{Y}(\hat{A}^t) - \hat{Y}(\tilde{A}^t)] = (A' - \tilde{A}) \frac{\underline{\theta} + \overline{\theta}}{2} + \frac{\beta}{1-\beta} \times \frac{\overline{\theta} - \frac{x^*(\underline{\theta})}{A'}}{\overline{\theta} - \underline{\theta}} \times \frac{\tilde{A}}{2} \left(\frac{x^*(\underline{\theta})}{A'} - \underline{\theta} \right).$$

Then, we have $\sum_{t=0}^{\infty} \beta^t [\hat{Y}(\hat{A}^t) - \hat{Y}(\tilde{A}^t)] > 0$ if and only if $\beta > \hat{\beta}(\tilde{A}, A')$, where

(24)
$$\hat{\beta}(\tilde{A}, A') \equiv \frac{\bar{\theta}^2 - \underline{\theta}^2}{\bar{\theta}^2 - \underline{\theta}^2 + \frac{\tilde{A}}{\tilde{A} - A'} \left(\bar{\theta} - \frac{x^*(\underline{\theta})}{A'}\right) \left(\frac{x^*(\underline{\theta})}{A'} - \underline{\theta}\right)}$$

Note that $\hat{\beta}(\tilde{A}, A') \in (0, 1)$ because $\underline{\theta} < \frac{x^*(\underline{\theta})}{A'} < \overline{\theta}$ and $\tilde{A} - A' > 0$. Therefore, for sufficiently high values of β , the set $I(\tilde{A}, \beta)$ is nonempty. Furthermore, note that $A' \in I(\tilde{A}, \beta)$ if and only if

$$F_1(A') \equiv 2A'^2(\bar{\theta} - \underline{\theta})\beta^{-\eta} \sum_{t=0}^{\infty} \beta^t [\hat{Y}(\hat{A}^t) - \hat{Y}(\tilde{A}^t)]$$

= $A'^2(A' - \tilde{A})(\bar{\theta}^2 - \underline{\theta}^2) + \frac{\beta}{1 - \beta}\tilde{A}(A'\bar{\theta} - x^*(\underline{\theta}))(x^*(\underline{\theta}) - A'\underline{\theta}) > 0.$

Here, $F_1(A')$ is a cubic polynomial. Since $F_1\left(\frac{x^*(\theta)}{\overline{\theta}}\right) < 0$ and $F_1\left(\frac{x^*(\theta)}{\underline{\theta}}\right) < 0$, whenever $I(\tilde{A},\beta) \neq \emptyset$, there exist $A'_1 \in \left(\frac{x^*(\theta)}{\overline{\theta}}, \frac{x^*(\theta)}{\underline{\theta}}\right)$ and $A'_2 > A'_1$ such that $F_1(A'_1) > 0$, $F'_1(A'_1) = 0$, $F_1(A'_2) < 0$, and $F'_1(A'_2) = 0$. Then, there exist $A''_1 \in \left(\frac{x^*(\theta)}{\overline{\theta}}, A'_1\right)$ and $A''_2 \in \left(A'_1, \min\left\{A'_2, \frac{x^*(\theta)}{\underline{\theta}}\right\}\right)$ such that $F_1(A''_1) = F_1(A''_2) = 0$ and $I(\tilde{A}, \beta) = (A''_1, A''_2)$. Thus, $I(\tilde{A}, \beta)$ is an open interval.

Next, take any $\tilde{A}_1, \tilde{A}_2 \in \left[\frac{x^*(\theta)}{\theta}, 1\right]$ such that $\tilde{A}_2 > \tilde{A}_1$ and both $I(\tilde{A}_1, \beta)$ and $I(\tilde{A}_2, \beta)$ are nonempty. Suppose that $A' \in I(\tilde{A}_2, \beta)$, i.e., $\beta > \hat{\beta}(\tilde{A}_2, A')$. Note, from (24), that $\frac{\partial \hat{\beta}(\tilde{A}, A')}{\partial \tilde{A}} > 0$ because $\frac{\tilde{A}}{\tilde{A}-A'}$ decreases in \tilde{A} given that $\tilde{A} > A'$. Then, we have $\beta > \hat{\beta}(\tilde{A}_2, A') > \hat{\beta}(\tilde{A}_1, A')$, so $A' \in I(\tilde{A}_1, \beta)$. Thus, $I(\tilde{A}_2, \beta) \subset I(\tilde{A}_1, \beta)$.

