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Internet Appendix A: Benchmark estimators

In this appendix, we briefly present the established forecast models listed in Section IV.A of the
main paper. We use them as our benchmarks to determine whether the machine learning-based ap-
proaches listed in Section IV.B of the main paper add incremental predictive power. We start with
simple rolling-window estimators, continue with shrinkage-based approaches, and end with portfolio-
based and long-memory models. We also note the major differences between the model families.
Panel A of Table A1 summarizes the definitions and descriptions for each of the established beta

estimators.

Rolling-window estimators

In the baseline rolling-window approach, we obtain historical betas by running time-series or-
dinary least squares (OLS) regressions:

Tits = “{,It + ﬁi,HtrM,ts + Eits (Al)
where 7; .5 and 7 ¢ are the excess returns on stock i and the market portfolio M, respectively. The
subscript t indicates that we estimate historical alphas and betas (a{ft and ﬁlHt respectively) for each
month t using a rolling window of daily or monthly excess returns. The subscript s = 1, ..., T denotes
the returns before the end of month t, while 7 refers to the length of the rolling window. The intercept
a{ft is the risk-adjusted return, while the slope :Bil:lt Is our parameter of interest. The error term g; 45 is
an idiosyncratic return shock.

Rolling-window beta estimators rely only on historical return information. Since there is no
need to specify a set of conditioning variables (neither fundamental nor technical nor macroeco-
nomic), these estimators are less prone to misspecification. However, they implicitly assume that betas

are constant within the rolling window (and going forward), which leads to an important bias—variance



trade-off between detecting short-term fluctuations in betas (conditionality) and accurately capturing
long-term averages. Shorter rolling windows increase the ability to use short-term information, which
reduces estimation bias. However, the resulting smaller rolling samples are more susceptible to mi-
crostructure noise, which increases both estimation variance and measurement error. Because of this
trade-off, we consider two sets of rolling betas estimated from different window lengths and data
frequencies. The first is obtained from rolling regressions using a five-year window of monthly returns
(ols_5y_m), as proposed by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973). The
second is obtained from rolling regressions using a one-year window of daily returns (ols_1y d), as
proposed by Andersen et al. (2006). Modifications to the basic rolling-window approach that help
improve the bias—variance trade-off are numerous. In our empirical analysis, we focus on the two
most commonly used approaches.

First, in the traditional OLS regression setting, observations entering the market model are
equally weighted. However, from a conceptual perspective, changing the underlying weighting
scheme allows more recent observations to be given greater weight. Thus, the estimates are “condi-
tional”, while still incorporating sufficiently large rolling samples. In line with Hollstein et al. (2019),
we utilize rolling-window estimators with an exponentially-weighted moving average structure. To
obtain exponentially-weighted betas, we run time-series weighted least squares (WLS) regressions
using a one-year window of daily returns with exponential weights. These are defined by the time it
takes for the weights to fall below half of their initial value, i.e., their half-life. A shorter (longer) time
span thus reflects a faster (slower) exponential decay. To give an example, Figure Al provides a
visualization of exponentially decaying weights based on short and long half-lives. To be conserva-
tive, we consider two sets of rolling betas estimated from different horizons: one-third (ewma_s) and

two-thirds (ewma_l) of the number of observations of the (initial) rolling window.



Second, the traditional OLS regression setting is particularly prone to outliers in a stock’s return
history, resulting in extreme and volatile beta estimates. To moderate the influence of single outlier
returns, Welch (2022) assumes that market betas lie within the (—2, +4) interval. In theory, this in-
creases the signal-to-noise ratio, which translates into improved predictive power. To this end, stock-
level returns must first be winsorized at market return-based bounds: r; s € (—Zth,s, +4th,$). A
one-year window of these winsorized daily returns is then used within the baseline rolling-window

approach to obtain slope-winsorized betas (bsw).

Shrinkage-based estimators

Another approach that aims to refine beta forecasts is to enhance rolling-beta estimates with
additional cross-sectional information. The idea is that a stock’s beta estimate should not be too dif-
ferent from those of other stocks with similar characteristics. Therefore, a prior on the true beta can
be specified to which the sample beta estimate obtained from rolling regressions is shrunk. The estab-
lished approach for obtaining shrinkage betas is to compute the weighted average of rolling-beta es-

timates B and prior belief j; ;:

Ei,t = (pi,tﬁil,{t +(1- ‘Pi,t)ﬁ_i,t- (A2)
o
The shrinkage weight is: ¢; , = % where SBH and aﬁ are the variance of the sample estimates
B it

BBy
of beta and the prior, respectively. The degree of shrinkage is proportional to the relative precision of
the rolling-beta estimates and the prior. The lower the relative precision of the sample estimates of

beta (i.e., the larger sﬁH is relative to a ) the more weight is given to the prior. Conceptually, shrink-

ing towards a well-defined prior reduces estimation noise, which helps improve the accuracy of the

rolling-beta estimates. Prior beliefs thereby can be specified in several ways.



Vasicek (1973) suggests that, if no other information is known about a stock except that it comes
from a broad universe, the optimal prior density for the true underlying beta is based on the cross-
sectional distribution of the beta. Thus, the value-weighted mean and variance of rolling betas within
the cross-section are used as prior information. Karolyi (1992) suggests grouping stocks into portfo-
lios based on firm fundamentals and shrinking rolling-beta estimates towards their portfolio betas.
Specifically, the value-weighted mean and variance of rolling betas within each industry portfolio are
used as prior information.

