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I. Comparison of Procedures’ Estimation

In this section, we recall the procedure of BSW in estimating FDR for selecting

out-performing mutual funds and illustrate the differences with our fFDR+ procedure.

The starting point for both procedures is to controlling for the type I error as in Benjamini

and Hochberg (1995):

(1) FDR = E
(

V

max{R, 1}

)
= E

(
V

R

∣∣∣∣R > 0

)
P(R > 0) = pFDR · P(R > 0),

where the last equality follows from (4). This implies that controlling for pFDR at a given target

τ , also controls for FDR at the same target. Furthermore, for a large number of tests, controlling

for pFDR and FDR is equivalent (see Storey (2002) and Storey (2003)).

Consider the m tests (2) in the absence of the covariate Z and let ti be the test statistic of

test i. Storey (2002) assumes that t1, . . . , tm are independent and the statuses of the null

hypotheses h1, . . . , hm are independent Bernoulli random variables with P(hi = 0) = π0.

Additionally, across i, (ti|hi = 0) and (ti|hi = 1) are identically distributed. When we reject

based on the p-values, for some λ ∈ [0, 1), π0 can be estimated as

(2) π̂0(λ) =
#{pi|pi > λ, i = 1, . . . ,m}

(1− λ)m

where # returns the number of elements in the set; this estimate is conservative biased.35 BSW

35Under independence, there are mπ0 funds with truly zero alpha and their p-values have a uniform distribution in

[0, 1]. Hence, we expect mπ0(1− λ) p-values in the set to fall in [λ, 1]. This number can be conservatively
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choose λ = λ∗ on the grid {0.3, 0.35, . . . , 0.7} such that the mean square error (MSE) of π̂0(λ) is

minimal.36 We set π̂0 = π̂0(λ
∗).

To select out-performing funds with control for the FDR, BSW define FDR+ as a measure

of FDR in a group of funds selected as having significant and positive estimated alphas as

(3) FDR+ = E
(

V +

max{R+, 1}

)
.

With a significant threshold γ and a procedure which selects a fund with a positive estimated

alpha whenever its p-value ≤ γ, BSW estimate FDR+ as

(4) F̂DR
+

γ =
π̂0γ/2

R̂+/m
,

where R̂+ is the empirical number of funds selected as out-performers, i.e.,

R̂+ = #{i|pi ≤ γ, α̂i > 0}. When using this approach to determine out-performing funds with

controlling for FDR+ at a given target τ , we estimate the FDR+ based on a grid of the threshold γ

and use as the rejection threshold the one that producing F̂DR
+

closest to the target τ . We refer to

this procedure as the FDR+.

Next, we conduct an illustration to show the differences in estimation between the

fFDR+ and FDR+. For this, we opt for a sub-period of five years from 2001 to 2004 and

implement the FDR+ and fFDR+ to detect positive alpha funds, with the alphas determined by

the four-factor model of Carhart (1997). In this case, the R-square of the model is used as the

approximated by #{pi|pi > λ}, from which we get (2). For a larger λ, the estimate π̂0 becomes less conservative, as

there are fewer p-values under the alternative belonging to [λ, 1], but its variance gets higher.

36In MSE = E(π̂0(λ)− π0)
2, the unknown π0 is replaced by minλ π̂0(λ) over the λ grid.
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covariate for fFDR+.37 In Figure IA1, we demonstrate how the two procedures work. Based on

the p-values of all considered funds, the FDR+ estimates the proportion of zero-alpha funds in

the whole sample, as a first step, giving π̂0 ≈ 0.84. It then selects the positive estimated alpha

funds with smallest p-values until the estimated F̂DR
+

γ reaches a given FDR target. For the sake

of exemplification, we choose the FDR target τ = 45%, so that both methods select a substantial

number of funds.38 Here, all funds with p-values less than or equal to γ = 0.008 are selected by

the FDR+. The threshold γ is depicted by the green dashed line in Panel C and all funds

corresponding to the points on the left of the vertical line are selected. By contrast, the fFDR+

considers only the set of positive estimated alpha funds and estimates the proportion of zero-alpha

funds in this set as a step function of z (the quantiles of R-square).

[Insert Figure IA1 approximately here]

In this experiment, we split the sample into five bins based on the ranking of the covariate

z; thus, π̂0(z) is a function with five “steps”. In this particular case, π̂0(z) is a non-decreasing

function of z. The procedure continues with the estimation of the density function f(p, z) and of

the functional q-value q(p, z). The fFDR+ selects all funds with estimated q-value less than or

equal to 0.45: those funds correspond to the points below the red dashed line (the q-value = 0.45

line) in Panel C. This clearly shows that, for the same target, the fFDR+ selects significantly

more funds than FDR+ (185 versus 16). More importantly, the funds selected by the FDR+ are

not merely a subset of those selected by fFDR+. Panel D displays the distribution of the selected

funds with respect to the p-value and z.

We observe that the fFDR+ assigns more weight to some funds with smaller z (thus,

37The details of the funds and the calculation of the p-values are deferred to Section VI.

38If we choose any target τ ≤ 40%, the FDR+ selects no funds.

3



smaller R-square), but the weight is not equally distributed across the funds with the same level of

z. To explain this, we investigate further the second component of the posterior r(p, z), the density

function f(p, z). We produce in Figure IA2 the heatmap of the density function and see that the

value of f(p, z) is higher where z is small. This combines with the low value of π0(z) for small z,

which is presented in Panel B of Figure IA1, implying a low value of the posterior probability of

being null r(p, z) – which is used to determine the threshold for rejecting the null. Consequently,

more funds with small z are selected by the fFDR+ as profitable, regardless of the fact that the

p−value may get some relatively high values (0.2–0.6) as shown in Panel D of Figure IA1.

[Insert Figure IA2 approximately here]

II. Simulation Execution

We summarize the simulation procedure as follows.

As a first step, we generate the covariate and alpha for each of the m funds. We generate

the covariate vector (z1, z2, . . . , zm) with each element drawn from the uniform distribution [0, 1]

and assign them to the funds. For the cases (11) or (12), we determine c in (14) such that∫ 1

0
π0(z)dz = π0 for a given π0 > 0. For each fund i, we draw hi from the Bernoulli distribution

with success probability 1− π0(zi) and assign a zero alpha to fund i with hi = 0. Finally, for the

remaining funds, we draw true non-zero alphas from the given distribution (11) or (12) and assign

them such that a fund with a smaller z has a smaller alpha. For the case (13), we draw alphas from

the distribution and then assign them to the funds; again, a fund with a smaller z has a smaller

alpha.

In the second step, we simulate the return factors from a normal distribution with

4



parameters equal to their sample counterparts. The loadings of these factors are also drawn from a

normal distribution with parameters equal to their sample counterparts obtained from the fund

level estimation of equation (10). We consider balanced panel data for 2, 000 funds with 284

time-series observations; the number of 2, 000 is chosen to be close to our real sample of 2,224

funds, whereas the number of 284 periods is the median of our sample funds’ observations. In

unbalanced panel data, the number of observations for each fund is drawn randomly with

replacement from the set of the number of observations of the funds in the real-data counterpart.

Under cross-sectional independence, the noise term εi,t is drawn from a normal distribution

N (0, σ2
ε), where, as in Barras et al. (2020), σε is set equal to the median of its real-data

counterpart, that is, approximately 0.0183 for our sample. Under cross-sectional dependence, we

follow Barras et al. (2010) (BSW henceforth) and assume that all fund residuals load on a

common latent factor Gt, whereas the out-performing and under-performing funds load on the

specific factors G+
t and G−

t , respectively. Thus,

(5) εi,t = γGt + γG+
t 1αi>0 + γG−

t 1αi<0 + ηi,t,

where 1αi>0 and 1αi<0 are, respectively, out-performing and under-performing indicators taking

the value 1 if the fund i is out-performing or under-performing, and 0 otherwise. The three latent

factors Gt, G+
t and G−

t are assumed to be mutually orthogonal and to the four risk factors and

have a normal distribution N (0, σ2
G), where, from BSW, σG is set equal to the average of the

monthly standard deviations of the three risk factors (size, book-to-market and momentum). The

coefficient γ is set equal to the average of the loading of the three risk factors of the 2,224 funds

in our sample. Finally, {ηi,t}i are uncorrelated and drawn from the normal distribution N (0, σ2
η),
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where ση is chosen such that σε equates to the median of its real-data counterpart, as in the

independent case.

In the last step, we implement the fFDR+ and FDR+ and compute their performance

metrics. More specifically, based on the simulated data from the previous step, we calculate the

Carhart four-factor model alpha and the corresponding p-value for each fund. We use the resulting

p-value, the estimated alpha and the covariate as inputs to the fFDR+ and FDR+ procedures.

At a given target of FDR, we calculate for each method a ratio of falsely classified funds F̃DR
+

and a detected ratio P̃ ower
+

:

(6) F̃DR
+

=
Ṽ +

max
{
R̃+, 1

} and P̃ ower
+

=
C̃+

T̃+
,

where R̃+ is the number of classified out-performing funds and, among them, Ṽ + funds are truly

zero-alpha or under-performing funds. T̃+ is the number of truly out-performing funds in the

population and, among them, C̃+ funds are classified correctly.

The previous three steps are repeated 1,000 times and we use the average F̃DR
+

and

P̃ ower
+

as estimates for the actual FDR and power.

III. Variance Comparison of FDR Estimation

In this section, we investigate the performance of the two methods in terms of FDR

estimation variance. As described in Section II, the actual FDR of the two methods is estimated

by the average of the ratio of falsely classified funds F̃DR
+

. As the iterations are independent,

the variance of the estimated actual FDR is proportionate to the variance of the F̃DR
+

. In
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Figures IA3, IA4 and IA5, we report the gap in variance of the F̃DR
+

of the FDR+ over the

fFDR+. We observe that the gap curves are either varying close to zero or positive for most of

the cases of the distributions. This implies that the variance of the estimated actual FDR of the

fFDR+ is less than that of the FDR+.

[Insert Figure IA3 approximately here]

[Insert Figure IA4 approximately here]

[Insert Figure IA5 approximately here]

IV. Additional Simulation Results

In supplementing Section V of the main manuscript, we present here the performance of

the fFDR+ in terms of FDR control and power under several settings. We first present the

performance of fFDR+, where π0(z) can take three different forms. We then show the results

corresponding to balanced panel data under cross-sectional dependence, before proceeding to the

results for unbalanced panel data under both cross-sectional independence and dependence.

Finally, we exhibit simulation results for the case where alphas are drawn from a single normal

distribution.

A. Results for balanced panel data under cross-sectional dependence

We present in Figures IA6–IA8 the cases where the data are generated as balanced panels

under cross-sectional dependent errors. The comparisons in terms of power between fFDR+ and

FDR+ are reported in Tables IA2–IA6.
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[Insert Figure IA6 approximately here]

[Insert Figure IA7 approximately here]

[Insert Figure IA8 approximately here]

[Insert Table IA2 approximately here]

[Insert Table IA3 approximately here]

[Insert Table IA4 approximately here]

[Insert Table IA6 approximately here]

B. Results for unbalanced panel data

We present the performance of the fFDR+ under both cross-sectional independence and

dependence. Figures IA9–IA11 depict the FDR control of the fFDR+, while the power

comparisons are given in Tables IA7–IA9.

[Insert Figure IA9 approximately here]

[Insert Figure IA10 approximately here]

[Insert Figure IA11 approximately here]

[Insert Table IA7 approximately here]

[Insert Table IA8 approximately here]

[Insert Table IA9 approximately here]
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C. Simulation results for single normal distribution

We present the simulation results for a special case of continuous distribution where the

mixture (13) has only one component. Specifically, we consider the case π2 = 0, α ∼ N (µ, σ2)

and, based on Jones and Shanken (2005) and Fama and French (2010), we use

µ ∈ {−0.8,−0.5, 0} and σ ∈ {1, 1.5, 2, 2.5, 3} (both parameters’ values are annualized and in %

terms).39

Figures IA12 and IA13 present the performance of the fFDR+ procedure when the

alphas are drawn from balanced and unbalanced panel data, respectively. It is shown that the FDR

is controlled at any given target.

[Insert Figure IA12 approximately here]

[Insert Figure IA13 approximately here]

In Table IA10, we compare the performance of fFDR+ and FDR+ in terms of power.