Now, consider the case where $\tilde{A} \in \left(\frac{x^*(\underline{\theta})}{\overline{\theta}}, \frac{x^*(\underline{\theta})}{\underline{\theta}}\right)$ and $A' \in \left(\frac{x^*(\tilde{\theta})}{\overline{\theta}}, \frac{x^*(\tilde{\theta})}{\overline{\theta}}\right)$. From proposition 9 and letting $p(A') = \frac{\frac{x^*(\tilde{\theta})}{A'} - \tilde{\theta}}{\frac{\overline{\theta}}{\overline{\theta} - \overline{\theta}}} = \frac{x^*(\tilde{\theta})\frac{\tilde{A}}{A'} - x^*(\underline{\theta})}{\tilde{A}\overline{\theta} - x^*(\underline{\theta})}$ be the mass of defaulting entrepreneurs

in period η , we obtain:

$$\begin{split} &\sum_{t=\eta}^{\infty} \beta^{t-\eta} \hat{Y}(\hat{A}^{t}) = \hat{Y}(\hat{A}^{\eta}) + \beta \sum_{t=\eta+1}^{\infty} \beta^{t-\eta-1} \hat{Y}(\hat{A}^{t}) \\ &= \hat{Y}(\hat{A}^{\eta}) + \beta \sum_{t=\eta+1}^{\infty} \beta^{t-\eta-1} \left[-p(A') \frac{x^{*}(\underline{\theta}) - \tilde{A}\underline{\theta}}{2} + p(A') \frac{x^{*}(\underline{\theta}) + \tilde{A}\overline{\theta}}{2} + (1 - p(A')) \left(\frac{x^{*}(\tilde{\theta}) \frac{\tilde{A}}{A'} + \tilde{A}\overline{\theta}}{2} \right) \right] \\ &= \hat{Y}(\hat{A}^{\eta}) + \beta \sum_{t=\eta+1}^{\infty} \beta^{t-\eta-1} \left[-p(A') \frac{x^{*}(\underline{\theta}) - \tilde{A}\underline{\theta}}{2} + \frac{x^{*}(\underline{\theta}) + \tilde{A}\overline{\theta}}{2} + (1 - p(A')) \left(\frac{x^{*}(\tilde{\theta}) \frac{\tilde{A}}{A'} - x^{*}(\underline{\theta})}{2} \right) \right] \\ &= \frac{A'(\tilde{\theta} + \overline{\theta})}{2} - \frac{\beta p(A')}{1 - \beta \Delta} \times \frac{1}{2} [x^{*}(\underline{\theta}) - \widetilde{A}\underline{\theta}] \end{split}$$

(25)

$$+\frac{\beta}{1-\beta}\frac{1}{2}\left[x^{*}(\underline{\theta})+\widetilde{A}\overline{\theta}+(1-p(A'))\left(x^{*}(\widetilde{\theta})\frac{\widetilde{A}}{A'}-x^{*}(\underline{\theta})\right)\right].$$