However, Cosemans et al. (2016) argue that shrinkage based on Vasicek (1973) and Karolyi
(1992) only dampens part of the noise in rolling-beta estimates. This is because the prior does not use
the cross-sectional information embedded in firm fundamentals at all (\Vasicek, 1973) or may be ham-
pered by large intra-portfolio dispersion in betas (Karolyi, 1992). They suggest specifying priors
unique to each firm that incorporate a comprehensive set of firm fundamentals as predictors. In par-
ticular, they outline a complex Bayesian framework (which they call a “hybrid model”) for computing
firm-specific priors.?

In our empirical analysis, we implement the shrinkage approach as follows: We obtain rolling-
beta estimates that contribute to each of the three shrinkage betas from rolling regressions using a one-
year window of daily returns.? Prior information for the Vasicek (1973) and Karolyi (1992) beta esti-
mates are obtained by considering the entire cross-section (vasicek) and, analogously to Cosemans et

al. (2016), by creating 47 industry portfolios (karolyi) according to Fama and French’s (1997) industry

! The parameters of the hybrid model are estimated via Markov Chain Monte Carlo methods (Cosemans et al., 2016).

2 While Cosemans et al. (2016) obtain the sample betas that contribute to the hybrid estimates of beta from a rolling
regression using a half-year window of daily returns, we opt for a one-year window. First, although not the main objective
of our empirical analysis, using the same rolling-window length for each (shrinkage) beta is the only way to compare their
predictive performance consistently. It allows us to assess whether differences in predictive performance truly stem from
differences in prior information, rather than from differences in rolling-window beta estimates. Second, and more im-
portantly, in our empirical setting, we find that the predictive performance of the hybrid beta estimates is better for the
one-year window (compared to the half-year window). This makes it an even more conservative benchmark for identifying
the value-added of machine learning techniques.



classification. Consistent with Cosemans et al. (2016), the prior information for the hybrid beta esti-
mates is based on the conditioning variables size, book-to-market ratio, financial leverage, operating

leverage, momentum, and default spread (hybrid).

Portfolio-based estimators

Fama and French (1992) take a different approach to estimating time-varying market betas.
They first sort individual stocks into portfolios, then estimate rolling betas for each portfolio, and
finally assign portfolio betas to individual stocks. In our empirical analysis, we implement their ap-
proach as follows: At the end of each month t, we sort the stocks into size deciles based on NYSE
breakpoints. Each size decile is partitioned into ten portfolios based on sample estimates of beta ob-
tained from rolling regressions using a one-year window of daily returns. Equal-weighted daily returns
are computed for each of the resulting 100 size—beta portfolios over the next month. Finally, we obtain
the portfolio betas from rolling regressions using a one-year window of daily post-ranking portfolio
returns.* These beta estimates are assigned to the individual stocks in each of the 100 size—beta port-

folios (fama-french).

Long-memory estimators

Rather than shrinking rolling-beta estimates to prior beliefs or assigning rolling portfolio betas

to individual stocks, Becker et al. (2021) focus on the time-series properties of realized betas. They

3 Our implementation differs slightly from the original Cosemans et al. (2016) shrinkage approach in two ways: First, we
opt for the Novy-Marx (2011) definition of operating leverage (see Footnote 6 of the main paper), and for a one-year
window of daily returns to compute sample estimates of beta obtained from rolling regressions.

4 Fama and French (1992) estimate the pre- and post-ranking betas using monthly returns and construct the size—beta
portfolios on an annual basis. However, Cosemans et al. (2016) and Hollstein et al. (2019) find that rolling-window beta
estimates computed from daily returns are more accurate predictors of future betas than those computed from monthly
returns. This is why we estimate the betas using a one-year window of daily returns. Furthermore, to always incorporate
the most recent data, we construct the size—beta portfolios on a monthly basis.
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find that the degree of memory within a beta time series, i.e., the order of integration d (typically with
0 < d < 1), is the key determinant to modeling beta dynamics. A larger d thereby indicates a longer
memory, and vice versa. Becker et al. (2021) find that beta time series clearly exhibit long-memory
properties (0 < d < 1). In this case, the current value of a variable depends on past shocks, but the
less so the further in the past these shocks are. In other words, past shocks neither die out quickly nor
persist infinitely, but have a hyperbolical decaying effect. In our empirical analysis, we adapt their
long-memory approach (long-memo) by implementing a F1(0.4) model, i.e., a fractionally integrated

time-series process with d = 0.4.



Table Al
Details on forecast models

This table summarizes the definitions and descriptions for each established beta estimator listed in Section IV.A of the main paper (Panel A) and
provides the definitions and hyperparameter specifications for each machine learning-based beta estimator listed in Section I1V.B of the main paper
(Panel B).