As π+ depends on both the mean µ and variance σ2 of the distribution, we need to distinguish the

value of π+ from the pairs (µ, σ). We provide in Panel A additional information about π+, which

helps us assess the impact of the magnitude of positive alphas on the power. For instance, for

π+ ≈ 40%, the power of the two procedures for (µ, σ) = (−0.8, 3) is significantly higher than for

(µ, σ) = (−0.5, 2). We observe a boost in power for both methods with increasing σ (for given

non-positive µ), resulting in larger proportion and magnitude of positive alphas. In all the cases

39Jones and Shanken (2005) assume that the fund alphas are drawn from a normal distribution and their estimates

for the mean and standard deviation are based on prior beliefs. They find that the mean is 1.3%-1.4% per annum

before expenses (about 2%) and the standard deviation is 1.5%-1.8%. In addition, Fama and French (2010) assume

that the fund (gross) alpha population has a normal distribution centered at 0.
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under consideration, the fFDR+ dominates FDR+ in terms of power and this gap soon becomes

omnipresent for σ ≥ 1.5 reaching up to 18%.

[Insert Table IA10 approximately here]

D. Results for alternative forms of π0(z)

We consider three forms of π0(z), including decreasing, increasing and constant with

respect to z. For the first two cases, we specify π0(z) based on f(z) = −1.5(z − 0.5)3 + c or

f(z) = 1.5(z − 0.5)3 + c. In the interest of space, we present in Tables IA11–IA13 results in

terms of power for the mass distribution of alphas with balanced panel data which is generated

under cross-sectional independence. For all forms of π0(z), even when this is constant, we

conclude similarly to the case of π0(z) with an up-and-down shape presented in the main

manuscript. Results for other distributions as well as under cross-sectional dependence convey the

same message and are available upon request.

[Insert Table IA11 approximately here]

[Insert Table IA12 approximately here]

[Insert Table IA13 approximately here]

V. Performance of fFDR+ when Using a Non-informative

Covariate

In what follows, we present the simulation results when a non-informative covariate is

used instead of the informative as in the simulations in the main paper. The simulated data is the

10



same as in the main paper, except that for each iteration a covariate is drawn randomly from the

uniform distribution on [0, 1] and is used as covariate input of the fFDR+. This covariate is

non-informative in that it has no connection to the true alpha of funds and, thus, no information

for detecting truly positive alpha funds. We see that the fFDR+ controls well FDR under all

alpha distributions, similarly to Figures 1, 2 and 3 main paper. In the interest of space, these

results are not reported but can be made available upon request. In terms of power, the fFDR+

with use of the non-informative covariate performs very similarly to the FDR+ as exhibited in

Table IA14.

[Insert Table IA14 approximately here]

VI. Varying Number of Observations and Funds

In the simulations in the main paper, we have assumed a sample of m = 2,000 funds,

which reflects our actual dataset for the whole period from 1975 to 2022. When constructing a

portfolio, we usually use sub-periods of five years and the number of alive funds in these

sub-periods naturally varies. In this section, we investigate the impact of varying number of

observations T per fund and the number of funds m on the power.

In Table IA15, we present the outcomes for different underlying distributions of fund

alphas, when we control FDR at a 10% target and use balanced panel data with cross-sectional

independence. We vary m from 500 to 3,000 and T from 120 months (i.e., 10 years) to 420

months (i.e., 35 years). It is evident from the reports that the power of the fFDR+ increases at a

much faster pace with increasing T . The power of the fFDR+ slightly decreases with rising m,

whereas such is observed for the FDR+ mainly in Panel C. This is not a substantial concern,
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though, as in reality we do not have a very large number of alive funds in a given sub-period.

Overall, the power difference between the fFDR+ and the FDR+ can reach 34%.

[Insert Table IA15 approximately here]

For T = 120, both procedures have low power. Empirically, when constructing a portfolio

of mutual funds, we usually use in-sample sub-periods of 5 years. In these cases, the investors

may have to raise the FDR target to a higher level as explained in the previous section.40 In Table

IA16, we focus the spotlight on (small) m = 500 and T = 60 (i.e., 5 years). It is shown there that

both methods yield even lower power at the FDR target of 10%. By increasing the target, the

power of the fFDR+ in detecting out-performing funds rises faster than that of the FDR+,

especially for the discrete and mixed normal distributions.

[Insert Table IA16 approximately here]

VII. Estimation Errors in Covariates

In the simulations in the main paper, we consider a simple covariate where in the set of

non-zero alpha funds, the ranking of the funds’ alpha is the same as that of the funds’ covariate.

This does not hold in the whole population. Put differently, one cannot simply rank the funds

based on a covariate to distinguish the out-performing funds from the zero-alpha and the

under-performing ones.

Here, we further study the behaviour of our fFDR+ approach by adding a noise to the

original covariate that reflects potential estimation biases, as all covariates in the real data are

40In fact, in order to construct non-empty FDR-based portfolios with use of five-year in-samples, BSW introduce

a procedure where they allow the estimate of FDR to be above 70% for several years.
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calculated based on a certain sample period. More specifically, instead of using the covariate Z as

in our previous simulations, we use Z ′ = (z′1, . . . , z
′
m) given by

(7) z′i = zi + ηi,

where ηi denotes the noise and is generated independently from a normal distribution N(0, σ2
η).

Alternatively Z ′ can be viewed as a realization of some fund characteristic which aims to capture

Z. Depending on the scale of the estimation error, the realized covariate can have different levels

of information. In reality, we do not know the actual estimation errors in the covariates. Thus, we

simulate low to high noise in our covariates. In particular, we consider two different values of ση

including σ1 = 0.5/
√
12 and σ2 = 1/

√
12. These values are based on the fact that the covariate

Z ∼ U [0, 1], which has a standard deviation of 1/
√
12. We confirm that the fFDR+ controls

well for the FDR in this setting and the figures are virtually the same as those presented in Section

V.A in the main paper. This is the most important characteristic of the fFDR+ we would expect,

that is, the ability to control well for the risk even when the new information contains noise.

In Table IA17, we provide further information by presenting the power (at FDR target of

10%) of the fFDR+. Comparing with Table 1, the power is lower but still remarkably higher

than that of the FDR+ with a varying gap across cases of the alpha distribution and the choice of

ση. As will be shown in our empirical analysis, the fFDR+ with use of each covariate gains

significant power over the FDR+. Therefore, we can assume that the covariates in our

application have relatively less noise than the ones in this simulation.

[Insert Table IA17 approximately here]
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VIII. Fund Characteristics as Informative Covariates

As part of our empirical investigation of the fFDR+ approach, we consider six covariates

that may convey information about the performance of mutual funds. They are shown to be

persistent and, therefore, can predict the performance of mutual funds. We also propose four new

covariates based on asset pricing models.

First, we study the R-square of Amihud and Goyenko (2013), which is estimated from the

Carhart four-factor model and measures the activeness of a fund. When a fund replicates the

market, the R-square is close to one; if, instead, it is more active, it has a small R-square and, in

this case, according to the authors, funds tend to perform better.

The second covariate is the Fund Size of Harvey and Liu (2017). This takes into account

both the fund size, which is the total net assets under management (TNA) of a fund, and the

industry size, which is the total assets under management of all active mutual funds in the sample

(sum of TNA). More specifically, for fund i at time t, it is defined as

(8) Fund Sizei,t = ln
TNAi,t

IndustrySizet
− ln

TNAi,0∗

IndustrySize0∗
,

where t = 0∗ corresponds to the time of the first TNA observation in our sample. The Fund Size

reflects the growth in scale of a fund relative to the whole active mutual fund market. Harvey and

Liu (2017) show a significant negative relationship between Fund Size and funds’ performance.41

41Pastor, Stambaugh, and Taylor (2015) and Chen, Hong, Huang, and Kubik (2004) as well as Zhu (2018),

respectively, argue that the industry size and the fund size (approximated by the logarithm of the fund’s TNA) have a

negative impact on the funds’ performance. We use the Fund Size of Harvey and Liu (2017) as it incorporates

information of both covariates. Other studies on the relationship between fund size and performance and funds’
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The third covariate is the Return Gap of Kacperczyk et al. (2008), which aims to reflect

the unobserved actions of the funds. Mutual funds usually disclose their portfolio holdings and

return periodically, e.g., quarterly or semi-annually. The investors are unaware of the funds’

trading activities in the period of consecutive reports. The Return Gap of a fund is defined as the

difference between the return that is disclosed by the fund and the return that the fund would have

based on disclosure of its last portfolio holdings. Kacperczyk et al. (2008) show that the funds’

performance can be predicted by their past return gaps; mutual funds with higher past return gap

tend to perform better in the future.

Our fourth covariate is the Active Weight of Doshi et al. (2015), which aims to gauge the

fund’s activeness level and is given by the sum of the absolute differences of the stock value

weights and the actual weights that the fund assigns to the stocks in its portfolio holdings. They

show that funds with higher active weight tend to perform better. We note that the active weight is

also related to the fund’s turnover, which plays a role in explaining performance as pointed out in

Pastor, Stambaugh, and Taylor (2017) and BSW. To obtain meaningful values for the active

weight and the return gap, as in Kacperczyk et al. (2008) and Doshi et al. (2015), we require each

mutual fund to hold at least 10 stocks in its portfolio at any time.

The fifth covariate is the Fund Flow. The interaction of fund flow and funds’ performance

has been studied quite extensively such as in Sirri and Tufano (1998), Berk and Green (2004),

Harvey and Liu (2017), Capponi, Glasserman, and Weber (2020) and Bessembinder, Chen,

Cooper, Xue, and Zhang (2023), among others. Zheng (1999), in particular, discovers that funds

receiving money perform better than those that lose money. The author also shows that investors

holding liquidity (e.g., Yan (2008)) or funds’ merger (i.e., McLemore (2019)) document the same conclusion. Fund

size is also strongly related to skills as great investment idea is difficult to scaled up (see Barras et al. (2022)).
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can earn abnormal returns using small funds’ flow information. Here, we follow Bris, Gulen,

Kadiyala, and Rau (2007) and define Fund Flow at time t as

(9) Fund Flowt =
TNAt − (1 + rt)TNAt−1

(1 + rt)TNAt−1

,

where rt is the return of the fund in the period t− 1 to t.

Finally, we study the information carried by expenses and fees, which is reflected in

expense ratio. The impact and informativeness of this funds’ characteristic on active mutual fund

performance has been discussed by Berk and Green (2004), BSW, and Berk and van Binsbergen

(2015).

IX. Data-based Simulations

In this simulation experiment, we design a setting close to our later empirical exercises, in

which the simulation data retains the dependencies among alphas and covariates as in the real

data.42 Since we construct portfolios based on in-sample of five-year data (as will be presented in

Section VI in the main paper), we opt data on returns and covariates of all funds in a five-year

period from January 1999 to December 2003. This is the period that offers us the largest number

of funds (1,567) having all ten covariates.

42We additionally conduct a simulation set which is similar to BSW and Andrikogiannopoulou and

Papakonstantinou (2019). Our conclusions on the advantages of the covariate-augmented method remain under this

setting regardless of different alpha distributions, balanced and unbalanced data structures, and cross-sectional

dependent or independent error terms. For the sake of space, the results are available upon request.
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A. Data generating process

The data generating process is as follows.

• First, we calculate each fund’s alpha, beta coefficients (b, s, h,m) and residuals of the

Carhart four-factor model. We then calculate the correlation coefficients between alpha and

all betas (b, s, h,m) across all 1,567 funds. For each fund, we also calculate the covariates

mentioned in Section VIII where R-square, Beta, Sigma, Sharpe and Treynor ratios are

from the asset pricing models, whereas Active Weight, Return Gap, FundSize, Expense

Ratio and Fund Flow are obtained from averaging the available values realised over the five

years.43 Similarly, we calculate the correlation coefficient matrix of 11 vectors for alpha and

ten covariates across 1,567 funds. To determine the probability of being truly zero-alpha of

each fund, we estimate π0(z) corresponding to each of the 10 covariates, then average

across the covariates to have an empirically representative π̂0(z).

• Second, in each iteration of the simulation,

– we generate simulated alphas for funds such that the correlation coefficients between

the alpha and the b, s, h,m are the same as in the real counterpart. We then assign zero

for zero-alpha funds based on the representative π̂0(z). We denote the simulated alpha

as αs.

– we generate 10 simulated covariates such that the matrix of correlation coefficients

43The results are similar if we instead use the average over the final year. Averaging available values of each

covariate over the five years gives us a higher number of funds as there are a number of funds missing covariate

values in the final year.
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among the 11 vectors including covariates and αs is the same as the real counterpart

calculated above.44

– we generate the simulated return of each fund via the following formula

(10) Ri,t = αs
i + bi.Rmkt,t + si.SMBt + hi.HMLt +mi.Momt + ϵit,

where the noise ϵi,t is randomly drawn from the collected residuals via the stationary

bootstrap procedure of Politis and Romano (1994) with an average block length of 10

following literature.

– we regress the simulated returns of each fund on the four factors to obtain α̂ and

calculate the related p−value (based on two-sided t−tests).