Using the facts that $\hat{Y}(\tilde{A}^t) = \frac{\tilde{A}(\tilde{\theta}+\bar{\theta})}{2}$ for all $t > \eta$ where $\tilde{\theta} = \frac{x^*(\underline{\theta})}{\tilde{A}}$, we can derive from (25) the following expression:

$$\begin{split} \beta^{-\eta} \sum_{t=0}^{\infty} \beta^t [\hat{Y}(\hat{A}^t) - \hat{Y}(\tilde{A}^t)] \\ &= \frac{\tilde{\theta} + \bar{\theta}}{2} (A' - \tilde{A}) - p(A') \times \frac{\beta [x^*(\underline{\theta}) - \tilde{A}\underline{\theta}]}{2(1 - \beta\Delta)} + (1 - p(A')) \times \frac{\beta \left[x^*(\tilde{\theta}) \frac{\tilde{A}}{A'} - x^*(\underline{\theta})\right]}{2(1 - \beta)} \\ &= \frac{\tilde{\theta} + \bar{\theta}}{2} (A' - \tilde{A}) + \frac{\beta \left(x^*(\tilde{\theta}) \frac{\tilde{A}}{A'} - x^*(\underline{\theta})\right)}{2(1 - \beta)(\tilde{A}\bar{\theta} - x^*(\underline{\theta}))} \left[\tilde{A}\bar{\theta} - x^*(\tilde{\theta}) \frac{\tilde{A}}{A'} - \frac{1 - \beta}{1 - \beta\Delta} (x^*(\underline{\theta}) - \tilde{A}\underline{\theta})\right] \end{split}$$

 $(26) \equiv F_2(A').$

Taking the first derivative of $F_2(A')$, we obtain:

$$F_{2}'(A') = \frac{\tilde{\theta} + \bar{\theta}}{2} + \frac{\beta x^{*}(\tilde{\theta}) \frac{\tilde{A}}{A'^{2}}}{2(1-\beta)(\tilde{A}\bar{\theta} - x^{*}(\underline{\theta}))} \left[\frac{(1-\beta)(x^{*}(\underline{\theta}) - \tilde{A}\underline{\theta})}{1-\beta\Delta} + 2x^{*}(\tilde{\theta}) \frac{\tilde{A}}{A'} - x^{*}(\underline{\theta}) - \tilde{A}\bar{\theta} \right].$$

Then, it can be verified from (26) and (27) that $F_2\left(\frac{x^*(\tilde{\theta})}{\tilde{\theta}}\right) < 0, F_2\left(\frac{x^*(\tilde{\theta})}{\tilde{\theta}}\right) < 0$, and

 $F_{2}'\left(\frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}\right) > 0. \text{ Because } A'^{2}F_{2}(A') \text{ is a cubic polynomial, there can be at most two positive real values } \varsigma_{1} \text{ and } \varsigma_{2} \text{ such that } F_{2}'(\varsigma_{1}) = F_{2}'(\varsigma_{2}) = 0.^{5} \text{ Thus, if } F_{2}'\left(\frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}\right) < 0, \text{ then } F_{2} \text{ is single-peaked in } \left(\frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}, \frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}\right), \text{ so there exists } A^{*} \in \left(\frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}, \frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}\right) \text{ such that } F_{2}'(A^{*}) = 0 \text{ and } A^{*} = \underset{A' \in \left(\frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}, \frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}\right)}{\operatorname{and}} F_{2}(A'). \text{ Thus, if } F_{2}'\left(\frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}\right) < 0 \text{ and } F_{2}(A^{*}) > 0, \text{ then } I(\tilde{A}, \beta) \text{ is a nonempty open subinterval of } \left(\frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}, \frac{x^{*}(\tilde{\theta})}{\tilde{\theta}}\right).$

First, we evaluate $F'_2\left(\frac{x^*(\tilde{\theta})}{\tilde{\theta}}\right)$ and find:

$$F_2'\left(\frac{x^*(\tilde{\theta})}{\tilde{\theta}}\right) = \frac{\tilde{\theta} + \bar{\theta}}{2} + \frac{\beta x^*(\tilde{\theta})\frac{\tilde{A}}{A'^2}}{2(1-\beta)(\tilde{A}\bar{\theta} - x^*(\underline{\theta}))} \left[\frac{(1-\beta)(x^*(\underline{\theta}) - \tilde{A}\underline{\theta})}{1-\beta\Delta} - (\tilde{A}\bar{\theta} - x^*(\underline{\theta}))\right].$$