Panel A: Benchmark estimators

Model Description Definition
ols_ 5y m Historical beta Rolling regressions using a five-year window of monthly returns
ols 1y d Historical beta Rolling regressions using a one-year window of daily returns

Rolling regressions using a one-year window of daily returns with exponentially

ewma_s Exponentially-weighted beta decaying weights (short half-life)

ewma_| Exponentially-weighted beta (T:clg;]i?] g;evg\;lgei;ﬂ?sn(sl :ﬁénﬁ;f(_)lr;%year window of daily returns with exponentially
bsw Slope-winsorized beta Rolling regressions using a one-year window of winsorized daily returns
vasicek Shrinkage beta Shrinkage of ols_1y d towards average beta within stock universe

karolyi Shrinkage beta Shrinkage of ols_1y d towards average beta within industry portfolio

hybrid Shrinkage beta Shrinkage of ols_1y d towards firm-specific beta prior

Assignment of portfolio betas (rolling regressions using a one-year window of

fama-french Portfolio beta daily post-ranking portfolio returns) to individual stocks

long-memo Long-memory beta Application of fractionally integrated long-memory time-series process

Continued on the next page



Panel B: Machine learning estimators

Model Hyperparameter ~ Specification Definition
Im
None
elanet
0,1) General strength of the penalization
p {0,0.5,1} Weight on the lasso and ridge penalization
rf
L (1,10) Depth of the single regression trees
M {20,25,30,35,40} Number of predictors randomly considered as potential split variables
B (10,500) Number of trees added to the ensemble prediction
gbrt
(1,5) Depth of the single regression trees
v {0.01,0.05,0.1} Weight for the learning rate shrinkage
B (10,500) Number of trees added to the ensemble prediction
nn_1-nn_5
batch size 1000 Batch size
Nepochs 100 Number of epochs
patience 25 :\Iumber qf iteratio_ns during_ wh_ich the value-weighted mean squared error is al-
owed to increase in the validation sample
dropout rate 0.1 Fractional rate of input variables that are randomly set to zero at each iteration
Ngeeds 10 Number of independent seeds used for each specification family

Figure Al

Stylized visualization | Exponentially decaying weights

This figure depicts a stylized visualization that helps explain the concept of exponentially decaying weights based on short and long half-lives (all

observations’ weights sum to one).
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Internet Appendix B: Machine learning estimators

In this appendix, we briefly introduce the representative set of machine learning techniques
listed in Section IV.B of the main paper. We start with linear regressions, continue with tree-based
models, and end up with neural networks, all of which aim to minimize the value-weighted mean
squared error (MSE). We also note the major differences between the model families. Panel B of
Table Al provides the definitions and hyperparameter specifications for each machine learning-based

beta estimator.

Linear regressions

Ordinary least squares regressions (Im) are the least complex approach in our empirical anal-
ysis. At each re-estimation date, we use the training sample to run pooled OLS regressions of future
realized betas ,B{fHk on the set of 81 predictors.>® In line with Petkova and Zhang (2005), who argue
that the relationship between firm characteristics and beta varies over the business cycle, we divide
this set of predictors into firm characteristics z; . (including industry dummies) and the default spread
X¢, which we choose as an indicator of the state of the economy (Jagannathan and Wang, 1996). We
follow Cosemans et al. (2016) and include interactions between firm characteristics and the default

spread in the regression model:’

5> While simple linear regressions do not require parameter tuning (based on the validation sample), we also estimate this
model from only the training sample. This enhances the comparability with the machine learning-based forecast models
(penalized linear regressions, tree-based models, and neural networks). Note that the main findings of our empirical anal-
ysis are qualitatively similar when pooling the training and validation samples together to estimate the simple linear re-
gression model at each re-estimation date.

8 Focusing on a similar type of forecast objective (stock-level expected returns), Lewellen (2015) and Drobetz et al. (2019)
show that this approach is promising in capturing the cross-sectional variation in the dependent variable from both a
statistical and an economic perspective. Although Drobetz et al. (2019) use cross-sectional Fama and MacBeth (1973)
regressions (FM regressions) that are re-estimated on a monthly basis, Drobetz and Otto (2021) show that the OLS-based
model provides nearly identical predictions in a sample-splitting and re-estimation setting similar to ours. To ensure com-
parability with the machine learning models that cannot be re-estimated on a monthly basis (due to computational limita-
tions), we use pooled OLS regressions as a proxy for the linear FM regressions approach.

" For the sake of parsimony, we do not include interactions between industry dummies and the default spread.
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.Bil,?t+k = 0o + 81X + 832 + O3XeZip + & p ik (B1)

Incorporating such interactions may add additional explanatory power, but it also increases the num-
ber of predictors, which leads to a high-dimensionality problem when the number of predictors be-
comes very large relative to the number of observations. Particularly in a forecasting context, because
the convexity of the OLS objective tends to emphasize heavy-tailed observations, as the number of
predictors increases, simple linear regression models begin to overfit noise rather than extract signal,
thereby undermining the stability of the predictions.®

The most common machine learning technique to overcome the overfitting problem in a high-
dimensional regression setting is penalized least squares regression. This approach helps identify
which predictors are informative and omit those that are not. It modifies the OLS loss function by

adding a penalty term & (8) to favor more parsimonious model specifications:

1 2
1(6) = — ¥, 5T (BRak — 9(2560)) + @ (6). (82)
We use the elastic net approach (elanet), which combines the lasso and ridge methods.® It computes

the weighted sum of the lasso and ridge penalties to increase flexibility:

®(6) = A(1—p) X5, |6)] + 20 Z7_4(6;)". (B3)
The tuning parameters in this forecast model are 4 € (0,1) and p € (0,1). A indicates the strength of
the penalty (in particular, how strongly the regression coefficients are forced to zero); p indicates the
relative weights of the lasso and ridge approaches. p = 0 corresponds to lasso; and p = 1 corresponds

to ridge.