– then, generated covariates are transformed to a unit interval [0, 1] as the formula

described in Section II.A, and we implement the FDR+ and fFDR+ procedures,

control for FDR at predetermined targets, to detect truly positive Carhart alpha funds

with use of the α̂s, calculated p−values and simulated covariates.

• In each iteration, by comparing the simulated αs and the selected out-performing funds, we

compute the rate of falsely selected funds among those classified as out-performers and the

rate of truly out-performing funds detected. The two metrics are averaged across 1,000

replications to obtain estimates for the actual FDR and the power of each procedure.

We present our analyses of the performance of the fFDR+ with use of each covariate.

Figure IA14 depicts the performance of the fFDR+ in terms of FDR control in its left panel and

44We present details in Section B the procedure generating the correlated vectors.
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power in its right panel (presented by thin dotted or dashed lines) and compare with that of the

FDR+ (presented by a thick red solid line). First, it is clear that all procedures asymptotically

control for FDR at any given target (from 0.05 to 0.95), and the fFDR+ with use of any one of

the covariates, gains higher power than the FDR+. Second, the covariates differ in

informativeness level, for example, the Sigma gains higher power with a gap of around 10%

compared to the FDR+, while the Expense Ratio and Fund Flow are the least powerful among

the fFDR+ ones.

[Insert Figure IA14 approximately here]

B. Dependent data generating process

In this section, we formally present our procedure to generate dependent data described in

Section IX. Given a set of linearly independent vectors {X1, . . . , Xk} in vector space Rn, n > k

and (column) vector of correlation coefficients ρ = (ρ1, . . . , ρk)
′, we generate a vector Y in Rn

such that correlation coefficient of Y and Xi is ρi, i = 1, . . . , k. The mechanism to generate Y is

designed as follows.45

First, we scale X1, . . . , Xk so that each of them has mean zero and standard deviation of

one and denote by X the matrix with columns the Xis. To ease notation, we keep using these

notations after scaling. Note that the correlation coefficient of Y and Xi is not effected by the

aforementioned scaling.

Next, we generate a vector U of length n from the Gaussian distribution. We denote the

residuals of the multivariate regression of U on X by e, which is in Rn. We find

45Readers can easily implement the mechanism using the freely available R package faux of DeBruine (2021).
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X∗ = {X∗
1 , . . . , X

∗
k} such that the scalar product Xi ·X∗

j = 1 if i = j and 0 if otherwise. This can

be done via singular value decomposition X = TDV ′, where T and V are orthogonal matrices of

sizes n× n and k × k, respectively, and D a n× k matrix with zeros everywhere except the main

diagonal elements which are positive. The columns of W = TD̃V ′ form the X∗, where D̃

satisfies D′D̃ = Ik. Indeed, X ′W = V D′T ′TD̃V ′ = Ik which is identity matrix of size k.

Finally, set Y = Wρ+ σe where σ2 = 1−ρ′Cov(W )ρ
V ar(e)

and Cov and V ar are covariance and

variance, respectively. We have that Cov(Y,Xi) = Cov(Wρ+ σe,Xi) = Cov(Wρ,Xi) =∑k
j=1 ρjCov(X∗

j , Xi) =
∑k

j=1 ρj[E(X∗
jXi)− EX∗

jEXi] = ρi since EXi = 0 and E(X∗
jXi) = 0

for i ̸= j and 1 otherwise. From the scaling step V ar(Xi) = 1, and it is easy to see that

V ar(Y ) = V ar(Wρ) + σ2V ar(e) = ρ′Cov(W )ρ+ σ2V ar(e) = 1. Thus, the correlation

coefficient of Y and Xi is Cov(Y,Xi)√
V ar(Y )V ar(Xi)

= ρi.

When generating the simulated αs, the X consists of b, s, h,m, and ρ consists of

correlation coefficients of α and each of the b, s, h,m.

When generating the 10 simulated covariates, given αs and the real correlation coefficient

matrix of 10 vectors, the first covariate Z1 is generated such that its correlation coefficient with αs

equals the real one. The second covariates Z2 is generated such that its correlation coefficients

with Z1 and αs are the same as the real ones, and so on. The final covariate Z9 is generated such

that its correlation coefficients with Z1, . . . , Z9 and αs are the same those in the real correlation

coefficient matrix. It is also noted that, in our simulation, n =1,567 which is a very large number

comparing to 11. Thus, the k′ generated vectors (αs and k′ − 1 covariates) are likely to be linear

independent in Rn, thus the (k′ + 1)th vector can be generated, k′ = 1, . . . , 10.

20



X. Results for Alternative Target of FDR

In this section, we repeat the exercise with the FDR target of 20%. Figure IA17 presents

the alpha evolution of the individual covariates. Table IA18 shows the average n-year alpha of

those portfolios. Finally, Table IA19 presents the statistic metrics for all mentioned portfolios.

[Insert Figure IA17 approximately here]

[Insert Table IA18 approximately here]

[Insert Table IA19 approximately here]

XI. Results from Using an Alternative Proxy of Covariates

Here, we present in Figure IA18 the alpha evolution of fFDR10% portfolios where the

proxy for each covariate is based on whole data in the in-sample period instead of the data in the

final year as in the main manuscript. We see that the performance of the portfolios does not vary

significantly.

[Insert Figure IA18 approximately here]

XII. Comparison of Portfolios’ Trading Metrics

Here, we evaluate our portfolios in regard to a set of trading metrics, including the

annualized estimated alpha α̂ of the Carhart four-factor model, its bootstrap p-value and t-statistic

(with use of heteroskedasticity and autocorrelation-consistent standard error), the annual standard

deviation of the four-factor model residuals (σ̂ε), the geometric mean return in excess of the

one-month T-bill rate, the annual Sharpe ratio and the annual Information Ratio α̂/σ̂ε. All metrics

are presented in Table IA1.
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[Insert Table IA1 approximately here]

XIII. Wealth Evolution

In Figure 4 in the main paper, we study the alpha evolution of the portfolios over time.

However, an investor may be interested in the gain in value. Figure IA15 shows the growth of 1

dollar that the investor invests in each portfolio at the beginning of 1982. Ultimately, at the end of

2022, this amount grows to about 68 dollars if she chooses the fFDR10% portfolio with Active

Weight as the covariate, as opposed to just 41, 51 and 48 dollars with the FDR10%, the equal

weight plus and equally weighted portfolios, respectively. This exercise reveals the potential

profitability of an investor who had a perfect oracle in 1982 about the methods and the covariate

that would play out over the next 41 years.

[Insert Figure IA15 approximately here]

Similarly to Figure IA15, in Figure IA16 we depict the wealth evolution of one dollar

invested in the fFDR10% portfolios based on the combined covariates. At the end of 2022, 1

dollar grows to about 64 to 76 dollars if the investor invests in one of the fFDR10% portfolios

with the covariates obtained from LASSO, elastic net, Ridge, PC1 and OLS regressions.

[Insert Figure IA16 approximately here]

XIV. Sub-period Performance

By construction, Figure 4 in the main paper contains returns which start from January

1982 and are not representative of the recent mutual fund performance. In order to investigate the
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contribution of the returns over different periods to the performance of the portfolios, we split the

whole period into four non-overlapping sub-periods including the first three decades 1982–1991

(P1), 1992–2001 (P2), 2002–2011 (P3), and the remainder. For the final sub-period, we consider

separately the part that does not cover the Covid-19 pandemic, that is, 2012–2019 (P4a), and the

part that does, that is, 2012–2022 (P4b). We present in Table IA20 the alpha, its t−statistic and

Sharpe ratio of portfolios (with a FDR target τ = 10%) in the sub-periods.

[Insert Table IA20 approximately here]

In terms of alphas, it is clear that all portfolios performing well in the first two sub-periods

suffer a decline in the third sub-period. In P3, we observe negative alphas for the FDR10%

portfolio and the fFDR10% portfolios with FundSize, Active Weight, Return Gap, Expense

Ratio covariates and combined covariates based on shrinkage methods. Note that this sub-period

suffers from the global financial crisis 2007–2008. In the sub-period P4a, this decrease continues

for 6 out of 15 fFDR10% portfolios (including those with combined covariates) while the others

rebounce. Moving from P3 to P4b, we find that alphas of all portfolios are decreasing and this

reflects the severe impact of the pandemic. The t-statistic columns show that most portfolios have

significantly positive alphas in the first sub-period. Interestingly, for the Sharpe ratio, we witness

the highest reports in the sub-period P4a and even in P4b. This also occurs in the Equal Weight

portfolio, that is, the portfolio that selects all the eligible funds in the in-sample windows and

invests them equally in the following year; thus, the high Sharpe ratio in the final sub-period

partially comes from the whole mutual fund market. The Equal Weight Plus portfolio, which

invests in all funds with positive estimated alphas in the previous five years, is always better than

the Equal Weight one. The alphas of the fFDR10% portfolios, by contrast, are nuanced

depending on the covariate used; except in the sub-period P4b, most of them beat the equally
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weighted one in all the other sub-periods in terms of alpha (with notable exceptions of the

FundSize, Active Weight and Return Gap covariates in the third sub-period).

XV. Comparison to Sorting Portfolios

First, we describe the single- and double-sorting portfolios which are traditionally

constructed in the literature. Specifically, the single-sorting portfolios based on a covariate are as

in Kacperczyk et al. (2008) and Doshi et al. (2015), and the double-sorting based on a covariate

and the past alpha are as in Amihud and Goyenko (2013).

To construct the single-sorting portfolio for each covariate, at the end of each year from

1981, all the mutual funds are sorted into deciles (quintiles) according to the given covariate. For

the covariate that has a negative/positive relationship with the performance of the funds, the funds

in the bottom/top deciles (quintiles) are selected. These form a portfolio to be invested in the

following year. To form the double-sorting portfolio, the funds selected in the single-sorting

portfolio are again sorted into decile (quintile) according to the past alpha. The funds in the top

decile (quintile) form the portfolio to be invested in the following year. This process is rolled

forward until the end of the sample period. For consistency with the fFDR portfolios, we use the

same type of 5-year rolling window, i.e., each time we use the aforementioned observed

covariates and the alpha and covariates calculated based on the last five years.

The performance in terms of alpha of those portfolios from 1982 to 2022 is presented in

Table IA21. Our results suggest that most of the sorting portfolios, except the Active Weight and

Sharpe ratio, have negative or negligible positive alphas at the end of 2022, which contrasts with

the assumption of a linear relationship between the covariate and the funds’ performance.
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Obviously, sorted portfolios perform better if they are based on the correct sign of the correlation

between the underlying covariate and our funds’ performance. We see that the portfolios based on

fFDR gain significant positive alphas and beat the corresponding sorted portfolios in most cases.

[Insert Table IA21 approximately here]

XVI. FDRτ Portfolios Conditional on Covariates

In what follows, we combine fund characteristics and FDR+ to construct FDRτ

portfolios conditional on covariates. For each covariate, we first partition the sample into quintiles

based on the value of each mutual fund’s covariate (in ascending order). We then implement the

BSW approach to select funds in each quintile, generating five FDR10% portfolios. The

portfolios are constructed in the same fashion as the FDR10% portfolios in the main paper. This

way we are able to examine the performance of the portfolio of selected funds in each quintile.

Table IA22 presents the portfolios’ alphas based on monthly fund returns from 1982 to

2022. For convenience, suppose we look at the R-square covariate. Starting from the end of

December 1981, we use past five years historical data to calculate inputs including the p−value,

estimated alpha and R-square. We partition the funds into quintiles based on the covariate. For

each quintile q = 1, . . . , 5, we implement the FDR+ procedure of BSW at FDR target of 10% to

select a group of funds invested in the year 1982. At the end of December 1982, we repeat the

process: we calculate the p−value, the alpha estimate and the R-square based on the past five

years’ data; we partition funds into quintiles, and for each of them we implement the FDR+ to

select funds to invest in 1983. We repeat this process until the end of December 2021 to select
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funds for each quintile q portfolio. For ten covariates, we obtain 10× 5 = 50 portfolios which we

present in Table IA22.

[Insert Table IA22 approximately here]

We observe that among the five well-known fund characteristics (R-square, Active

Weight, FundSize, Return Gap and Fund Flow), only Active Weight shows a clear pattern in

which the portfolio of funds from the group of higher active weight performs better. Our

experiment suggests that, except from Fund Flow case, the two-step procedure (i.e., first ranking

funds based on a covariate and then implementing the FDR10%) does not exploit the

informativeness of the covariate or offer a clear strategy. This implies that our fFDR method

cannot be substituted by or be considered as overlapping with the two-step procedure.