Given that $\tilde{A}\underline{\theta} < x^*(\underline{\theta}) < \tilde{A}\overline{\theta}$ and $\frac{1-\beta}{1-\beta\Delta} \in (0,1)$, if \tilde{A} is sufficiently high within the range of $\left(\frac{x^*(\underline{\theta})}{\overline{\theta}}, \frac{x^*(\underline{\theta})}{\underline{\theta}}\right)$, then $\frac{(1-\beta)(x^*(\underline{\theta})-\tilde{A}\underline{\theta})}{1-\beta\Delta} < \tilde{A}\overline{\theta} - x^*(\underline{\theta})$. Because $\frac{\beta}{1-\beta}$ increases with β while $\frac{1-\beta}{1-\beta\Delta}$ decreases with β , if β is also sufficiently high, then $F'_2\left(\frac{x^*(\overline{\theta})}{\overline{\theta}}\right) < 0$.

⁵The equation $F_2(A') = a_1A' + a_2 + a_3A'^{-1} + a_4A'^{-2}$ holds for certain real coefficients a_1, a_2, a_3 , and a_4 . Additionally, $F'_2(A') = a_1 - a_3A'^{-2} - 2a_4A'^{-3} = a_1A'^{-3}\Pi_{i=1,2,3}(A' - \varsigma_i)$ holds for some $\varsigma_1, \varsigma_2, \varsigma_3 \in \mathbb{C}$ satisfying $\varsigma_1 + \varsigma_2 + \varsigma_3 = 0$. It should be noted that among the roots ς_1, ς_2 , and ς_3 , there can be at most two values, denoted as *i*, such that $\varsigma_i \in \mathbb{R}_{++}$ and $F'_2(\varsigma_i) = 0$. Next, utilizing the definition of A^* , i.e., $F'_2(A^*) = 0$, we obtain from (27) that

$$x^*(\tilde{\theta})\frac{\tilde{A}}{A^*} - x^*(\underline{\theta}) = \frac{1}{2}(\tilde{A}\bar{\theta} - x^*(\underline{\theta})) - \frac{1-\beta}{1-\beta\Delta} \times \frac{1}{2}(x^*(\underline{\theta}) - \tilde{A}\underline{\theta}) - \frac{(1-\beta)(\tilde{A}\bar{\theta} - x^*(\underline{\theta}))(\bar{\theta} + \tilde{\theta})A^{*2}}{2\beta x^*(\tilde{\theta})\tilde{A}}$$

Substituting this result into (26) with $A = A^*$ yields:

$$F_{2}(A^{*}) = \frac{\theta + \bar{\theta}}{2} (A^{*} - \tilde{A}) + \left(\frac{\beta}{4(1-\beta)} - \frac{\beta}{4(1-\beta\Delta)} \frac{x^{*}(\underline{\theta}) - \tilde{A}\underline{\theta}}{\tilde{A}\overline{\theta} - x^{*}(\underline{\theta})} - \frac{(\tilde{\theta} + \bar{\theta})A^{*2}}{4x^{*}(\tilde{\theta})\tilde{A}} \right) \times \left(\tilde{A}\overline{\theta} - x^{*}(\tilde{\theta}) \frac{\tilde{A}}{A^{*}} - \frac{1-\beta}{1-\beta\Delta} (x^{*}(\underline{\theta}) - \tilde{A}\underline{\theta}) \right).$$

Observe that as $\tilde{A} \to \frac{x^*(\underline{\theta})}{\underline{\theta}}$, $F_2(A^*)$ converges to

(28)
$$\left(\frac{\beta}{4(1-\beta)} - \frac{(\tilde{\theta}+\bar{\theta})A^{*2}\underline{\theta}}{4x^{*}(\tilde{\theta})x^{*}(\underline{\theta})}\right)\frac{x^{*}(\underline{\theta})}{\underline{\theta}}\left(\bar{\theta} - \frac{x^{*}(\tilde{\theta})}{A^{*}}\right) + \frac{\tilde{\theta}+\bar{\theta}}{2}\left(A^{*} - \frac{x^{*}(\underline{\theta})}{\underline{\theta}}\right).$$