8 Note that the main results of our empirical analysis are qualitatively similar when using the WLS loss function (based
on market capitalization-based weights of the stocks).

® The lasso approach penalizes the sum of absolute coefficients, thereby setting the regression coefficients of a subset of
predictors to exactly zero (variable selection). The ridge approach penalizes the sum of squared coefficients, thereby only
pushing regression coefficients close to zero (variable shrinkage). We also test the lasso and ridge methodologies sepa-
rately. We find no improvement in predictive performance relative to the elastic net approach, so we do not report results
for these penalty functions.
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Importantly, unless explicitly included as predetermined terms, pooled regressions cannot cap-
ture any nonlinear or interactive effects (neither simple nor penalized approaches). Thus, we use linear
regressions as a benchmark to identify whether such effects, in addition to the two-way interaction
between firm characteristics and the default spread, lead to incremental predictive power. Note that
both tree-based models and neural networks inherently incorporate nonlinearity and multi-way inter-

actions, without the need to add new predictors to capture these effects in advance.

Tree-based models

The idea behind tree-based models is that they adaptively partition the dataset into groups of
observations that behave in a similar way. They follow an iteration process that is inspired by the
growing behavior of real trees in nature (see Figure B1): First, the process starts with an initial node,
the root, in order to find the optimal split variable and the optimal split value for it by minimizing the
value-weighted MSE within each partition. This results in two nodes with minimized impurity. Sec-
ond, to further disentangle the dataset, the algorithm determines optimal split variables and values on
the subsamples left over from the previous step(s) to iteratively grow the regression tree. This results
in multiple final nodes with minimized impurity, the leaves. The predicted beta for each leaf reflects
the simple average of the historically realized betas for the firms sorted into that leaf. Regression trees
are invariant to monotonic transformations of predictors, can incorporate categorical and numerical
data in the same forecast models, and are designed to inherently capture nonlinearity and multi-way
interactions. However, they are prone to overfitting and need to be strongly regularized. To accom-
plish this, the ensemble forecast approach aggregates forecasts from many different regression trees

into a single one. According to Gu et al. (2020), there are two common methods: bagging and boost-

ing.
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Random forests (rf) modify Breiman’s (2001) traditional bagging approach. The idea is to take
multiple bootstrap samples of the original dataset, fit deep trees independently, and then average their
predictions into an ensemble prediction to create a single strong learner. Because dominant predictors
are always more likely to become split variables at low levels, which can lead to large correlations
between bootstrap-replicated trees, random forests use the so-called “dropout” method. At each po-
tential branch, they randomly drop out predictors, leaving only a subset of predictors to be selected as
potential split variables. The tuning parameters in this forecast model are the depth of the trees L, the
number of predictors M randomly considered as potential split variables, and the number of trees B
added to the ensemble prediction.

In contrast, gradient boosted regression trees (gbrt) follow the boosting approach, which is
based on the idea that combining multiple shallow trees creates a single strong learner, even stronger
than a single deep tree. The iterative procedure is as follows: It computes a first shallow tree to fit the
realized betas. This oversimplified tree exhibits a high forecast error. Next, it computes a second shal-
low tree, fitting the forecast residuals from the first tree. The forecasts from these two trees are then
added together to form an ensemble prediction. To avoid overfitting the forecast residuals, the forecast
component from the second tree must be shrunk by a factor v € (0,1). Each additional shallow tree
fits the forecast residual from the preceding ensemble prediction, and its shrunk forecast component
is added to the ensemble forecast accordingly. The tuning parameters in this forecast model are the

depth of the trees L, the shrinkage weight v, and the number of trees B added to ensemble prediction.

Neural networks

Neural networks (nn) are the most complex method in our empirical analysis. They are highly
parameterized, which makes them suitable for solving complicated machine learning problems. How-
ever, they are opaque and can be difficult to interpret. In general, they map inputs (predictors) to

13



outputs (realized betas). Inspired by the way the human brain works, they consist of many intercon-
nected computational units, so-called “neurons”. Each neuron alone provides very little predictive
power, but a network of multiple neurons functions cohesively and improves the predictive perfor-
mance. We use feedforward neural networks, where each node has a connection to all nodes in the
previous layer and the connections follow a one-way direction (from the input layer to the output
layer). The input layer contains the predictor variables (e.g., lagged firm characteristics), while the
output layer contains a prediction for the dependent variable (realized betas). The simplest neural
network (with no hidden layers) corresponds to the OLS regression model. The addition of hidden
layers leads from shallow to deep architectures that can capture nonlinear and interactive effects (see
Drobetz and Otto, 2021, for stylized visualizations that help explain the structure, operation, and reg-
ularization of neural networks).

Neural networks predict the output y as the weighted average of inputs x. In the simplest model,
the regression coefficients are used as weights. In more complex architectures, the weights must be
computed iteratively by using the “backpropagation” algorithm. This algorithm initializes each con-
nection with random weights. It also calculates the initial value-weighted MSE based on the predic-
tions derived from the inputs of the (last) hidden layer. It then proceeds iteratively as follows: First, it
recursively (from the output layer to the input layer) computes the gradient of the value-weighted
MSE with respect to the weights. Second, it adjusts the weights slightly in the opposite direction of
the computed gradients, since the goal is to minimize the value-weighted MSE. Third, it recalculates
the value-weighted MSE based on the adjusted weights. The iteration process, called “gradient de-
scent”, stops when the value-weighted MSE is finally minimized.

