
Internet Appendix

AI. Data

We obtain quarterly consumption data from the National Income and Product Accounts

(NIPA) tables, provided by the Bureau of Economic Analysis. We measure consumption at the

quarterly frequency as the sum of the real personal consumption expenditure on non-durables and

services on a per capita basis. Specifically, we take the quantity index of NIPA Table 2.3.3 and

divide it by the total population obtained from NIPA Table 7.1. Consumption growth is defined as

the first log difference and is computed from 1962 to 2019.

We supplement the NIPA data with other consumption measures that are arguably less

noisy and/or less affected by time aggregation. First, we consider fourth-quarter to fourth-quarter

consumption growth, as analyzed by Jagannathan and Wang (2007). They conjecture that a

disproportionate fraction of the population is likely to review their consumption decisions in the

fourth quarter, making fourth quarter measurements more reflective of economic conditions.

Second, we use the unfiltered consumption series of Kroencke (2017). Kroencke argues that the

filtering and smoothing process implemented in the NIPA data adds noise to the consumption

measures that obscures their relationship to asset prices, and he proposes a method to reverse the

effects of these transformations. Third, since the fourth-quarter consumption and unfiltered

consumption series are both at the annual frequency, we also implement the empirical analysis

using NIPA annual consumption. Each of these annual consumption measures is obtained from

Tim Kroencke’s website.

To proxy for expected consumption growth, we use data from the Survey of Professional
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Forecasters (SPF), obtained from the Federal Reserve Bank of Philadelphia. The sample for the

survey data begins in the third quarter of 1981. We use the four-quarter-ahead median forecast in

real consumption expenditures.

For economic uncertainty, we use the 12-month macro and real uncertainty measures from

Jurado, Ludvigson, and Ng (2015). These are obtained from Sydney Ludvigson’s website and are

available from 1961 to 2019. To reduce the noise that comes from the imprecise timing of these

measurements, we analyze growth expectation and uncertainty estimates at the yearly frequency,

using observations from the last quarter of the year.

Bond yields are obtained from the Federal Reserve Bank of St. Louis’ website. Nominal

one-year and ten-year yields are available from 1962 to 2019, while we analyze real yields over

the period from 2003 to 2019. Real yields are constructed from ten-year Treasury

Inflation-Protected Securities (TIPS). We use them starting in 2003 to avoid well-known

illiquidity problems in the early years of that market (e.g., Dudley et al. (2009),Gürkaynak et al.

(2010),D’Amico et al. (2018)). Excess market returns and total market returns are from Ken

French’s website.

The calibration in Section B required us to compute moments of real returns and yields. To

compute averages of real variables, we subtract the average changes in the Consumer Price Index,

obtained from the Bureau of Labor Statistics, over the entire calibration period. To compute the

standard deviation of real bond yields and the stock-bond return correlation, we make several

assumptions. One is that the relative variances of shocks to inflation and nominal yields remains

constant over the entire sample period. Another is that inflation follows a unit-root process. That

is, the change in expected inflation equals the unexpected price change in the previous period.

We first calculate the variance ratio (VR) of inflation, defined as in Duffee (2018a), which
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is the relative ratio of the variance of inflation shocks to the variance of nominal yields. The

variance of real yields is then computed by multiplying the variance of nominal yields by

(1− V R). In computing the real SB covariance Cov(∆yrt+1, R
r
m,t+1), we assume that the inflation

expectation equals past realized inflation and compute the covariance by

Cov(∆yrt , R
r
m,t) = Cov(∆yt+1−∆πt+1, Rm,t+1−∆πt+1) = Cov(∆yt+1, Rm,t+1)−V ar(∆πt+1),

where yt+1 is the nominal bond yield, yrt+1 is the real bond yield, Rm,t+1 is the nominal stock

return, and Rr
m,t+1 is the real stock return. The variance of real stock returns is

V ar(Rr
m,t) = V ar(Rm,t)− V ar(∆πt), which is very close to the variance of nominal stock

returns.