Since $\bar{\theta} - \frac{x^*(\tilde{\theta})}{A^*} > 0$ given that $A^* > \frac{x^*(\tilde{\theta})}{\bar{\theta}}$, if $\frac{\beta}{4(1-\beta)}$ is sufficiently large, then (28) is positive. Therefore, when $\tilde{A} \in \left(\frac{x^*(\theta)}{\bar{\theta}}, \frac{x^*(\theta)}{\bar{\theta}}\right)$ and β are sufficiently high, we conclude that $F_2(A^*) > 0$. Consequently, an open interval $I(\tilde{A}, \beta)$ exists within $\left(\frac{x^*(\tilde{\theta})}{\bar{\theta}}, \frac{x^*(\tilde{\theta})}{\bar{\theta}}\right)$.

Online Appendix B

In this appendix, we demonstrate the existence of multiple equilibria. To accomplish this, we define a correspondence $\chi: \Theta \to \mathbb{R}_+$ as follows:

(29)
$$\chi(\theta) = \left[x^*(\theta), \min\left\{x^{**}, \frac{b(\theta)}{2}, \frac{\beta\theta}{2}\right\}\right),$$

where $x^{**} = \min\left\{x: x - \frac{\log\left(\frac{\theta+\tilde{\theta}}{2}\right) - \log(\theta)}{\frac{\theta+\tilde{\theta}}{2} - \theta}x^2 \ge r\right\}$. Note that $x^*(\theta) < x^{**}$ due to the fact that $x^*(\theta) = \min\left\{x: x - \frac{\log\tilde{\theta} - \log\theta}{\tilde{\theta} - \theta}x^2 \ge r\right\}$ and $\frac{\log\left(\frac{\theta+\tilde{\theta}}{2}\right) - \log\theta}{\frac{\theta+\tilde{\theta}}{2} - \theta} > \frac{\log\tilde{\theta} - \log\theta}{\tilde{\theta} - \theta}$. Furthermore, for any $\theta \in \Theta$, we have $x^*(\theta) < \min\left\{\frac{b(\theta)}{2}, \frac{\beta\theta}{2}\right\}$, based on the definition of $x^*(\cdot)$. Consequently, $x^*(\theta) < \min\left\{x^{**}, \frac{b(\theta)}{2}, \frac{\beta\theta}{2}\right\}$, and $\chi(\theta) \neq \emptyset$ for all $\theta \in \Theta$.

Now consider the entrepreneur's strategy (x, D) that satisfies the following conditions: There exists $\hat{x} : \mathbb{H} \times \mathcal{M} \to \mathbb{R}_+$ which satisfies $\hat{x}(h, U_{[\theta', \bar{\theta}]}) \in \chi(\theta')$ for any $\theta' \in [\underline{\theta}, \bar{\theta})$ and $h \in \mathbb{H}$ such that for any $\theta \in \operatorname{supp} \hat{\Omega}_h, x(\theta, h) = \hat{x}(h, \hat{\Omega}_h)$ and $D(\theta, h) = \left[0, \frac{\hat{x}(h, \hat{\Omega}_h)}{\theta}\right] \cap [0, 1]$.⁶ Here, we define a " χ^e -strategy" as the family of the entrepreneur's strategies that satisfies the aforementioned condition. We say that such a χ^e -strategy is represented by \hat{x} . Since the set $\chi(\theta')$ is uncountable, there exists a continuum of χ^e -strategies. It is important to note that the χ^e -strategy does not impose any restrictions on $\hat{x}(h, \hat{\Omega}_h)$ if $\hat{\Omega}_h$ is not in the form of $U_{[\theta', \bar{\theta}]}$.