So far, it is assumed that each node in the hidden layer produces a signal (i.e., it is included in
the weighted average computation). In the human brain, however, neural networks work somewhat

differently. To avoid noise, a given node transforms each of the previous signals it transmits (if at all).
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For example, it may amplify or condense the previous signals, or only generate a signal if the accu-
mulated impulse is strong enough. Thus, at each node, the weighted average of the preceding signals
(x, coming from either the input or the preceding layer) is subject to an activation function.'® Follow-
ing Gu et al. (2020), we choose the rectified linear unit (ReLU) activation function and apply it to
each node in the hidden layers. To promote sparsity in the number of active neurons, it only provides

a signal when the information from the previous layer accumulates beyond a given threshold:

Oifx <0
x otherwise’

ReLU(x) = {
In our empirical analysis, we consider neural networks with up to five hidden layers (HL = 5)
and thirty-two neurons (N = 32), which we choose according to the geometric pyramid rule (Masters,
1993). ! Following Gu et al. (2020) and Drobetz and Otto (2021), we apply several different types of
regularization simultaneously to ensure computational feasibility and to avoid overfitting.

First, in addition to a ReLU activation and a lasso-based penalization of the weights, we use the
stochastic gradient descent (SGD) approach to train the neural networks. During the iteration process,
the algorithm divides the training sample into small random subsamples, so-called “batches”, and uses
one at each iteration. This leads to strong improvements in computational speed. The algorithm still
sees the entire training sample (sequentially, not concurrently, and at least once, but usually several
times), which helps to incorporate all available information, and thus avoids degrading the predictive

performance. Consequently, the number of iterations depends on the size of the batches and the num-

ber of epochs (i.e., the number of times the algorithm sees the entire training sample).

10 While all weight transformations in the different nodes are purely linear, it is the activation function that allows neural
networks to capture nonlinearity.

11 The pre-specified neural network architectures are: nn_1 (HL = 1; N = {32}), nn_2 (HL = 2; N = {32,16}), nn_3
(HL = 3; N = {32,16,8}),nn_4 (HL = 4; N = {32,16,8,4}),and nn_5 (HL = 5; N = {32,16,8,4,2}). Neural networks are
computationally intensive and can be specified in a myriad of different architectures. Therefore, we refrain from tuning
their parameters (e.g., batch size or number of epochs) and instead pre-specify five different models. We assume that our
nn_1-nn_5 architectures are a conservative lower bound for the predictive performance of neural network models.
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Second, we employ the batch normalization algorithm introduced by loffe and Szegedy (2015).
This aims to mitigate the internal covariate shift that occurs when the distribution of inputs to each
hidden layer changes during training (as the parameters of the previous layers change), slowing down
the learning process. To do this, it cross-normalizes the input to each hidden layer within each batch.

Third, we apply learning rate shrinkage. The learning rate determines the size of the incremental
steps in the gradient, while iteratively minimizing the value-weighted MSE. There is a trade-off be-
tween finding the global minimum instead of its local counterpart (smaller learning rate) and compu-
tational speed (larger learning rate). This regularization procedure starts with a larger learning rate to
speed up the computation. As the gradient approaches zero, it shrinks the learning rate toward zero to
overcome a potential local minimum.

Fourth, we implement early stopping, since neural networks aim to minimize the value-
weighted MSE in the training sample. This regularization stops the SGD iteration process when the
value-weighted MSE in the validation sample increases for a pre-specified number of iterations, called
“patience”, which also speeds up the computation.

Fifth, we adopt the ensemble approach proposed by Hansen and Salamon (1990) and Dietterich
(2000). We compute ten neural networks from the same specification family at each re-estimation
date, using independent seeds.'? We then average over the predictions to increase the signal-to-noise
ratio, since the stochastic nature of the SGD approach leads to different forecasts for different seeds.

Finally, in addition to the regularization applied by Gu et al. (2020), we use the dropout method.
This randomly sets a fraction of the input variables to exactly zero at each iteration, and is thus one of

the most effective methods in the neural network framework to prevent overfitting.

12 Seeds are numbers used to initialize random processes, which ensures different but reproducible predictions.
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Figure B1
Stylized visualization | Regression trees

This figure depicts a stylized visualization that helps explain the structure and functioning of regression trees (as in Gu et al., 2020).
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Internet Appendix C: Further analyses and robustness tests

Cross-Sectional and Time-Series Properties of Beta Estimates

First, we examine the properties of the beta estimates obtained from the different forecasting
models. Panel A of Table C1 focuses on the cross-sectional summary statistics. The cross-sectional
mean is close to one for all beta estimators, while the cross-sectional dispersion varies widely across
the forecasting models. The rolling window estimators have the largest cross-sectional standard devi-
ations. The other benchmark models produce lower cross-sectional dispersion. The machine learning-
based beta estimators have the smallest cross-sectional standard deviations and lead to the least ex-
treme beta estimates. The implied standard deviations are also lowest for the machine learning esti-
mators, providing a first indication that they may provide more accurate estimates.