XVII. Restricted Data

As supplementary to our empirical study of Section VI, we repeat here our experiments

for a data subset where a mutual fund enters the sample when its TNA reaches $15 million

(adjusted for inflation as of January 2022). This choice of threshold is consistent with Pastor et al.

(2015) and Zhu (2018). Figure IA19 exhibits the alpha evolution while Table IA23 shows the

average n-year alpha for the fFDR10% portfolios based on each individual covariate. Similarly,

we present in Figure IA20 and Table IA24 the fFDR10% results of the portfolios based on

combinations of the covariates.

[Insert Figure IA19 approximately here]

[Insert Table IA23 approximately here]

[Insert Figure IA20 approximately here]

[Insert Table IA24 approximately here]
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XVIII. Selecting Unprofitable Funds with fFDR

In this part, we obtain, by analogy to the fFDRτ portfolio, a selection of unprofitable

funds. First, consider a selection of R− under-performing funds including V − wrongly selected

zero-alpha or out-performing funds. We define

(11) FDR− = E
(

V −

max{R−, 1}

)

and

(12) pFDR− = E
(
V −

R−

∣∣∣∣R− > 0

)
.

If a fund i with p-value pi and negative estimated alpha (α̂i < 0) is selected as

under-performing fund whenever pi < γ, then FDR− is estimated as

(13) F̂DR
−
γ =

π̂0γ/2

R̂−/m

where R̂− = #{i|pi < γ, α̂i < 0} and π̂0 is calculated as in equation (2) in the main manuscript.

At a given target τ of FDR−, we form the FDR−τ (fFDR−τ ) portfolio of

under-performing funds similarly to the FDRτ (fFDRτ ) portfolio of out-performing funds.

Specifically, we establish the FDR−τ portfolio using the same γ grid as for the FDRτ and form

the fFDR−τ portfolio by implementing the fFDR procedure (with a specific covariate) on the

set of non-positive estimated alpha funds to control pFDR− at the same level as the portfolio

FDR−τ . The following tables present the average n-year alpha of the portfolios at target
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τ = 10% (Table IA25) and their trading metrics (Table IA26). We also construct the Equal

Weight Minus portfolio, which includes all funds with negative estimated in-sample alpha

invested in the following year.

[Insert Table IA25 approximately here]

[Insert Table IA26 approximately here]

28



TABLE IA1

Comparison of performance statistics of all considered portfolios with τ = 10%

The table compares the portfolios with regard to metrics including the annual Carhart four-factor
alpha (α̂, in %) with its bootstrap p-value and t-statistic (with use of Newey–West
heteroskedasticity and autocorrelation-consistent standard error), the annual standard deviation of
the four-factor model residuals (σ̂ε, in %), the mean return in excess of the one-month T-bill rate
(in %), the annual Sharpe ratio and the annual Information Ratio (IR = α̂/σ̂ε). Panel A reports
the metrics calculated based on the portfolios’ return from January 1982 to December 2022 while
Panel B reports those based on return from January 1982 to December 2019.

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR
Panel A: Whole sample

R-square 0.84 (0.41) 0.83 4.97 6.71 0.51 0.17
Fund Size 0.20 (0.89) 0.19 4.98 6.13 0.46 0.04

Active Weight 0.73 (0.41) 0.84 4.16 7.09 0.51 0.18
Return Gap 0.31 (0.75) 0.34 4.46 6.70 0.49 0.07
Fund Flow 0.33 (0.75) 0.33 4.57 6.54 0.49 0.07

Expense Ratio 0.94 (0.31) 0.97 4.24 6.95 0.54 0.22
Sharpe 0.17 (0.91) 0.17 4.34 6.53 0.51 0.04
Treynor 0.24 (0.84) 0.25 4.42 6.48 0.50 0.05

Beta 1.11 (0.30) 1.02 5.60 6.57 0.48 0.20
Sigma 0.34 (0.78) 0.31 5.48 6.25 0.46 0.06
OLS 0.55 (0.52) 0.66 3.96 7.34 0.53 0.14

Ridge 0.89 (0.33) 0.97 4.50 7.18 0.51 0.20
LASSO 0.61 (0.49) 0.70 4.28 6.90 0.50 0.14

Elastic Net 0.86 90.30) 1.01 4.29 7.11 0.51 0.20
PC 1 0.69 (0.38) 0.86 3.65 7.33 0.55 0.19

FDR10% -0.05 (0.94) -0.05 5.27 5.77 0.45 -0.01
Equal Weight -0.93 (0.02) -2.36 1.92 6.12 0.48 -0.49

Equal Weight Plus -0.51 (0.22) -1.14 2.22 6.30 0.49 -0.23
Panel B: Sample period until December 2019

R-square 1.29 (0.27) 1.19 5.06 7.16 0.55 0.25
Fund Size 0.57 (0.62) 0.51 5.08 6.53 0.50 0.11

Active Weight 1.05 (0.26) 1.14 4.24 7.41 0.54 0.25
Return Gap 0.62 (0.55) 0.64 4.55 7.01 0.52 0.14
Fund Flow 0.70 (0.54) 0.67 4.65 6.98 0.53 0.15

Expense Ratio 1.39 (0.15) 1.35 4.29 7.41 0.59 0.32
Sharpe 0.53 (0.66) 0.52 4.40 6.96 0.55 0.12
Treynor 0.60 (0.60) 0.59 4.49 6.91 0.54 0.13

Beta 1.58 (0.16) 1.37 5.72 7.00 0.52 0.28
Sigma 0.72 (0.56) 0.61 5.60 6.66 0.50 0.13
OLS 0.81 (0.37) 0.91 4.03 7.69 0.57 0.20

Ridge 1.20 (0.22) 1.21 4.59 7.51 0.54 0.26
LASSO 0.89 (0.36) 0.96 4.36 7.22 0.53 0.20

Elastic Net 1.17 (0.18) 1.29 4.37 7.44 0.54 0.27
PC 1 0.99 (0.22) 1.16 3.70 7.68 0.58 0.27

FDR10% 0.32 (0.81) 0.28 5.39 6.14 0.48 0.06
Equal Weight -0.80 (0.03) -2.00 1.85 6.26 0.50 -0.43

Equal Weight Plus -0.29 (0.44) -0.61 2.18 6.62 0.52 -0.13
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TABLE IA2

Power comparison (in %) for discrete distribution

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas

of 2,000 funds are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with

varying α∗ (annualized, in %) and proportions (π+, π0, π
−). The simulated data are a balanced

panel with 284 observations per fund and generated with cross-sectional dependence.

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 1 6.8 23.9 46.6 68.7
FDR+ 0.6 2.9 13.9 33.6 55.3

(10, 60, 30)%
fFDR+ 2 12.6 35.5 59.6 77.8
FDR+ 0.5 3.4 16.2 37.7 58.5

(10, 30, 60)%
fFDR+ 5.5 26 54 77.6 90.2
FDR+ 0.6 5.3 23.3 49.9 71.3

(13, 67.5, 19.5)%
fFDR+ 1.8 11.5 32.8 56.7 76.7
FDR+ 0.7 5 19.9 41.7 62.8

(13, 48, 39)%
fFDR+ 3.8 19.3 44.6 70 85.1
FDR+ 0.7 5.5 23.5 48.5 68.3

(13, 9, 78)%
fFDR+ 9.7 37.6 70.7 91.5 97.8
FDR+ 0.9 10 41 73.4 89.8
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TABLE IA3

Power comparison (in %) for discrete-normal distribution mixture

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of

2,000 funds are drawn from a discrete-normal distribution mixture:

α ∼ π0δα=0 + (1− π0)N (0, σ2) with varying σ (annualized, in %) and null proportion π0. The

simulated data are a balanced panel with 284 observations per fund and generated with

cross-sectional dependence.

π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75%
fFDR+ 0.6 16.8 37.3 51.8 61.3
FDR+ 0.3 9.2 27.7 42.4 52.9

60%
fFDR+ 1.8 22.6 44.2 58.1 67.2
FDR+ 0.4 12.3 32.8 47.5 57.8

30%
fFDR+ 5.1 32.9 54.9 68.1 75.5
FDR+ 0.6 18.7 41.3 56.5 66.1

67.5%
fFDR+ 1.1 20.1 40.9 55.3 64.2
FDR+ 0.3 11 30.4 45.3 55.7

48%
fFDR+ 3.2 27.9 49.1 62.8 71.6
FDR+ 0.4 15.4 36.4 51.5 61.4

9%
fFDR+ 7.5 39.8 62.2 74.6 81.4
FDR+ 0.9 23.5 48.7 63.9 73.1
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TABLE IA4

Power comparison (in %) for mixture of two normal distributions

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of

2,000 funds are drawn from a mixture of two normal distributions:

α ∼ 0.3N (µ1, σ
2
1) + 0.7N (µ2, σ

2
2) with varying standard deviation pairs (σ1, σ2) and mean pairs

(µ1, µ2) (both parameters’ pairs are annualized and in %). The simulated data are a balanced

panel with 284 observations per fund and generated with cross-sectional dependence.

(σ1, σ2)
(µ1, µ2) Procedure (1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)

(−2.3,−0.7)
π+ = 6% π+ = 10.4% π+ = 20.7% π+ = 25.5% π+ = 29.1%

fFDR+ 0.1 0.5 5.8 14.4 24.5
FDR+ 0 0 0.4 2.4 8.1

(−2,−0.5)
π+ = 11.8% π+ = 16.9% π+ = 26.4% π+ = 30.5% π+ = 33.4%

fFDR+ 0.1 0.7 7 16.5 26.5
FDR+ 0 0 0.6 3.6 10.1

(−2.5, 0)
π+ = 35.2% π+ = 36.4% π+ = 38.2% π+ = 39.8% π+ = 41.1%

fFDR+ 0.5 1.1 9.9 19.3 29.4
FDR+ 0 0.1 1.1 5.1 12.7
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TABLE IA5

Power comparison (in %) for varying sample size and observation length

The table compares the power of the fFDR+ and FDR+ in a balanced panel data with varying

number of observations per fund (T ) and number of funds (m). We present three cases where

alphas of m funds are drawn from i) discrete distribution: α ∼ 0.1δα=2 + 0.3δα=0 + 0.6δα=−2

(Panel A); ii) discrete-normal mixture: α ∼ 0.3δα=0 + 0.7N (0, 22) (Panel B); and mixture of two

normal distributions: α ∼ 0.3N (−2, 22) + 0.7N (−0.5, 1) (Panel C). For each alpha population,

we generate data with cross-sectional dependence.

Number of observations per fund
m Procedure T = 120 T = 180 T = 240 T = 300 T = 360 T = 420

Panel A: Discrete distribution

500
fFDR+ 3.9 10.3 20.8 33.3 45.1 54.3
FDR+ 0.7 1.7 3.4 6.7 12.3 18.8

1000
fFDR+ 2.4 7.8 18.0 30.8 41.6 52.7
FDR+ 0.4 1.1 2.7 6.6 12.1 19.8

2000
fFDR+ 2.2 7.4 17.7 28.9 41.2 50.6
FDR+ 0.3 0.9 2.7 6.6 12.9 19.7

3000
fFDR+ 2.2 6.8 16.2 28.1 39.2 50.4
FDR+ 0.2 0.7 2.3 6.0 12.5 20.7

Panel B: Mixture of Discrete and Normal distributions

500
fFDR+ 12.7 22.3 30.4 36.4 40.7 46.2
FDR+ 2.9 8.5 14.8 20.4 25.3 30.6

1000
fFDR+ 12.7 21.7 29.1 35.6 40.7 44.8
FDR+ 2.9 8.5 14.6 20.6 25.6 30.1

2000
fFDR+ 12.1 21.4 28.7 35.3 39.9 44.4
FDR+ 2.8 8.5 14.5 20.6 25.2 30.0

3000
fFDR+ 12.2 21.0 28.2 34.7 39.6 43.8
FDR+ 2.9 8.4 14.4 20.4 25.4 29.8

Panel C: Mixture of Normal distributions

500
fFDR+ 1.8 3.8 6.0 9.3 11.8 15.1
FDR+ 0.2 0.4 0.6 1.0 1.4 2.3

1000
fFDR+ 1.4 3.1 5.2 8.3 11.1 13.6
FDR+ 0.1 0.2 0.4 0.8 1.3 1.9

2000
fFDR+ 1.1 2.7 5.2 7.7 10.6 13.2
FDR+ 0.1 0.1 0.3 0.6 1.2 2.0

3000
fFDR+ 1.2 2.8 5.0 7.9 10.6 12.8
FDR+ 0.0 0.1 0.3 0.7 1.2 2.0
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TABLE IA6

Power comparison (in %): small size and small number of observations

In this table, we consider three distributions as in Table IA5 for samples consisting of m = 500

funds (balanced panels) with T = 60 observations per fund (5 years) under cross-sectional

dependence.