In the next proposition, we demonstrate the existence of multiple equilibria. Specifically, we show that for any χ^e -strategy, there exists a belief system that supports the entrepreneurs' strategy as an optimal choice.

 ${}^{6}\text{If }\hat{\Omega}_{h} = U_{[\theta',\bar{\theta}]} \text{ for some } \theta' \in [\underline{\theta},\bar{\theta}), \text{ then, in equilibrium, } \theta \geq \theta', \text{ thus, by the definition of } \chi(\cdot),$ $\frac{\hat{x}(h,\hat{\Omega}_{h})}{\theta} < \frac{\beta\theta'}{2} \times \frac{1}{\theta} < 1. \text{ Therefore, } \left[0, \frac{\hat{x}(h,\hat{\Omega}_{h})}{\theta}\right) \subset [0,1].$

Proposition 11 For any χ^e -strategy (x, D), there exists a belief system μ such that $((x, D), \mu)$ is an equilibrium.

Proof. Consider any χ^e -strategy (x, D) represented by \hat{x} . Let $\widehat{\mathbb{H}} \subset \mathbb{H}$ be the set of all feasible histories generated by (x, D), i.e., the histories of entrepreneurs in some periods who play (x, D).⁷ We define a function $\theta^*_{\hat{x}} : \widehat{\mathbb{H}} \to \Theta$ recursively as follows:

$$\theta_{\hat{x}}^{*}(s, A^{t-1}) = \begin{cases} \frac{\theta}{1-t} & \text{if } t = s \\ \min\left\{\bar{\theta}, \max\left\{\theta_{\hat{x}}^{*}(s, A^{t-2}), \frac{\hat{x}((s, A^{t-2}), \hat{\Omega}_{s, A^{t-2}})}{A_{t-1}}\right\}\right\} & \text{for all } t > s. \end{cases}$$

Now, suppose that all entrepreneurs adopt the χ^e -strategy. Entrepreneurs who establish their company in period $s \ge 0$ play $(\hat{x}, [0, \frac{\hat{x}}{\theta}))$ in period s, where $\hat{x} = \hat{x}(h_{s-1}, \hat{\Omega}_{h_{s-1}}) \in \chi(\underline{\theta})$ and $h_{s-1} = (s, A^{s-1})$, because $\hat{\Omega}_{h_{s-1}} = U_{[\underline{\theta},\overline{\theta}]}$. Thus, if $\operatorname{supp} \hat{\Omega}_{h_s} \neq \emptyset$, where $h_s = (s, \{A^{s-1}, A_s\})$, we have $\hat{\Omega}_{h_s} = U_{[\max\{\theta^*_x(h_{s-1}), \frac{\hat{x}}{A_s}\}, \overline{\theta}]}$. Then, using induction as explained in the proof of claim 1, we can verify that whenever $\operatorname{supp} \hat{\Omega}_{h_{t-1}} \neq \emptyset$ for any $h_{t-1} \in \widehat{\mathbb{H}}$, we have $\hat{\Omega}_{h_{t-1}} = U_{[\theta^*_x(h_{t-1}), \overline{\theta}]}$.

Given the function $\theta^*_{\hat{x}}$, we construct a belief system μ such that:

$$\mu(x,h) = \begin{cases} U_{[\theta_{\hat{x}}^*(h),\bar{\theta}]} & \text{if } x \ge \hat{x}(h,\hat{\Omega}_h) \text{ and } h \in \widehat{\mathbb{H}} \\ \\ U_{\left[\underline{\theta},\frac{\underline{\theta}+\bar{\theta}}{2}\right]} & \text{otherwise.} \end{cases}$$

⁷There exist histories that cannot be generated by (x, D). For example, suppose that $A_0 = 0$. Then, all entrepreneurs who were born in period 0 default and leave the economy in period 1. Thus, $(0, \{\emptyset, 0\})$ cannot be a history generated by the entrepreneur strategy. Although $(0, \{\emptyset, 0\}) \in \mathbb{H}$, it cannot be a history in period 1 for any entrepreneur, so $(0, \{\emptyset, 0\}) \notin \widehat{\mathbb{H}}$. By construction, it is straightforward to verify that the belief system μ is consistent, given the entrepreneurs' strategy.