Panel B of Table C1 focuses on the time-series summary statistics.}* These are consistent with
the cross-sectional metrics. The machine learning estimators yield the lowest time-series standard
deviations, while the high volatility of the historical betas likely reflects measurement noise. Despite
the inclusion of slow-moving firm fundamentals as predictors, the average time-series autocorrela-
tions of the machine learning-based models are rather low compared to those of the benchmark ap-

proaches. Nevertheless, they are above 0.90 for all approaches.

Forecast errors

In this section, we present and discuss the results of further analyses and several robustness tests

related to the forecast errors of the models. As a first step, we use the Giacomini and White (2006)

13 The implied cross-sectional standard deviation of the true betas is computed following Pastor and Stambaugh (1999):

— —_— e 1/2 . . . .
Std(BR) = [Var(,BF) — VaTBLR] . It is the square root of the difference between the time-series average of the monthly

value-weighted cross-sectional variances and the value-weighted cross-sectional average of each firm’s sampling variance.
Small gaps between observed and implied standard deviations indicate small estimation errors.
14 Following Becker et al. (2021), we omit firms with less than fifty beta estimates to allow for valid inference.
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test to assess the relative conditional predictive performance of each model in pairwise comparisons.

To do this, we use the mean squared forecast error differentials d"" = MSES?W - MSEt(_?kH and

regress them on a constant and the lagged forecast error differential, §, = (1 dgj'l)) . The test statistic
; _ -1yT GDY §-1(1-1vT Un 8
ISGW =T (T Yi=10¢—1d; ) Q (T Dit=10¢_1d; ) where () is the Newey and West (1987)

covariance matrix of 6t_1d§j'l). The GW test statistic is distributed as y? with 2 degrees of freedom.

The results are reported in Table C2. Consistent with the results in the main paper, we find that
the machine learning-based beta estimators also outperform all other methods in terms of their condi-
tional predictive ability. The Giacomini and White (2006) GW test rejects its null hypothesis when
comparing the random forests and neural networks with each benchmark model.

In Table C3, we examine the robustness of our main results to changes in the specifications of
the machine learning estimators considered in the empirical analysis. First, we report additional results
for the neural network architectures with two to five hidden layers (nn_2-nn_5). We find that these
more complex models perform similarly to our baseline neural network architecture with only one
hidden layer (nn_1). However, the average forecast errors are slightly higher, indicating that the less
complex specification tends to perform slightly better. This is consistent with findings in Gu et al.
(2020) and Drobetz and Otto (2021), and is likely a result of (moderate) overfitting.

Second, we test the robustness of our main results to the inclusion of additional macroeconomic
variables in addition to the default spread (dfy). Following Welch and Goyal (2008), we add the U.S.
T-bill rate (tbl), the U.S. T-bill rate volatility (tbl_sd), the term spread (tms), the stock variance (svar),
the earnings-to-price ratio (ep) and the dividend payout ratio (dp), both at the market level, and the
consumption—wealth ratio (cay). In addition, we include measures of industrial production, inflation,

and unemployment as provided by the Federal Reserve Bank of St. Louis. Given our findings of the
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low variable importance for dfy, we expect that additional macroeconomic variables make little dif-
ference. Indeed, the results in Table C3 for random forests with additional macroeconomic variables
(rf_amv) are qualitatively similar. While additional macroeconomic variables do not help improve the
predictive performance, their inclusion does not hurt much either.

Third, we report the results for ensemble predictions, where we average the predictions of
the Im, elanet, rf, gbrt, and nn_1 models (ens_1), the elanet, rf, gbrt, and nn_1 models (ens_2), and
the rf, gbrt, and nn_1 models (ens_3). The ensemble approaches perform quite well, with ens_2 and
ens_3 producing lower average MSEs than rf. Including only those machine learning techniques that
perform best in isolation, i.e., the rf, gbrt, and nn_1 models, leads to the best ensemble prediction.
One caveat is that applying this ensemble approach in practice is computationally intensive, as one
must first estimate each of the three to five prediction models separately.

Next, we examine the robustness of our main results to changes in the forecast error measure.

In particular, we use the equal-weighted mean squared error (MSE) in Table C4:
1 .
MSEp e = — Bty (Bfear = Blewwie)? with ke = 12, (C1)

and the value-weighted mean absolute error (MAE) in Table C5:

MAE siqe = B0ty Wiel Bk = Blessiel with k = 12, (C2)
We find that the equal-weighted MSEs are notably higher for all approaches than for the value-
weighted examination. This is consistent with our previous finding that it is considerably more diffi-
cult to estimate market betas for small stocks than it is for large stocks. Moreover, the machine learn-
ing-based approaches outperform the benchmark models even more when equally weighted, support-
ing our previous finding that they are particularly beneficial for small stocks (see Figure 3 of the main

paper). In the MAE framework, all forecast errors are penalized in the same way. As a result, large

forecast errors have less impact than in the MSE framework. Nevertheless, the machine learning-
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based approaches still outperform the benchmark models using the MAE, suggesting that the differ-
ences in predictive performance are not predominantly driven by large outliers in the forecast errors
for just a few stocks.