We also use several measures of wealth. In addition to the value-weighted stock market

index, these are the value of assets from Sydney Ludvigson’s website and used in Lettau and

Ludvigson (2001), the All-Transactions Housing Price Index of the U.S. Federal Housing Finance

Agency, and the net worth of households and nonprofit organizations from the Federal Reserve

Bank of St. Louis.

AII. Technical Appendix

A. The wealth-consumption ratio

Following the Campbell-Shiller decomposition, returns to total wealth portfolio can be

represented by

RTW,t+1 = κ0 +∆ct+1 + A0(κ1 − 1) + Ax(κ1xt+1 − xt) + Av(κ1σ
2
t+1 − σ2

t ) + Aq(κ1qt+1 − qt).
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The intertemporal marginal rate of substitution (IMRS) is

mt+1 = θ log β − γ∆ct+1 + (θ − 1)
[
κ0 + A0(κ1 − 1) + Ax(κ1xt+1 − xt)

+ Av(κ1σ
2
t+1 − σ2

t ) + Aq(κ1qt+1 − qt)
]
.

The unexpected component of the IMRS is represented by

mt+1 − Et[mt+1] = λcσtϵc,t+1 + λxσtϵx,t+1 + λvσtϵv,t+1 + λδσtϵq,t+1,

where λc = −γ, λx = (θ − 1)κ1Axϕx, λv = (θ − 1)κ1Avσv, and λδ = (θ − 1)κ1Aqσq.

We solve for A0, Ax, Av, and Aq using the Euler equation

Et[mt+1 +RTW,t+1] + Vart[mt+1 +RTW,t+1] = 0. For Ax, we collect all terms associated with xt:

Ax =
1− 1

ψ

1− κ1ξ1
.

Collecting the terms from the Euler equation that are functions of σ2
t and qt, it can be seen that Av

and Aq must jointly satisfy the conditions

2Av(κ1s1 − 1) + θ
(
(Axκ1φx)

2 + (Avκ1σv)
2 + (Aqκ1σq)

2 + (1− 1

ψ
)2
)
+ 2(1− γ)κ1Avσvρcv = 0

Aq = Q0 +Q1Av,

where Q0 =
(1−γ)κ1Axφx

1−κ1ω1
< 0 and Q1 =

θρcvκ21Axφxσv
1−κ1ω1

> 0.

Av can be obtained by solving a quadratic equation after plugging the second equation

into the first. It can also be shown that Av < 0 when γ > 1 and ψ > 1 by evaluating the

characteristics of the quadratic equation. We obtain two values for Av. We choose the value that is

closer to the baseline model. The second value generates unrealistic moments of asset returns.

The negative sign of Av also implies Aq < 0.

Finally, A0 satisfies A0 =
1

1−κ1

[
log β + κ0 + (1− 1

ψ
)µ+ k1(Avs0 + Aqω0)

]
.
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B. The price-dividend ratio

Similar to the wealth-consumption ratio we assume that the the price-dividend ratio is an

affine function, Am,0 + Am,xxt + Am,vσ
2
t + Am,qδt, and we again solve for the coefficients using

the Euler equation Et[mt+1 +Rm,t+1] + 0.5V art[mt+1 +Rm,t+1] = 0. Collecting the terms

associated with xt, σ2
t , and qt, we can solve for Am,0, Am,x, Am,v, and Am,q. First, we have

Am,x =
ϕd − 1

ψ

1− κ1ξ1
.

As in the wealth-consumption ratio, Am,v, and Am,q must jointly satisfy the conditions

2Am,v(κm,1s1 − 1) + 2(θ − 1)(κ1s1 − 1)Av + 2(φcd + λc)(κm,1Am,vσv + λv)ρcv

+ (κm,1Am,xφx + λx)
2 + (κm,1Am,vσv + λv)

2 + (κm,1Am,qσq + λδ)
2 + (φcd + λc)

2 + φ2
d = 0

Am,q = Qm,0 +Qm,1Am,v,

where

Qm,0 =
1

1−κ1ω1

(
(φcd + λc)(κ1Am,xφx + λx) + (θ − 1)(κ1ω1 − 1)Aq + λv(κ1Am,xφx + λx)ρcv

)
and Qm,1 =

1
1−κ1ω1

κ1σv(κ1Am,xφx + λx)ρcv. Evaluating the characteristics of the quadratic

function, similar to the earlier case, we find that Am,v < 0 when γ > φcd > 1, which is consistent

with the general long-run risk specification. Also, one can show that Am,30 < and Am,32 > 0

under the condition of γ > ϕd and φcd > 1, which implies that Am,q < 0.