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.7 3.4 8 14.7 22.9 32.4 42.3 53.2 65.2
FDR+ 0.2 0.4 0.7 1 1.4 2.1 3 4.5 6.5

Mixture of discrete fFDR+ 3.3 8.9 16 24.2 33.1 42.2 51.6 61.4 67.3
and normal FDR+ 0.5 1.3 2.7 5.3 9.1 14.9 22.6 32.8 43.3

Mixture of normals
fFDR+ 0.6 1.9 4.3 8.3 13.4 20 28.2 38.4 50.9
FDR+ 0.1 0.2 0.3 0.5 0.9 1.2 1.8 3.1 5.3
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TABLE IA7

Power comparison (in %) for discrete distribution

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds are drawn from a

discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized, in %) and proportions (π+, π0, π
−). The

simulated data are an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the

real-data counterpart. We study the simulated data with both cross-sectional independence (left-hand side) and cross-sectional

dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
(π+, π0, π

−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5 α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.5 7 24.2 44.6 61.2 0.8 7.1 23.4 43.1 60.6
FDR+ 0.5 3.2 15.6 33 49.5 0.6 3.6 14.9 31.8 48.6

(10, 60, 30)%
fFDR+ 1.4 12 33.5 54.2 69.3 1.8 12 32.4 53.2 68.9
FDR+ 0.5 3.5 16.9 35.3 52.1 0.6 4 16.3 34.5 51.4

(10, 30, 60)%
fFDR+ 4.2 22.4 49.3 68.3 80.8 4.6 21.8 48.4 67.8 80.5
FDR+ 0.6 4.4 22 43.1 60.3 0.7 4.9 21.4 42.1 59.8

(13, 67.5, 19.5)%
fFDR+ 1.1 10.7 30.6 51.1 67.2 1.5 11.2 29.8 50.1 66.2
FDR+ 0.6 4.8 20.1 38.4 55 0.7 5.4 19.4 37.4 53.8

(13, 48, 39)%
fFDR+ 2.9 17.7 40.9 61 75.1 3.5 17.9 40.3 60.2 74.3
FDR+ 0.7 5.5 23.2 42.6 59 0.8 6.2 22.5 42 58.2

(13, 9, 78)%
fFDR+ 7.6 31.2 63.2 79.6 89.7 8.2 31.4 62.3 79.8 89.4
FDR+ 0.8 8.8 32.9 56.9 74.4 0.9 9.3 32.9 57.2 74.3
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TABLE IA8

Power comparison (in %) for discrete-normal distribution mixture

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a

discrete-normal distribution mixture: α ∼ π0δα=0 + (1− π0)N (0, σ2) with varying σ (annualized, in %) and null proportion π0. The

simulated data are an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the

real-data counterpart. We study the simulated data with both cross-sectional independence (left-hand side) and cross-sectional

dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75%
fFDR+ 0.5 15 33.1 47 56.5 0.5 14.8 32.5 46.6 56.1
FDR+ 0.3 8.7 24.6 38.3 48.4 0.3 8.5 24.1 37.9 48.1

60%
fFDR+ 1.5 20.4 39.3 52.7 61.7 1.6 20.2 39 52.5 61.5
FDR+ 0.4 11.5 29.1 43 53.1 0.4 11.3 28.7 42.6 52.8

30%
fFDR+ 4.1 28.7 49.4 62.7 71 4.3 28.9 49.7 62.7 71.1
FDR+ 0.5 16.6 37.1 51.8 61.5 0.6 16.5 37 51.6 61.6

67.5%
fFDR+ 0.9 17.9 36.2 50 58.9 0.9 17.9 36 49.5 59
FDR+ 0.3 10.1 26.8 40.7 50.7 0.3 10.2 26.6 40.3 50.6

48%
fFDR+ 2.4 23.9 43.3 56.9 65.9 2.7 23.8 43.6 56.9 65.6
FDR+ 0.4 13.6 32.3 46.6 56.4 0.4 13.4 32.3 46.3 56.2

9%
fFDR+ 6.1 34.6 55.8 69.2 77.4 6.1 34.7 56 69 77.2
FDR+ 0.7 20.3 42.7 58.3 68.1 0.9 20.5 42.8 58.1 68



TABLE IA9

Power comparison (in %) for mixture of two normal distributions

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of

2,000 funds are drawn from a mixture of two normal distributions:

α ∼ 0.3N (µ1, σ
2
1) + 0.7N (µ2, σ

2
2) with varying standard deviation pairs (σ1, σ2) and mean pairs

(µ1, µ2) (both parameters’ pairs are annualized and in %). The simulated data are an unbalanced

panel with the number of observations of each fund drawn randomly with replacement from the

real-data counterpart. We study the simulated data with both cross-sectional independence

(left-hand side) and cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
(µ1, µ2) Procedure σ1 σ2 σ3 σ4 σ5 σ1 σ2 σ3 σ4 σ5

(−2.3,−0.7)
fFDR+ 0 0.3 4.2 12 20.7 0 0.4 4.6 12.3 20.8
FDR+ 0 0 0.4 2.2 6.9 0 0.1 0.4 2.3 7

(−2,−0.5)
fFDR+ 0 0.5 5.7 14 22.7 0.1 0.6 5.9 14.1 23.2
FDR+ 0 0.1 0.5 3.2 8.6 0 0.1 0.6 3.2 8.9

(−2.5, 0)
fFDR+ 0.2 0.6 8 16.2 25.4 0.3 0.9 8.5 16.8 25.6
FDR+ 0 0.1 0.9 4.6 10.8 0 0.1 1 4.9 11.2

where σ1 = (1, 0.5), σ2 = (1.5, 0.6), σ3 = (2, 1), σ4 = (2.5, 1.25), σ5 = (3, 1.5).

37



TABLE IA10

Power comparison (in %) for single normal distribution

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of

2,000 funds are drawn from a normal distribution: α ∼ N (µ, σ2) with varying standard deviation

σ and mean µ (both parameters are annualized and in %). In Panel A the simulated data are a

balanced panel with 284 observations per fund, whereas in Panel B an unbalanced panel with the

number of observations of each fund drawn randomly with replacement from the real-data

counterpart. For each type of panel data, we generate data cross-sectional independence (left-hand

side) and with cross-sectional dependence (right-hand side).

Cross-sectional Independence Cross-sectional Dependence
σ σ

µ Procedure 1 1.5 2 2.5 3 1 1.5 2 2.5 3
Panel A: Balanced Data

−0.8
π+ 21.2 29.7 34.5 37.4 39.5 21.2 29.7 34.5 37.4 39.5

fFDR+ 1.8 15.1 31.6 45.5 56.2 2.4 15.5 32.6 46.1 56
FDR+ 0.1 2.2 13.4 28.5 42 0.1 2.4 14.4 29.1 41.5

−0.5
π+ 30.9 36.9 40.1 42.1 43.4 30.9 36.9 40.1 42.1 43.4

fFDR+ 3.3 18.5 35.5 48.7 58.9 4.2 19.4 35.7 49.3 58.9
FDR+ 0.1 4 17.7 32.8 45.5 0.2 4.5 17.9 33.1 45.5

0
π+ 50 50 50 50 50 50 50 50 50 50

fFDR+ 8.3 26 41.9 54 63.5 9.3 27 42.3 54.4 63.9
FDR+ 0.7 9.9 25.6 40.2 51.7 1.2 10.5 25.7 40.3 51.8

Panel B: Unbalanced Data

−0.8
fFDR+ 1.7 13.3 27.6 40.8 50.7 1.9 13.5 27.9 40.8 50.7
FDR+ 0.1 2.3 11.9 24.5 36.4 0.1 2.4 11.9 24.7 36.1

−0.5
fFDR+ 3 16.2 30.6 43.5 53.4 3.5 16.8 31.4 43.8 53.6
FDR+ 0.2 4 15.2 28.3 39.8 0.2 4.3 15.5 28.4 39.9

0
fFDR+ 7.5 22.5 37.2 48.9 58.2 7.7 22.9 37.2 48.3 58.2
FDR+ 0.8 9 22.1 35.1 45.8 1 9.1 22.1 34.4 45.9
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TABLE IA11

Power comparison (in %) when π0(z) is an increasing function

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas

of 2,000 funds are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with

varying α∗ (annualized, in %) and proportions (π+, π0, π
−). The simulated data are a balanced

panel with 284 observations per fund and are generated with cross-sectional independence.

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.3 4.7 20.3 43.8 65.8
FDR+ 0.4 2.6 14.1 35.2 56.5

(10, 60, 30)%
fFDR+ 0.9 9.1 30.6 55.5 75.1
FDR+ 0.4 2.7 16.2 39.3 60.6

(10, 30, 60)%
fFDR+ 3.7 22.7 51.9 76.5 89.7
FDR+ 0.5 4.1 24.3 51.3 72.6

(13, 67.5, 19.5)%
fFDR+ 0.7 8.3 28.8 53.8 73.4
FDR+ 0.5 3.8 19.9 43.5 63.5

(13, 48, 39)%
fFDR+ 2.1 15.9 42.7 68.1 84.6
FDR+ 0.5 4.7 24.7 49.5 69.8

(13, 9, 78)%
fFDR+ 7.6 37.4 68.8 91 97.7
FDR+ 0.6 8.9 41.7 72.7 90.1
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TABLE IA12

Power comparison (in %) when π0(z) is a decreasing function

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas

of 2,000 funds are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with

varying α∗ (annualized, in %) and proportions (π+, π0, π
−). The simulated data are a balanced

panel with 284 observations per fund and are generated with cross-sectional independence.

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 1.5 11.8 33.7 58.4 77.2
FDR+ 0.4 2.4 13.9 35.4 56.8

(10, 60, 30)%
fFDR+ 3.4 19 46.2 70.8 86.2
FDR+ 0.4 2.7 16.1 39.4 60.8

(10, 30, 60)%
fFDR+ 7.3 33.2 72.2 91 96.7
FDR+ 0.5 3.9 24.9 51.2 72.4

(13, 67.5, 19.5)%
fFDR+ 2.4 16 40.3 64.3 81
FDR+ 0.5 3.7 20.2 43.1 63.7

(13, 48, 39)%
fFDR+ 5.1 27.2 57.7 79.8 91.1
FDR+ 0.6 4.5 24.5 49.5 69.9

(13, 9, 78)%
fFDR+ 11.1 43.6 81.6 94.3 98.3
FDR+ 0.6 9 41.4 72.8 89.9
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TABLE IA13

Power comparison (in %) when π0(z) is a constant function

The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas

of 2,000 funds are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with

varying α∗ (annualized, in %) and proportions (π+, π0, π
−). The simulated data are a balanced

panel with 284 observations per fund and are generated with cross-sectional independence.

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.6 6.9 24.6 48.3 69.7
FDR+ 0.4 2.4 13.9 35.1 56.4

(10, 60, 30)%
fFDR+ 1.8 14.1 39 64.1 81.1
FDR+ 0.5 2.7 16.7 39.3 60.6

(10, 30, 60)%
fFDR+ 5.4 29.4 61.8 82.9 93
FDR+ 0.5 4 24.3 51.2 72.4

(13, 67.5, 19.5)%
fFDR+ 1.3 10.9 32.8 58 77.2
FDR+ 0.5 3.7 19.8 43.1 64

(13, 48, 39)%
fFDR+ 3.4 20.6 48.5 72.4 86.9
FDR+ 0.6 4.6 24.4 49.2 69.8

(13, 9, 78)%
fFDR+ 9.6 41.5 76 92.4 98.1
FDR+ 0.6 9.4 41.8 72.8 89.8
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TABLE IA14

Performance comparison in terms of power (%): non-informative covariate
The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas
of 2,000 funds are drawn from a discrete distribution, i.e. α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗

(Panel A), a discrete-normal distribution mixture, i.e. α ∼ π0δα=0 + (1 − π0)N (0, σ2) (Panel
B), and a mixture of two normal distributions, i.e. α ∼ 0.3N (µ1, σ

2
1) + 0.7N (µ2, σ

2
2) (Panel C)

under different combinations of parameter values. The simulated data are a balanced panel with
284 observations per fund and are generated with cross-sectional independence. The covariate
input of the fFDR+ is a random variable drawn randomly from the standard uniform distribution,
Uniform(0, 1), without any connections to the alpha.