We also use Mincer and Zarnowitz (1969) regressions in Table C6 to test for the unbiasedness
of the different forecasting models. Following Fama and MacBeth (1973), we run either a weighted
least squares (WLS) regression (using stock market capitalization-based weights) or an ordinary least
squares (OLS) regression (using equal weights) of realized betas on the beta estimates obtained from

the different forecasting models at the end of each month ¢: ﬁi’f”k =a; + btﬁl{:t+k|t + ;1. Table

C6 reports the time-series averages of the monthly intercepts (a), the slopes (b), and the t-statistics
(in parentheses) testing the null hypotheses that a = 0 and b = 1, respectively. For the t-tests, we use
Newey and West (1987) standard errors with eleven lags. Consistent with our previous results, we
find that the best-performing machine learning models are also the least biased. For all machine learn-
ing techniques, the average intercept is closer to zero and the slope is closer to one (with mostly
insignificant t-statistics). In contrast, in the vast majority of cases, the significant t-statistics indicate
a rejection of the unbiasedness hypotheses for the benchmark models.

Finally, we examine different forecast horizons and sampling frequencies for the realized beta.
In particular, we alternatively consider forecast horizons of three months and six months. For both,
we continue to use daily data to compute the realized beta. We also consider a 12-month forecast
horizon with weekly data and a 60-month forecast horizon with monthly data. The results are pre-

sented in Table C7.%° For each combination of forecast horizon and valuation metric, we find that the

15 Note that we skip the hybrid and nn_1 models for this analysis. This is because both of them are prohibitively compu-
tationally expensive. Furthermore, as the main analysis shows, the hybrid model is generally not the best benchmark, and
the nn_1 model is generally not the best machine learning-based model. Thus, the loss of information from omitting these
two models appears to be limited.
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machine learning-based estimators perform best, with the rf model generally producing the lowest

forecast or hedging errors.

Minimum variance portfolios

We examine the robustness of the MVP results to the use of subsample periods. Successful
MVPs should perform well on a period-by-period basis. Therefore, we split the sample in two and
examine the MVPs in the first and second halves separately. We present the results in Tables C8 and
C9. Consistent with the main analysis, we find that the machine learning-based approaches clearly

outperform the benchmarks for both halves of the sample period.

Anomaly performance

In the main paper, we show that machine learning techniques lead to betting-against-beta (BAB)
portfolios that are truly market neutral ex-post. Novy-Marx and Velikov (2022) argue that in addition
to unconditional market neutrality, conditional market neutrality is also important. To examine this,
we follow their approach and run time-series regressions of monthly BAB portfolio returns on a con-
stant, the current market excess return interacted with the log of the one-year to five-year market
volatility ratio, the current market excess return, and the lagged market excess returns of the previous

two months:
Tgapt = Apap + BirueIn (65T /o8 ™) + Bory e + Batme—1 + Balmi—2 + €t (C3)

where o}%T and o¥XT are the past one-year and five-year estimates of the volatility of the (daily)
1 5 p

market excess return, lagged by one month. Following Novy-Marx and Velikov (2022), we standard-
ize the volatility ratio to have a mean of zero and a standard deviation of one. All other variables are

defined as before.
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Novy-Marx and Velikov (2022) show that the original BAB portfolio of Frazzini and Pedersen
(2014), but also their improved version of it, is significantly related to B,7y (In (" /c¥XT). Thus,
the standard BAB strategy has a low exposure to the market during periods of high volatility and a
high exposure during periods of low volatility, introducing a market-timing element that positively
affects the performance.

The results are presented in Table C10. These results confirm that all machine learning-based
betting-against-beta strategies are also conditionally market neutral. All coefficient estimates from
Equation (C3) are insignificant at the 5% level. For the benchmark estimators, however, the g, coef-

ficient estimates are all statistically significant.

Nonlinearity and interactions

The results in the main paper suggest that tree-based models and neural networks are superior
to established beta estimators. Both machine learning-based model families are designed to capture
nonlinearity and interactions in the relationship between predictors and future market betas. Im-
portantly, they also outperform linear regressions that include the exact same set of covariates. As a
result, much of this outperformance may be due to their ability to exploit nonlinear and interactive
patterns in estimating future market betas. We therefore investigate whether the best-performing ma-
chine learning approach, random forests (rf), actually captures nonlinearity and interactions. For com-
parison, we contrast the results with beta estimates from simple linear regressions (Im).1®

We first examine the marginal association between a single predictor and its beta estimates

(,Bl-‘,D t+kjer With k- = 12). To illustrate, we select a firm’s sample beta estimate from rolling regressions

16 Note that the patterns identified and their implications are qualitatively similar when comparing gradient boosted re-
gression trees (gbrt) and neural networks (nn_1) to estimates obtained from penalized linear regressions (elanet). This
underscores that the ability to exploit nonlinear and interactive patterns does indeed lead to the outperformance of tree-
based models and neural networks over linear regressions.
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using a one-year window of daily returns (ols_1y_d). It is the most influential predictor in our empir-
ical analysis (see Figure 5, Panel B of the main paper) and helps to address the problem of underesti-
mation and overestimation inherent in estimating time-varying market betas (see Figure 2 of the main

paper).r” To visualize the average effect of ols_1y d on ﬁft+k|t’ we set all predictors to their unin-

formative median values within the training sample at each re-estimation date, and the industry dum-
mies to zero. We then vary ols_1y d over the interval (—1, +3) and compute the beta estimates. Fi-
nally, we average the beta estimates over all re-estimation dates.