Finally, Am,0 satisfies

Am,0 =
1

1− κm,1

(
θ log β + (θ − 1)κ0 + κm,0 + (1− γ)µ

+ κ1Avs0(θ − 1) + κm,1Am,vs0 + κ1Aqω0(θ − 1) + κm,1ω0Am,q + (θ − 1)(κ− 1)A0)
)
.
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C. Bond yields

Denote the state vector as

Σt =

[
∆Ct xt σ2

t qt

]′
We can write the conditional mean as

Et [Σt+1] = K0 +KΣt,

where

K0 =

[
µ 0 s0 ω0

]′
and

K =



0 1 0 0

0 ξ1 0 0

0 0 s1 0

0 0 0 ω1


The conditional covariance matrix is

Covt
(
Σt+1,Σ

′
t+1

)
=



σ2
t ϕxqt ρcvσvσ

2
t 0

ϕxqt ϕ2
xσ

2
t σvρcvqt 0

ρcvσvσ
2
t σvρcvqt σ2

vσ
2
t 0

0 0 0 σ2
qσ

2
t


= Ω1σ

2
t + Ω2qt,
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where

Ω1 =



1 0 ρcvσv 0

0 ϕ2
x 0 0

ρcvσv 0 σ2
v 0

0 0 0 σ2
q


and Ω2 =



0 ϕx 0 0

ϕx 0 ϕxρcvσv 0

0 ϕxρcvσv 0 0

0 0 0 0


.

In vector notation, we can write the log pricing kernel as

mt+1 = m0 +M ′
1Σt+1 −M ′

2Σt

with

m0 = θ log β + (θ − 1) (κ0 + A0(κ1 − 1)) ,

M1 =

[
−γ (θ − 1)κ1Ax (θ − 1)κ1Av (θ − 1)κ1Aq

]′
,

and

M2 =

[
0 (θ − 1)Ax (θ − 1)Av (θ − 1)Aq

]′
,

where Ax, Av, and Aq are as defined earlier.

The log price of a riskless one-period bond (B1,t) is given by

B1,t =Et [mt+1] + 0.5Vart (mt+1)

=m0 +M ′
1K0 + (M ′

1K −M ′
2) Σt + 0.5M ′

1Covt
(
Σt+1,Σ

′
t+1

)
M1

=m0 +M ′
1K0 + (M ′

1K −M ′
2) Σt + 0.5M ′

1Ω1M1σ
2
t + 0.5M ′

1Ω2M1qt

=m0 +M ′
1K0 + (M ′

1K −M ′
2) Σt + 0.5Ψ′Σt

=m0 +M ′
1K0 + (M ′

1K −M ′
2 + 0.5Ψ′) Σt,
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where

Ψ′ =

[
0 0 M ′

1Ω1M1
M ′

1Ω2M1

]′
.

Therefore, the yield of a one-period bond is equal to

yt = Y0 + Y Σt,

where

Y0 = −m0 −M ′
1K0

and

Y = −M ′
1K +M ′

2 − 0.5Ψ′.

It can be shown that for

Y =

[
0 Yx Yv Yp

]′
we have Yx > 0 and Yv, Yp < 0.

Now suppose that the n-period bond has a log price

Bn,t = Dn,0 +D′
nΣt.