Now, take any $h_{t-1} = (s, A^{t-1}) \in \widehat{\mathbb{H}}$. Dropping the arguments such that $\hat{x} = \hat{x}(h_{t-1}, \hat{\Omega}_{h_{t-1}})$ and $\theta_{\hat{x}}^* = \theta_{\hat{x}}^*(h_{t-1})$, the lender's expected payoff from an entrepreneur with h_{t-1} is:

$$\int_{\Theta} \left(1 - \left| \left[0, \frac{\hat{x}}{\theta} \right) \right| \right) \hat{x} dU_{\left[\theta_{\hat{x}}^*, \bar{\theta}\right]} = \hat{x} - \frac{\hat{x}^2}{b(\theta_{\hat{x}}^*)}$$

since $\mu(\hat{x}, h_{t-1}) = U_{[\theta_{\hat{x}^*}, \bar{\theta}]}$. Note that $x - \frac{x^2}{b(\theta_{\hat{x}}^*)}$ increases in x whenever $x < \frac{b(\theta_{\hat{x}}^*)}{2}$, and that $x^*(\theta_{\hat{x}}^*) - \frac{x^*(\theta_{\hat{x}}^*)^2}{b(\theta_{\hat{x}}^*)} = r$. Therefore, $\hat{x} - \frac{\hat{x}^2}{b(\theta_{\hat{x}}^*)} \ge r$ since $x^*(\theta_{\hat{x}}^*) \le \hat{x} < \frac{b(\theta_{\hat{x}}^*)}{2}$, which implies that the entrepreneur strategy satisfies the lender's incentive compatibility condition given μ .

To conclude, we need to show that the entrepreneur strategy is an optimal strategy for entrepreneurs. The lender's expected payoff from an entrepreneur with h_{t-1} playing (x', D) in period t, where $x' < \hat{x}$, satisfies

$$\begin{split} &\int_{\Theta} (1 - |D|) x' dU_{\left[\underline{\theta}, \frac{\theta + \bar{\theta}}{2}\right]} \\ &\leq \max_{x < x^{**}} \int_{\Theta} \left(1 - \left| \left[0, \frac{x}{\theta} \right) \right| \right) x dU_{\left[\underline{\theta}, \frac{\theta + \bar{\theta}}{2}\right]} \\ &= \max_{x < x^{**}} \left\{ x - \frac{\log\left(\frac{\theta + \bar{\theta}}{2}\right) - \log(\underline{\theta})}{\frac{\underline{\theta} + \bar{\theta}}{2} - \underline{\theta}} x^2 \right\} < r, \end{split}$$

which implies that playing $x' < \hat{x}$ in any period does not satisfy the lender's incentive compatibility condition given μ . Thus, \hat{x} is the minimum incentive-compatible contract in which $\omega_{\mu} \ge r$ at each period. Moreover, for any $h_{t-1} \in \widehat{\mathbb{H}}$, $\hat{\Omega}_{h_{t-1}} = U_{[\theta^*_{\hat{x}}(h_{t-1}),\bar{\theta}]}$. Therefore, by lemma 2 and proposition 1, every entrepreneur with h_{t-1} offers \hat{x} . Additionally, note that $\hat{x}(h_{t-1}, \hat{\Omega}_{h_{t-1}}) < \frac{\beta \theta_{\hat{x}}^*(h_{t-1})}{2}$ by construction of the correspondence χ in (29). Thus, the optimal default strategy after making contract $\hat{x}(h_{t-1}, \hat{\Omega}_{h_{t-1}})$ is $D_t = \left[0, \frac{\hat{x}(h_{t-1}, \hat{\Omega}_{h_{t-1}})}{\theta}\right)$, as explained in the proof of propositions 2 and 3.