Panel A: discrete distribution
(π+, π0, π

−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)%
fFDR+ 0.2 2.7 14.1 34.5 57
FDR+ 0.4 2.3 13.8 35.1 56.8

(10, 60, 30)%
fFDR+ 0.2 3.5 16.9 39.1 61.4
FDR+ 0.5 2.7 15.9 39.5 61.1

(10, 30, 60)%
fFDR+ 0.4 6.3 26.2 52.3 73.4
FDR+ 0.5 3.9 24.1 51.3 72.1

(13, 67.5, 19.5)%
fFDR+ 0.3 4.7 19.6 42.8 63.9
FDR+ 0.5 3.8 19.7 43.4 63.8

(13, 48, 39)%
fFDR+ 0.5 6.4 24.9 49.1 70.3
FDR+ 0.5 4.5 24.5 49.3 69.7

(13, 9, 78)%
fFDR+ 1.1 14 46.9 77.2 92.1
FDR+ 0.6 9.2 41.8 72.9 89.9

Panel B: discrete-normal distribution mixture
π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75%
fFDR+ 0 9.5 30.1 45.6 55.9
FDR+ 0.2 8.9 27.9 43 53.3

60%
fFDR+ 0.1 13.2 34.6 49.9 59.7
FDR+ 0.3 12.4 32.9 48 58.1

30%
fFDR+ 0.3 19.5 42.9 57.8 67.3
FDR+ 0.4 18.7 42 56.9 66.4

67.5%
fFDR+ 0.1 11.4 32.5 47.8 57.8
FDR+ 0.2 10.6 30.5 45.6 55.7

48%
fFDR+ 0.2 15.8 38 52.9 62.5
FDR+ 0.3 14.9 36.5 51.5 61.4

9%
fFDR+ 0.6 24.2 49.3 64.5 73.5
FDR+ 0.6 23.4 48.6 63.8 73

Panel C: mixture of two normal distributions
(σ1, σ2)

(µ1, µ2) Procedure (1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)

(−2.3,−0.7)
π+ = 6% π+ = 10.4% π+ = 20.7% π+ = 25.5% π+ = 29.1%

fFDR+ 0 0 0.2 2.8 8.8
FDR+ 0 0.1 0.3 2.2 7.7

(−2,−0.5)
π+ = 11.8% π+ = 16.9% π+ = 26.4% π+ = 30.5% π+ = 33.4%

fFDR+ 0 0 0.5 3.9 10.7
FDR+ 0 0.1 0.4 3.2 9.7

(−2.5, 0)
π+ = 35.2% π+ = 36.4% π+ = 38.2% π+ = 39.8% π+ = 41.1%

fFDR+ 0 0 1 5.4 13.2
FDR+ 0 0.1 0.7 4.8 12.4
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TABLE IA15

Power comparison (in %) for varying sample size and observation length

The table compares the power of the fFDR+ and FDR+ in a balanced panel data with varying

number of observations per fund (T ) and number of funds (m). We present three cases where

alphas of m funds are drawn from i) discrete distribution: α ∼ 0.1δα=2 + 0.3δα=0 + 0.6δα=−2

(Panel A); ii) discrete-normal mixture: α ∼ 0.3δα=0 + 0.7N (0, 22) (Panel B); and mixture of two

normal distributions: α ∼ 0.3N (−2, 22) + 0.7N (−0.5, 1) (Panel C). The simulated data are

balanced panels with cross-sectional independence.

Number of observations per fund
m Procedure T = 120 T = 180 T = 240 T = 300 T = 360 T = 420

Panel A: Discrete distribution

500
fFDR+ 2.7 8.5 20.6 33.3 46.2 55.2
FDR+ 0.6 1.4 3.2 6.1 11.6 18.7

1000
fFDR+ 1.7 6.4 17.1 30.4 42.7 53.8
FDR+ 0.4 0.9 2.2 5.2 11.3 19.8

2000
fFDR+ 1.2 6.2 15.8 29.3 41.5 52.0
FDR+ 0.2 0.7 1.6 5.4 12.1 21.1

3000
fFDR+ 1.1 5.9 15.3 28.4 40.6 52.1
FDR+ 0.2 0.5 1.6 5.3 12.7 21.7

Panel B: Mixture of Discrete and Normal distributions

500
fFDR+ 12.6 22.1 29.4 35.8 41.1 45.3
FDR+ 2.6 7.9 14.1 20.3 25.6 30.2

1000
fFDR+ 12.0 21.1 28.8 35.1 40.7 44.4
FDR+ 2.4 8.0 14.5 20.3 25.7 30.0

2000
fFDR+ 11.4 20.6 28.2 34.5 39.6 44.0
FDR+ 2.3 8.2 14.4 20.4 25.4 29.8

3000
fFDR+ 11.4 20.5 28.0 34.2 39.2 43.6
FDR+ 2.4 8.1 14.5 20.3 25.3 29.9

Panel C: Mixture of Normal distributions

500
fFDR+ 1.2 3.2 5.2 8.4 11.1 13.6
FDR+ 0.2 0.3 0.5 0.9 1.3 1.8

1000
fFDR+ 0.9 2.4 4.9 7.6 10.2 13.3
FDR+ 0.1 0.2 0.4 0.7 1.1 1.7

2000
fFDR+ 0.7 2.3 4.4 6.9 9.7 12.2
FDR+ 0.1 0.1 0.3 0.5 0.9 1.6

3000
fFDR+ 0.7 2.1 4.4 6.8 9.6 12.1
FDR+ 0.0 0.1 0.2 0.5 0.9 1.7
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TABLE IA16

Power comparison (in %) for small size and small number of observations

In this table, we consider three distributions as in Table IA15 for samples consisting of m = 500

funds (balanced panels with cross-sectional independence) with T = 60 observations per fund (5

years).

FDR target
Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.4 2 5.5 11.8 20.3 30.4 41.4 53.1 66.6
FDR+ 0.2 0.4 0.6 0.9 1.1 1.5 1.9 2.5 3.4

Mixture of discrete fFDR+ 2.7 7.9 14.8 23.3 33 43.4 53.7 63.8 68.3
and normal FDR+ 0.4 1 1.9 3.4 6 11 19.4 32.7 48.9

Mixture of normals
fFDR+ 0.3 1.2 3.1 6.4 11.4 18.3 27 38.2 52.1
FDR+ 0.1 0.2 0.3 0.3 0.5 0.6 0.8 1.1 1.5
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TABLE IA17

Power (in %) of the fFDR+ under covariate with noise

The data are generated as in Tables 1 except the use of a new covariate containing a noise:

Z ′ = Z + η instead of Z. The noise is drawn independently from normal distribution

η ∼ N(0, σ2
η) where ση ∈ {σ1 = 0.5/

√
12, σ2 = 1/

√
12}.

Panel A: Discrete distribution
α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(π+, π0, π
−) σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2

(10,75,15)% 0.5 0.4 5.7 4.7 21.9 19 45.4 41 67 62.7
(10,60,30)% 1.2 0.9 9.7 7.3 30.9 25.6 55.6 49.4 75 69.6
(10,30,60)% 3.2 1.9 18.9 14.1 47.6 39.5 72.8 65 87.4 82
(13,67.5,19.5)% 0.9 0.7 9.3 7.7 30.1 26 54.6 49.6 73.8 69.5
(13,48,39)% 2.3 1.7 16.1 12.5 41.7 35.2 66 59.3 82.7 77.7
(13,9,78)% 6 4 31.1 24.9 66.1 59.4 89.6 84.8 97.3 95.2

Panel B: Mixture of discrete and normal distributions
σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

π0 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2
75% 0.2 0.1 14.8 12.8 35.2 33 49.5 47.7 59.1 57.5
60% 0.8 0.4 20.2 17.4 40.7 37.9 54.8 52.3 63.4 61.3
30% 2.6 1.5 29.2 25 50.5 46.8 63.1 60.1 71 68.7
67.5% 0.5 0.3 17.7 15.2 38.2 35.7 52.2 50 61.3 59.5
48% 1.4 0.8 24 20.5 44.8 41.6 58 55.4 66.5 64.2
9% 4.1 2.4 35.4 30.3 57.1 52.9 69.3 66.3 76.6 74.6

Panel C: Mixture of two normal distributions
(σ1, σ2)

(1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)
(µ1, µ2) σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2 σ1 σ2
(-2.3,-0.7) 0 0 0 0 1.3 0.6 7.2 4.7 16 12.1
(-2,-0.5) 0 0 0.1 0 2.5 1.3 9.6 6.6 19.1 14.8
(-2.5,0) 0 0 0.2 0.1 4.8 2.7 13.4 9.4 23.6 18.5
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TABLE IA18

Comparison of portfolios’ performances for varying time lengths of investing

In this table, we consider 10 portfolios including ten fFDR20% portfolios corresponding to the

ten covariates and the FDR20% portfolio of BSW. We compare the average alphas (annualized

and in %) of the portfolios that are kept in periods of exactly n consecutive years. For example,

consider n = 5. For each portfolio, we calculate the alpha for the first 5 years based on the

portfolios’ returns from January 1982 to December 1986. Then, we roll forward by a month and

calculate the second alpha. The process is repeated and the last alpha is estimated based on the

portfolios’ returns from January 2018 to December 2022. The average of these alphas is presented

in the first row of Panel A of the table. Panel B reports similar metrics using the portfolios’ return

from January 1982 to December 2022.

fFDR20%
FDR20%

n R-square Fund Size Active Weight Return Gap Fund Flow Expense Sharpe Treynor Beta Sigma
Panel A: Whole sample

5 0.90 0.01 0.55 0.41 0.31 1.42 -0.10 0.12 1.13 0.83 -0.03
10 0.84 -0.06 0.57 0.31 0.37 1.08 0.03 0.22 1.24 0.65 -0.23
15 0.95 -0.02 0.63 0.26 0.42 0.94 0.16 0.32 1.32 0.68 -0.25
20 1.18 0.21 0.83 0.44 0.57 0.96 0.34 0.48 1.45 0.94 -0.06
25 1.10 0.15 0.71 0.37 0.52 0.88 0.34 0.48 1.43 0.82 -0.08
30 0.85 0.04 0.50 0.27 0.43 0.75 0.23 0.40 1.29 0.58 -0.22
35 0.69 -0.00 0.50 0.30 0.39 0.94 0.15 0.31 1.13 0.48 -0.25
40 0.61 0.03 0.42 0.21 0.33 0.86 0.07 0.24 1.07 0.55 -0.14
41 0.70 0.12 0.50 0.29 0.41 0.90 0.08 0.26 1.16 0.62 -0.03

Panel B: Sample period until December 2019
5 1.03 0.07 0.69 0.52 0.39 1.38 -0.04 0.19 1.28 0.94 0.02
10 1.09 0.15 0.74 0.45 0.56 1.13 0.24 0.44 1.53 0.90 -0.00
15 1.33 0.37 0.93 0.58 0.72 1.18 0.46 0.62 1.57 1.14 0.13
20 1.48 0.55 1.11 0.73 0.84 1.22 0.60 0.75 1.70 1.33 0.27
25 1.23 0.35 0.78 0.49 0.68 0.96 0.46 0.64 1.61 1.02 0.09
30 1.03 0.23 0.62 0.43 0.62 0.87 0.37 0.57 1.54 0.77 -0.05
35 0.74 0.03 0.62 0.44 0.40 1.02 0.08 0.27 1.23 0.59 -0.21
38 1.13 0.48 0.79 0.60 0.80 1.35 0.43 0.63 1.64 1.02 0.34
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TABLE IA19

Performance statistics of all considered portfolios with τ = 20%

The table compares the portfolios with regard to metrics including the annual Carhart four-factor
alpha (α̂, in %) with its bootstrap p-value and t-statistic (with use of Newey–West heteroskedastic-
ity and autocorrelation-consistent standard error), the annual standard deviation of the four-factor
model residuals (σ̂ε, in %), the mean return in excess of the one-month T-bill rate (in %), the annual
Sharpe ratio and the annual Information Ratio (IR = α̂/σ̂ε). Panel A presents the metrics with use
of the portfolios’ return from January 1982 to December 2022 whereas Panel B the portfolios’
return from January 1982 to December 2019.