Then the (n+ 1)-period bond has a price that is equal to the conditional expectation of

Et [mt+1 +Bn,t+1] + 0.5Vart (mt+1 +Bn,t+1) ,

where

mt+1 +Bn,t+1 = m0 +Dn,0 + (M1 +Dn)
′Σt+1 −M ′

2Σt.
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The log price of the bond can be solved as

Bn,t+1 =m0 +Dn,0 + (M1 +Dn)
′(K0 +KΣt)−M ′

2Σt + 0.5(M1 +Dn)
′Covt

(
Σt+1,Σ

′
t+1

)
(M1 +Dn)

=m0 +Dn,0 + (M1 +Dn)
′K0 + ((M1 +Dn)

′K −M ′
2) Σt + 0.5Ψ′

nΣt,

where

Ψn =

[
0 0 (M1 +Dn)

′Ω1(M1 +Dn) (M1 +Dn)
′Ω2(M1 +Dn)

]′
.

The log of (n+ 1)−period bond price is therefore

Bn+1,t = Dn+1,0 +D′
n+1Σt,

where

Dn+1,0 = m0 +Dn,0 + (M1 +Dn)
′K0

and

Dn+1 = K ′(M1 +Dn)−M2 +
1

2
Ψn.

The (n+ 1)−period yield is therefore equal to

yn+1,t = Yn+1,0 + Yn+1Σt,

where Yn+1,0 = −Dn+1,0 and Yn+1 = −D′
n+1.

D. The stock-bond return correlation

The stock-bond return correlation is the negative of the correlation between stock returns

and changes in the bond yield. Unexpected stock market returns are derived using the

9



Campbell-Shiller decomposition:

Rm,t+1 − Et[Rm,t+1] = κm,1ϕxAm,xσtϵx,t+1 + κm,1σvAm,vσtϵv,t+1 + κm,1σqAm,qϵq,t+1 + φcdσtϵc,t+1 + φdσtϵd,t+1.

We can then compute the stock-bond return correlation by taking the negative of the conditional

correlation between market returns and bond yields.

The conditional covariance between a n-period bond yield and stock returns can be

expressed as

Covt(Rm,t+1, yn,t+1) = (Yn,xSxφx + Yn,vSvσv + Yn,qSqσq + Yn,vScσvρcv)σ
2
t

+ ((Yn,xφxSv + Yn,vSxσv)ρcv + Yn,xScφx) qt,

in which the terms Yn,· are elements of the 1× 4 vector Yn+1:

Yn+1 =

[
0 Yn+1,x Yn+1,v Yn+1,p

]
,

and Sx, Sv, Sv, and Sq are defined as:

Sx = κm,1ϕxAm,x, Sv = κm,1σvAm,v, Sq = κm,1σqAm,q, Sc = φcd, Sd = φd.

The conditional variance of the bond yield is

Vart (yn,t+1) = (YnΩ1Y
′
n + YnΩ2Y

′
nρt)σ

2
t .

Similarly, the conditional variance of the wealth portfolio/market returns is

Vart (Rm,t+1) = σ2
m,t = (Vv + Vqρt)σ

2
t ,

where Vv = S2
x + S2

v + S2
q + S2

c + S2
d + 2ScSvρcv and Vq = 2SxSvρcv + 2ScSx.
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E. The market risk premium

The risk premium of the wealth/market portfolio can be expressed as

Covt(−mt+1, Rj,t+1) =
(
− λc(Sc + Svρcv)− λxSx − λvSv − λδSq − Scλvρcv

)
σ2
t

+ (−λxSvρcv − λvSxρcv − λcSx − λxSc)qt.
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AIII. Additional figures and Tables

A. Consumption growth persistence and stock-bond correlations

We show the model-implied relationship between consumption growth persistence and

stock-bond correlations for different parameter specifications. Figure A1 describes the results.

Similar to Figure 2, the relationship between CGP correlation and SB correlation is almost

unaffected by the risk-aversion coefficient, inter-temporal elasticity of substitution, and

persistence of the CGP parameter.

B. Consumption growth autocorrelation using overlapping longer horizon

rates

Figure A2 examines consumption growth autocorrelation using overlapping

longer-horizon growth rates. These regressions are identical to equation (6), except that the

dependent variable is the average consumption growth rate from quarter t+ 1 to quarter t+ k.

Each panel plots the coefficient on the interaction term (α2) for different horizons (k), as well as

68%, 90%, and 95% confidence intervals, where the panels differ with respect to the SB

correlation series used and the sample period. While we present results only for the ten-year

nominal SB correlation, corresponding results based on 1-year nominal yields are very similar.

[Insert Figure A2 approximately here]

Graph A of Figure A2 reports the results obtained using the full sample period at horizons

of one to ten quarters. The graph shows that predictability is observed even over very long
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horizons, consistent with the premise that the SB correlation is associated with the correlation

between long-run growth and current consumption growth.

Graph B shows the same result, still based on nominal yields, for the shorter sample in

which TIPS data are available, while Graph C shows the corresponding results using real yields.

While the results based on TIPS are somewhat stronger, both graphs indicate more long-term

persistence in consumption growth in low SB correlation environments.

The final panel of Figure A2 examines the role of the stock-inflation correlation at longer

horizons. As in Table III, a lower stock-inflation correlation decreases the persistence of

consumption growth12, an effect that becomes statistically significant over longer horizons. This

is again inconsistent with the hypothesis that inflation effects are responsible for the relation

between CGP and the SB correlation. While the interpretation of this result is difficult given that

inflation falls outside the scope of our model, the results reinforce the conclusion that the SB

correlation is related to consumption persistence due to the behavior of real rates.

C. Expected consumption growth and uncertainty

Several recent studies (e.g., Nakamura et al. (2017),Bollerslev, Xu, and Zhou (2015))

document the unconditionally negative relationship between economic uncertainty and future

expected consumption growth. Our model implies that this relationship also varies with CGP.

[Insert Table A1 approximately here]

We test this hypothesis in Table A1 using expected consumption growth from the SPF and

12Note that we take the negative sign of inflation to compute the correlation. If our results are driven by the

correlation between stock returns and the expected inflation component of bond yields, we would expect the opposite

of what we find.
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the macro and real uncertainty measures of Jurado et al. (2015). Each panel in the table uses a

different measure of uncertainty. Similar to Table V, we use fourth-quarter data for this analysis.

We first test whether the relationship between expected consumption growth and

uncertainty is more negative during the period beginning 1999. If CGP increases in this sample,

we expect a stronger negative relationship between expected consumption growth and uncertainty.

We use the contemporaneous regression

(11) ∆x̂t = β0 + β1∆UNCt + β2199+,t ×∆UNCt + β3199+,t + ϵt,

where 199+ is a dummy variable that takes a value of 1 starting in 1999 and 0 before, x̂t is the

long-run SPF forecast of consumption growth, and UNCt is a measure of economic uncertainty.

If our hypothesis is true, we expect β2 to be negative.

The first two columns of each panel summarize the results and provide strong support for

our hypothesis. For both uncertainty measures, we find that the relationship between expected

consumption growth and uncertainty is more negative in the later sample.

We also test the hypothesis by replacing the dummy variable with the SB correlation, or

(12) ∆x̂t = β′
0 + β′

1∆UNCt + β′
2ρ̂SB,t ×∆UNCt + β′

3ρ̂SB,t + ϵt,

where ρ̂SB,t is one of the SB correlation estimates. If the SB correlation is negatively related to

CGP, we should obtain positive estimates for the β′
2 parameter.

Overall, the table provides reasonably strong support for our hypothesis. Using the

nominal one-year or ten-year SB correlation in Panels A and B, we find a positive β2 in every

regression, which are statistically significant in most cases. The last two columns of the panels

instead use the real SB correlation. These results are somewhat weaker, which is likely due to the

shorter sample period and collinearity.
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Taken together, these results paint a consistent picture that the negative relationship

between consumption growth and economic uncertainty is stronger when the SB correlation is

negative or when CGP is positive, confirming a key prediction of our model.
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FIGURE A1

Consumption Persistence and Model-Based Correlations (II)

This figure shows the relationships between CGP and the stock-bond return correlation for different
bond maturities and parameter assumptions. The value of the baseline model is shown in solid
horizontal lines. The relationship for the full model is drawn in dashed lines. The panels show the
relationship for different risk-aversion coefficient (A), correlation between consumption growth
and volatility (B), and values of the persistence of the CGP process (C). In Graph C, we also
vary the standard deviation parameter σω so that the unconditional standard deviation of the CGP
process is identical to its value under the baseline parameterization.