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR
Panel A: Whole sample

R-square 0.70 (0.49) 0.69 4.96 6.58 0.50 0.14
Fund Size 0.12 (0.96) 0.11 4.97 6.05 0.46 0.02

Active Weight 0.50 (0.57) 0.58 4.11 6.85 0.50 0.12
Return Gap 0.29 (0.81) 0.32 4.31 6.74 0.49 0.07
Fund Flow 0.41 (0.67) 0.42 4.57 6.64 0.50 0.09

Expense Ratio 0.90 (0.31) 0.96 4.15 6.92 0.54 0.22
Sharpe 0.08 (0.97) 0.08 4.33 6.43 0.50 0.02
Treynor 0.26 (0.82) 0.27 4.43 6.53 0.50 0.06

Beta 1.16 (0.27) 1.08 5.49 6.63 0.49 0.21
Sigma 0.62 (0.62) 0.56 5.49 6.54 0.48 0.11

FDR20% -0.03 (0.94) -0.02 5.27 5.82 0.45 -0.01
Equal Weight -0.93 (0.02) -2.36 1.92 6.12 0.48 -0.49

Equal Weight Plus -0.51 (0.22) -1.14 2.22 6.30 0.49 -0.23
Panel B: Sample period until December 2019

R-square 1.13 (0.31) 1.06 5.06 7.02 0.54 0.22
Fund Size 0.48 (0.67) 0.43 5.07 6.45 0.49 0.10

Active Weight 0.79 (0.40) 0.87 4.18 7.16 0.53 0.19
Return Gap 0.60 (0.55) 0.62 4.39 7.05 0.52 0.14
Fund Flow 0.80 (0.49) 0.76 4.65 7.08 0.54 0.17

Expense Ratio 1.35 (0.16) 1.36 4.19 7.38 0.59 0.32
Sharpe 0.43 (0.72) 0.42 4.39 6.85 0.54 0.10
Treynor 0.63 (0.59) 0.61 4.50 6.96 0.54 0.14

Beta 1.64 (0.14) 1.44 5.60 7.07 0.53 0.29
Sigma 1.02 (0.41) 0.86 5.61 6.97 0.52 0.18

FDR20% 0.34 (0.79) 0.30 5.39 6.20 0.48 0.06
Equal Weight -0.80 (0.03) -2.00 1.85 6.26 0.50 -0.43

Equal Weight Plus -0.29 (0.44) -0.61 2.18 6.62 0.52 -0.13
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TABLE IA20

Performance of all considered portfolios in sub-periods

The table displays the performance of the 15 fFDR10% portfolios corresponding to the 10 underlying covariates and the 5 combined

covariates, the FDR10% and equally weighted portfolios in sub-periods (P1: 1982–1991, P2: 1992–2001, P3: 2002–2011, P4a:

2012–2019 and P4b: 2012–2022) in terms of the annualized alpha (in %) of the whole sub-period, the corresponding t-statistic (with

use of Newey–West heteroskedasticity and autocorrelation-consistent standard error) and the annual Sharpe ratio.

Whole sub-period alpha Whole sub-period t-statistic Annual Sharpe Ratio
Portfolio P1 P2 P3 P4a P4b P1 P2 P3 P4a P4b P1 P2 P3 P4a P4b
R-square 3.45 1.81 1.44 0.58 -2.01 2.71 0.72 1.08 0.16 -0.80 0.67 0.57 0.28 0.84 0.53
Fund Size 2.63 1.49 -0.46 -0.11 -2.40 3.18 0.56 -0.35 -0.03 -0.98 0.67 0.53 0.19 0.78 0.51

Active Weight 3.72 2.17 -0.38 -0.16 -1.39 2.42 0.84 -0.33 -0.14 -1.51 0.65 0.56 0.19 1.10 0.69
Return Gap 3.26 1.77 -1.00 0.05 -1.30 2.46 0.67 -0.70 0.05 -1.43 0.60 0.55 0.15 1.13 0.70
Fund Flow 2.58 1.04 0.12 0.39 -1.90 2.32 0.39 0.13 0.11 -0.78 0.65 0.56 0.23 0.88 0.56

Expense Ratio 4.22 2.34 -0.26 2.87 -0.45 2.03 0.96 -0.28 1.52 -0.26 0.71 0.63 0.20 1.34 0.70
Sharpe 2.23 0.94 0.20 -0.45 -2.40 2.19 0.38 0.24 -0.12 -0.98 0.66 0.65 0.25 0.82 0.53
Treynor 2.16 1.16 0.11 -0.20 -2.28 2.29 0.46 0.13 -0.05 -0.93 0.65 0.63 0.24 0.83 0.53

Beta 3.86 1.19 2.46 0.44 -2.10 1.87 0.40 1.84 0.12 -0.84 0.66 0.42 0.34 0.84 0.53
Sigma 2.58 2.79 0.61 0.34 -2.31 1.91 1.08 0.42 0.09 -0.91 0.58 0.57 0.25 0.80 0.50
OLS 2.14 1.18 0.34 -0.18 -1.26 1.54 0.45 0.33 -0.19 -1.61 0.61 0.61 0.26 1.14 0.71

Ridge 2.98 3.14 -0.34 0.39 -1.05 2.79 1.12 -0.23 0.34 -1.13 0.65 0.55 0.20 1.16 0.72
LASSO 2.47 3.02 -0.49 0.03 -1.33 2.54 1.09 -0.41 0.03 -1.49 0.63 0.55 0.19 1.12 0.69

Elastic Net 2.61 3.63 -0.15 0.06 -1.30 2.32 1.30 -0.14 0.05 -1.49 0.62 0.58 0.21 1.13 0.70
PC 1 1.74 1.76 0.27 1.10 -0.66 1.79 0.71 0.31 0.82 -0.66 0.61 0.65 0.24 1.23 0.75

FDR10% 2.96 1.53 -0.53 -0.54 -2.87 2.52 0.60 -0.38 -0.15 -1.17 0.65 0.52 0.19 0.75 0.48
Equal Weight -0.52 -1.33 -0.20 -1.35 -1.46 -1.25 -1.58 -0.30 -2.74 -2.61 0.48 0.54 0.23 1.01 0.69

Equal Weight Plus 0.81 -1.07 -0.27 -0.35 -1.42 1.18 -1.14 -0.37 -0.58 -2.24 0.55 0.52 0.21 1.12 0.69



TABLE IA21

Performance comparison of portfolios based on fFDR and sorting

The table shows the portfolios’ annual Carhart four-factor alpha (in %) for the period January 1982 to December 2022. The sorting

portfolios are those based on covariates (single-sorting) as well as based on both covariates and past alpha (double-sorting).. At the end

of each year, for the single-sorting 10% portfolio, funds are sorted by the covariate. Depending on whether the relationship of the

covariate and the fund performance is positive or negative, the funds in the top or bottom 10% are chosen to invest in the following

year. For the double-sorting 10% portfolio, the funds chosen in the single-sorting 10% are ranked based on the past five-year alpha and

then only 10% of the funds in the top are selected. Note. As documented in the literature, the R-square and Fund Size (Fund flow,

Return Gap and Active Weight) have a negative (positive) effect on the mutual funds’ performance. The single- and double-sorting

portfolios constructed based on this assumption appear italicized.

Portfolio R-square Fund Size Active Weight Return Gap Fund Flow Expense Ratio Sharpe Treynor Beta Sigma
Panel A: Performance of fFDR10% and fFDR20% portfolios

fFDR10% 0.84 0.20 0.73 0.31 0.33 0.94 0.17 0.24 1.11 0.34
fFDR20% 0.70 0.12 0.50 0.29 0.41 0.90 0.08 0.26 1.16 0.62

Panel B: Assuming a positive effect of the covariate on performance of the fund
Single sort 10% -1.08 -0.73 -0.95 -1.90 -1.18 -2.56 -0.10 -0.45 -2.29 -2.60
Double sort 10% -0.67 0.07 1.13 -1.81 -0.55 -2.35 -0.04 -0.40 -1.98 -0.40
Single sort 20% -1.22 -0.74 -0.90 -1.60 -0.84 -1.89 -0.33 -0.48 -1.98 -1.88
Double sort 20% -1.20 -0.04 0.25 -1.04 -0.43 -1.04 -0.21 -0.38 -0.71 -0.43

Panel C: Assuming a negative effect of the covariate on performance of the fund
Single sort 10% -1.27 -1.01 -1.25 -1.14 -1.31 -0.58 -2.15 -2.49 0.12 -0.52
Double sort 10% -2.51 -0.48 -1.60 -0.53 -0.69 0.94 1.10 0.24 -0.34 0.38
Single sort 20% -1.11 -1.00 -1.18 -1.18 -1.29 -0.46 -1.67 -1.66 0.00 -0.71
Double sort 20% -0.92 -0.11 -1.18 -0.12 -0.66 -0.02 0.51 -0.33 -0.08 -0.26
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TABLE IA22

Performance of FDR10% portfolios conditional on each of covariates

Covariate Quintile α̂ (p−value) t-statistic σ̂ε Mean Return Sharpe Ratio IR #Funds

R-square

1 0.02 (0.97) 0.02 6.98 5.19 0.46 0.00 15
2 2.50 (0.08) 1.36 8.65 8.26 0.55 0.29 9
3 -0.25 (0.79) -0.31 4.62 6.51 0.48 -0.05 7
4 0.03 (0.99) 0.03 5.26 6.05 0.43 0.01 6
5 -1.27 (0.24) -1.25 6.46 5.98 0.41 -0.20 12

Fund Flow

1 -0.33 (0.78) -0.35 7.17 6.25 0.47 -0.05 12
2 0.05 (0.99) 0.04 6.01 6.82 0.48 0.01 8
3 0.18 (0.92) 0.16 6.27 6.20 0.48 0.03 7
4 -0.53 (0.52) -0.61 5.21 6.15 0.46 -0.10 10
5 0.17 (0.88) 0.13 6.85 5.06 0.39 0.03 9

Active Weight

1 3.20 (0.45) 0.55 26.95 6.75 0.32 0.12 14
2 -1.69 (0.10) -1.75 5.19 4.85 0.37 -0.32 10
3 0.81 (0.41) 0.91 5.24 7.13 0.50 0.16 7
4 0.38 (0.77) 0.31 7.31 6.59 0.47 0.05 6
5 0.36 (0.71) 0.39 5.54 6.17 0.47 0.06 6

Return Gap

1 1.30 (0.45) 0.79 7.99 6.04 0.45 0.16 7
2 0.46 (0.60) 0.57 4.51 7.38 0.54 0.10 9
3 -0.73 (0.52) -0.59 6.51 6.02 0.43 -0.11 8
4 -0.64 (0.47) -0.73 4.78 6.77 0.49 -0.13 9
5 -1.48 (0.23) -1.23 6.94 4.70 0.34 -0.21 8

Fund Flow

1 -0.88 (0.57) -0.59 7.98 4.16 0.33 -0.11 7
2 -0.21 (0.85) -0.13 7.27 5.90 0.42 -0.03 11
3 -0.11 (0.88) -0.10 6.09 6.62 0.50 -0.02 13
4 0.23 (0.82) 0.26 4.84 6.37 0.49 0.05 8
5 0.38 (0.75) 0.34 5.70 6.16 0.47 0.07 14

Expense Ratio

1 -0.47 (0.67) -0.39 5.79 5.23 0.43 -0.08 11
2 -0.72 (0.42) -0.87 4.84 5.40 0.43 -0.15 10
3 1.59 (0.40) 0.70 10.81 6.52 0.44 0.15 8
4 0.36 (0.77) 0.31 5.88 6.34 0.47 0.06 6
5 -0.70 (0.62) -0.53 7.77 5.07 0.36 -0.09 10

Sharpe Ratio

1 1.03 (0.65) 0.45 12.94 5.51 0.36 0.08 2
2 -1.47 (0.38) -0.85 8.19 3.97 0.30 -0.18 10
3 -0.33 (0.72) -0.31 6.31 6.77 0.46 -0.05 22
4 0.93 (0.38) 0.89 6.19 7.02 0.49 0.15 33
5 0.73 (0.72) 0.33 10.40 6.05 0.43 0.07 58

Treynor Ratio

1 0.33 (0.84) 0.15 11.57 2.34 0.24 0.03 2
2 1.59 (0.42) 0.77 8.69 8.11 0.51 0.18 8
3 -0.27 (0.83) -0.21 6.40 7.02 0.46 -0.04 18
4 -0.40 (0.66) -0.45 4.66 6.55 0.46 -0.08 32
5 0.02 (0.98) 0.02 5.39 5.79 0.46 0 53

Beta

1 -0.63 (0.44) -0.67 4.64 4.23 0.47 -0.14 8
2 -0.09 (0.93) -0.08 6.12 6.65 0.51 -0.01 6
3 -0.65 (0.52) -0.55 6.60 6.05 0.43 -0.10 11
4 0.81 (0.40) 0.82 5.41 8.47 0.54 0.15 9
5 2 (0.47) 0.59 15.53 6.40 0.36 0.13 9

Sigma

1 -0.18 (0.79) -0.25 3.77 5.02 0.47 -0.05 11
2 -0.09 (0.90) -0.11 4.92 5.67 0.47 -0.02 7
3 -0.93 (0.21) -1.27 4.49 5.35 0.43 -0.21 8
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4 0.34 (0.80) 0.31 6.01 7 0.51 0.06 7
5 2.02 (0.46) 0.60 16.29 5.74 0.35 0.12 17
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TABLE IA23