A. SB correlations for different values of γ

B. SB correlations for different values of ρcv

C. SB correlations for different values of ω1
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FIGURE A2

Interactive Beta of Consumption Growth Regressions For Multiple Lags

This figure plots the slope coefficient estimates (α̂3,k) from the interactive regression

K∑
k=1

∆ct+k = α0,K + α1,K∆ct + α2,K ρ̂SB,t + α3,K ρ̂SB,t ×∆ct + ϵt+K

for different values of the interval (K). In Graphs A and B, ρ̂SB,t represents the correlation between
stock returns and nominal 10-year bond returns. Graph C uses the correlation with real 10-year
bond returns instead, while Graph D uses the negative of the correlation between stock returns
and inflation shocks. The lines show the 68%, 90%, and 95% confidence intervals computed using
Newey-West standard errors with 12 lags. Graph A is based on the full 1962-2019 sample period,
while other graphs use the 2003-2019 sample.

A. Stock-bond correlations B. Stock-bond correlations (shorter sample)

C. Real stock-bond correlation D. Stock-inflation correlation
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TABLE A1

Uncertainty and Expected Growth

This table summarizes the slopes and Newey-West-adjusted (3 lags) t-statistics from regressing the first-difference in
the SPF long-run consumption growth forecast on the first difference of uncertainty. Some regressions also include
interactions with a 1999+ year dummy or with the SB correlation, which is estimated using 1-year or 10-year
nominal yields or with the 10-year real yield, as well as main effects for these variables. In Panel A, UNC denotes
macro uncertainty, while in panel B it is real uncertainty, both from Jurado et al. (2015). There are 38 observations
(1981-2018), except for when the 10-year real SB correlation is used (2003-2018, 16 observations) for the analysis.

Panel A. Using Macro Uncertainty for UNC

Dependent Variable: ∆x̂t

Bond maturity: 1Y 10Y 10Y Real

∆ UNCt −0.042 0.007 −0.023 −0.023 −0.027 −0.028 −0.055 −0.017
(−1.92) (0.22) (−1.61) (−1.62) (−0.61) (−1.70) (−4.28) (−1.42)

∆ UNCt × 199+ −0.069
(−2.05)

∆ UNCt × ρ̂SB,t 0.133 0.130 0.089 0.085 0.052 0.061
(4.00) (4.36) (1.98) (2.03) (0.87) (0.82)

199+ 0.001
(0.57)

ρ̂SB,t −0.003 −0.001 −0.004
(−1.81) (−0.89) (−1.09)

Adj-R2 0.175 0.250 0.301 0.305 0.260 0.242 0.516 0.499

Panel B. Using Real Uncertainty for UNC

Dependent Variable: ∆x̂t

Bond maturity: 1Y 10Y 10Y Real

∆ UNCt −0.083 −0.008 −0.056 −0.063 −0.064 −0.067 −0.059 −0.058
(−2.32) (−0.18) (−2.80) (−3.71) (2.88) (−3.17) (−1.05) (−0.04)

∆ UNCt × 199+ −0.110
(−2.49)

∆ UNCt × ρ̂SB,t 0.205 0.197 0.138 0.129 0.385 0.419
(3.94) (4.44) (2.46) (2.53) (1.62) (2.83)

199+ 0.001
(0.68)

ρ̂SB,t −0.003 −0.001 0.003
(−1.62) (−0.90) (0.66)

Adj-R2 0.197 0.249 0.296 0.302 0.262 0.244 0.546 0.518
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