Comparison of portfolios’ performances for varying time lengths of investing: restricted data

We consider 10 portfolios including ten fFDR10% portfolios and the FDR10% portfolios of BSW. We compare the average alphas

(annualized, in %) of the portfolios that are kept for periods of exactly n consecutive years. For more details, refer to Table 3 of the

main paper.

n R-square Fund Size Active Weight Return Gap Fund flow Expense Ratio Sharpe Treynor Beta Sigma FDR10%
Panel A: Whole sample

5 1.30 0.96 1.06 0.08 0.82 0.85 0.48 0.61 1.42 0.74 0.28
10 1.17 0.82 0.90 -0.05 0.75 0.58 0.45 0.58 1.44 0.43 0.09
15 1.23 0.75 0.91 0.02 0.70 0.41 0.44 0.53 1.40 0.32 -0.02
20 1.40 0.86 1.10 0.22 0.80 0.45 0.55 0.62 1.42 0.45 0.15
25 1.35 0.77 1.04 0.15 0.73 0.40 0.54 0.61 1.35 0.38 0.13
30 1.09 0.63 0.79 -0.07 0.66 0.29 0.50 0.58 1.24 0.27 -0.03
35 1.03 0.67 0.61 -0.16 0.72 0.35 0.56 0.65 1.23 0.36 -0.08
40 0.91 0.57 0.47 -0.19 0.59 0.26 0.43 0.50 1.08 0.36 -0.06
41 0.99 0.63 0.50 -0.07 0.66 0.33 0.40 0.47 1.14 0.47 0.05

Panel B: Sample period until December 2019
5 1.22 0.85 1.23 0.17 0.70 0.76 0.34 0.48 1.36 0.60 0.25
10 1.22 0.85 1.06 0.08 0.74 0.60 0.43 0.56 1.51 0.42 0.21
15 1.45 0.97 1.22 0.29 0.85 0.63 0.56 0.65 1.53 0.51 0.32
20 1.56 1.09 1.37 0.46 0.95 0.65 0.66 0.73 1.61 0.61 0.46
25 1.34 0.84 1.07 0.19 0.78 0.44 0.53 0.61 1.45 0.41 0.24
30 1.08 0.67 0.83 -0.02 0.70 0.31 0.48 0.57 1.36 0.30 0.04
35 1.02 0.68 0.75 -0.08 0.69 0.31 0.47 0.55 1.32 0.36 -0.07
38 1.43 1.04 0.79 0.19 1.06 0.73 0.77 0.85 1.63 0.85 0.43
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TABLE IA24

Performance of fFDRτ portfolios with combined covariates: restricted data

The table displays the average n-year alpha of the fFDR10% portfolios using the covariates

given by the first principal component (PC 1), the OLS, ridge, LASSO and elastic net (see

descriptions in Figure 5 of the main manuscript). The average n-year alpha (annualized, in %) of

each portfolio is calculated as described in Table 3 of the main manuscript.

n OLS Ridge LASSO Elastic Net PC 1
Panel A: Whole sample

5 0.58 0.84 0.84 0.64 0.62
10 0.67 1.00 0.93 0.72 0.75
15 0.73 1.08 1.00 0.79 0.85
20 0.98 1.26 1.15 0.96 1.01
25 0.90 1.19 1.03 0.84 0.95
30 0.77 1.01 0.84 0.65 0.83
35 0.79 0.92 0.82 0.59 0.84
40 0.56 0.74 0.74 0.39 0.62
41 0.62 0.81 0.87 0.47 0.63

Panel B: Sample period until December 2019
5 0.72 1.00 1.01 0.78 0.76

10 0.82 1.24 1.17 0.95 0.90
15 1.00 1.42 1.33 1.13 1.09
20 1.18 1.61 1.49 1.30 1.20
25 0.96 1.38 1.21 1.03 1.00
30 0.88 1.17 1.03 0.81 0.91
35 0.81 1.05 0.96 0.68 0.87
38 0.88 1.14 1.19 0.76 0.91
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TABLE IA25

Comparison of portfolios’ performance for varying time lengths of investing: portfolios of unprofitable funds

We consider 11 portfolios including the equal weight minus (EW−), the FDR−10% and the fFDR−10% with the ten individual

covariates. The table compares the average alphas (annualized, in %) of portfolios that are kept in periods of exactly n consecutive

years. For more details, refer to Table 3 of the main paper.

n R-square Fund Size Active Weight Return Gap Fund flow Expense Ratio Sharpe Treynor Beta Sigma EW− FDR−10%
5 -3.64 -3.91 -2.42 -2.74 -2.87 -3.51 -2.22 -2.09 -3.61 -3.96 -1.41 -3.91
10 -3.51 -3.82 -2.39 -2.65 -2.64 -3.35 -2.02 -1.91 -3.48 -3.82 -1.31 -3.83
15 -3.28 -3.49 -2.23 -2.36 -2.34 -3.02 -1.69 -1.60 -3.15 -3.54 -1.11 -3.54
20 -3.11 -3.23 -2.14 -2.17 -2.15 -2.77 -1.49 -1.43 -2.94 -3.32 -0.97 -3.29
25 -3.16 -3.28 -2.14 -2.20 -2.18 -2.81 -1.53 -1.45 -2.99 -3.35 -0.95 -3.36
30 -3.40 -3.59 -2.34 -2.47 -2.43 -3.12 -1.76 -1.68 -3.28 -3.67 -1.05 -3.65
35 -3.77 -3.95 -2.65 -2.87 -2.85 -3.53 -2.18 -2.08 -3.71 -4.15 -1.22 -3.97
40 -3.87 -3.98 -2.90 -2.99 -3.08 -3.69 -2.41 -2.32 -3.91 -4.28 -1.42 -3.98
41 -3.76 -3.86 -2.79 -2.91 -3.08 -3.57 -2.38 -2.28 -3.92 -4.17 -1.35 -3.93



TABLE IA26

Performance statistics of the portfolios of unprofitable funds with τ = 10%

The table compares the portfolios with regard to metrics including the annual Carhart four-factor

alpha (α̂, in %) with its bootstrap p-value and t-statistic (with use of Newey–West

heteroskedasticity and autocorrelation-consistent standard error), the annual standard deviation of

the four-factor model residuals (σ̂ε, in %), the mean return in excess of the one-month T-bill rate

(in %), the annual Sharpe ratio and the annual Information Ratio (IR = α̂/σ̂ε).

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR
R-square -3.76 (< 0.01) -5.14 3.37 3.49 0.31 -1.12
Fund Size -3.86 (< 0.01) -5.33 3.11 3.51 0.31 -1.24

Active Weight -2.79 (< 0.01) -4.59 3.16 4.56 0.37 -0.88
Return Gap -2.91 (< 0.01) -4.06 3.33 4.50 0.37 -0.87
Fund Flow -3.08 (< 0.01) -4.51 3.21 4.24 0.35 -0.96

Expense Ratio -3.57 (< 0.01) -4.88 3.40 3.56 0.31 -1.05
Sharpe -2.38 (< 0.01) -3.48 3.01 4.81 0.39 -0.79
Treynor -2.28 (< 0.01) -3.52 2.90 4.99 0.40 -0.78

Beta -3.92 (< 0.01) -5.20 3.93 3.88 0.33 -1.00
Sigma -4.17 (< 0.01) -5.06 3.59 2.96 0.28 -1.16

FDR−10% -3.93 (< 0.01) -5.33 3.46 3.35 0.30 -1.14
Equal Weight -0.93 (0.02) -2.36 1.92 6.12 0.48 -0.49

Equal Weight Minus -1.35 (< 0.01) -3.07 2.08 5.86 0.46 -0.65

55



FIGURE IA1

Comparison of FDR+ and fFDR+.

The graphs show the differences between the two procedures with respect to their null proportion
estimations and rejection rules. Panels A and B show that π0 is estimated as a fixed number in the
FDR+ (see (2)) but as a step function in the fFDR+ (see Appendix A). Panel C shows the
rejection rules of the FDR+ and fFDR+: the former selects all the funds corresponding to the
points on the left of the vertical green dashed line which consists of all funds with positive
estimated alphas and p-values less than 0.008, whereas the latter all the funds corresponding to
the points below the horizontal red dashed line which consists of all funds with estimated q-value
(see (8)) less than 0.45. Panel D shows the distribution of the selected funds in Panel C with
respect to the p-value and the covariate z. In Panels C and D, only funds with positive estimated
alpha are shown as ultimately both methods select funds from this set. The solid green points
represent funds selected by the FDR+, whereas the red circles the funds selected by the
fFDR+; the green points with a red ring are the commonly selected funds.

56



FIGURE IA2

Joint density function f(p, z)

The graph shows the heatmap of the density function f(p, z).
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FIGURE IA3

Variance of falsely classified fund ratio: discrete distribution of α

The graphs show the gap in variance of the falsely classified fund ratio of the FDR+ over the

fFDR+. The simulated data are balanced panels with cross-sectional independence.
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FIGURE IA4

Variance of falsely classified fund ratio: mixed discrete and normal α

The graphs show the gap in variance of the falsely classified fund ratio of the FDR+ over the

fFDR+. The simulated data are balanced panels with cross-sectional independence.
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FIGURE IA5

Variance of falsely classified fund ratio: two normal distributions of α

The graphs show the gap in variance of the falsely classified fund ratio of the FDR+ over the

fFDR+. The simulated data are balanced panels with cross-sectional independence.
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FIGURE IA6

Performance of fFDR+ for discrete distribution of α

The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn

from a discrete distribution. The simulated data are balanced panels with cross-sectional

dependence.
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FIGURE IA7

Performance of fFDR+ for discrete and normal distribution mixture of α

The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn

from a mixture of discrete and normal distributions. The simulated data are balanced panels with

cross-sectional dependence.
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FIGURE IA8

Performance of fFDR+ for continuous distribution of α

The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn

from a continuous distribution which is a mixture of two normals. The simulated data are

balanced panels with cross-sectional dependence.
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FIGURE IA9

Performance of fFDR+ for discrete α with unbalanced panel data

The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn
from the discrete distribution with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data

64



FIGURE IA10

Performance of fFDR+ for discrete-normal α with unbalanced panel data.

The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn
from the discrete-normal distribution with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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FIGURE IA11

Performance of fFDR+ for two-normal α with unbalanced panel data

The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn
from the mixture of two normal distributions with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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FIGURE IA12

Performance of fFDR+ for single normal α with balanced panel data

The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn
from the single normal distribution with balanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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FIGURE IA13

Performance of fFDR+ for single normal α with unbalanced panel data

The graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn
from the single normal distribution with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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FIGURE IA14

Performance comparison between the FDR+ and the fFDR+

The graphs compare the performance of the fFDR+ in terms of FDR control and power when

the generated data are based on a real data sample.

FIGURE IA15

Evolution of wealth

The graph plots the evolution of 1 dollar invested at the beginning of 1982 in the ten FDR10%

portfolios corresponding to the ten covariates, the fFDR10%, the Equal Weight and Equal

Weight Plus portfolios.
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FIGURE IA16

Evolution of wealth of fFDRτ portfolios with combined covariates

The graph plots the evolution of 1 dollar invested at the beginning of 1982 in the ten FDR10%

portfolios corresponding to the ten covariates, fFDR10%, Equal Weight and Equal Weight Plus

portfolios.
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FIGURE IA17

Alpha evolution of fFDR20% and FDR20% portfolios over time

The graph presents the evolution of annualized alpha of the ten fFDR20% portfolios

corresponding to the ten covariates, the FDR20% of BSW and the two equally weighted

portfolios.
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FIGURE IA18

Alpha evolution of fFDRτ portfolios under alternative coviariates’ proxy.

The graph presents the evolution of annualized alpha (in %) of the ten fFDR10% portfolios

(corresponding to ten covariates), the portfolio FDR10% of BSW and the two equally weighted

portfolios. The proxy of a covariate (except the R-square and the four covariates obtained from

the asset pricing models) is its average realizations in the five years in-sample period.
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FIGURE IA19

Alpha evolution of fFDR10% and FDR10% portfolios over time

The graph presents the evolution of annualized alphas (in %) of the ten fFDR10% portfolios

corresponding to the ten covariates, the portfolio FDR10% of BSW and the two equally

weighted portfolios.
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FIGURE IA20

Alpha evolution of fFDR10% portfolios with combined covariates

The graph shows the alpha evolution of the fFDR10% portfolios with each using a covariate

obtained from either the principal component method or regression method; for the former, the

covariate is the first principal component (PC 1) of the five covariates, whereas for the latter the

new covariate is a linear combination of the five underlying covariates with the weights obtained

based on one of the OLS, LASSO, Ridge and elastic net regressions.
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