Panel A of Figure C1 illustrates the marginal association between ols_1y d and ﬁft+k|c- To this

visualization we add a histogram showing the historical distribution of ols_1y d. This allows us to
assess the relevance of the differences in the predictions obtained from the Im and rf models to the
overall forecast results. As expected, higher values of the one-year rolling betas lead to higher beta
estimates for both model families. We observe an increasing linear relationship between ols_1y dand

,BfHklt for the Im model. In the center of the distribution, approximately in the interval (+0.3, +1.5),

the marginal association between ols_1y d and the beta forecasts is also nearly linear for the rf model.
Outside this interval, however, the rf model provides nearly constant predictions, resulting in an over-
all S-shaped relationship. In contrast, the Im model, by construction, must adhere to the increasing
linear relationship. This results in less extreme beta estimates for random forests (compared to simple
linear regressions) as ols_1y d becomes small or large. Since a substantial fraction of the observations
lies within these outer regions of the historical distribution, differences in predictions are highly rele-
vant. This highlights the need to account for nonlinear effects of the predictor variables. We also

observe such S-shaped relationships for other predictors (unreported), such as turnover (to) and size

17 Note that the patterns identified and their implications are qualitatively similar for other predictor variables.
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(me). Taken together, these visualizations provide an explanation for our previous findings that ran-
dom forests generally provide less extreme beta forecasts while avoiding the systematic underestima-
tion of low-beta stocks and the systematic overestimation of high-beta stocks (see Figure 2 of the main
paper). These results also help to explain the outperformance of random forests over established and
linear approaches in terms of lower forecast errors (see Tables 2 and 3 of the main paper) and their
dominance over benchmark estimators in the construction of market-neutral portfolios (see Tables 4
and 5 of the main paper).

Next, we examine the interactions between predictors in estimating future market betas, again
using ols_1y d as our baseline covariate. We select me, another highly influential predictor in our
empirical analysis (see Figure 5, Panel B of the main paper), as our interactive counterpart and repeat
the procedure outlined above. In this case, however, we compute the beta estimates for different levels

of me over the interval (—1, +1). The interactive effect between ols_1y d and me on ﬁf t+kj¢ 1S Shown

in Panel B of Figure C1. Low and high levels for me are marked with red and green lines, respectively.
Conceptually, if there is no interaction, or if the model is unable to capture such interactions, calcu-
lating estimated betas for different levels of me simply shifts the lines up or down in parallel. In this
case, the distance between the lines is identical for any given value of ols_1y d. This pattern is appar-
ent for simple linear regressions because no pre-specified interaction term, e.g., ols_1y d x me for
the interaction between ols_1y d and me, is included as a predictor in the OLS-based framework. The

lines are shifted upward as me increases, indicating that an increase in me also increases ,Bfﬁklt, but

independently of ols_1y d. Unlike the Im model, the rf model uncovers the interactive effect between

a firm’s historical beta and size in estimating future betas.® While the lines are also shifted upward

18 Although somewhat less pronounced, the rf model also reveals the interactive effects between other firm characteristics
in estimating future betas, such as between a firm’s historical beta (ols_1y_d) and turnover (to).
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for higher levels of me, the strength of the shift is much more pronounced for larger values of ols_1y d.
Thus, the effect of a firm’s size on its future beta estimate appears to be much stronger if the firm has
historically been more sensitive to systematic market risk.

As this example shows, incorporating nonlinear effects of individual predictors and interactions
between predictors is both essential and fundamental to the superior predictive performance of random
forests. These effects explain the advantage of machine learning methods over established and linear

benchmark models.

Size and value beta forecasting

Finally, we extend the beta forecasting analysis to the size and value factors of Fama and French
(1993). That is, we adapt our estimation and evaluation procedure to a three-factor setup. We compute
historical size (SMB) and value (HML) betas from multiple regressions including all three Fama and
French (1993) factors:!®

Tits = “{,{t + ﬁiI:ItrM,ts + ﬁftrSMB,ts + ﬁi‘,/trHML,ts + Eits (C4)
where rgyp ¢s and 1y, ¢s are the excess returns of the SMB and HML portfolios, respectively. We
use the same set of covariates for predicting ﬁf_t and ﬁi‘,’t as for predicting market betas, and separately
forecast these factor betas for all stocks. We also use the same sample splitting scheme and hyperpa-
rameter sets. After computing the factor beta forecasts, we evaluate them against the realized factor
betas over the next year. We compute these realized factor betas from a multiple regression of daily
returns on a constant and the three factors. MSE and MAE are used to evaluate the forecast accuracy.

The results are shown in Table C11. We find that the machine learning-based models produce

clearly smaller forecast errors than the benchmarks. This is true for both SMB and HML betas. For

19 Not all benchmark estimators naturally extend to a multi-factor setup. We skip these benchmarks for the present analysis.
In addition, we omit the nn_1 model from the presentation because it is computationally very expensive.
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example, for SMB betas, the ols_1y_d benchmark estimator produces an average value-weighted MSE
of 20.68%. The rf model, on the other hand, produces an average value-weighted MSE that is more
than 30% lower (14.37%). In 88% of the months, the value-weighted MSE of the rf model is signifi-
cantly lower. Thus, the outperformance of the machine learning-based estimators is even more pro-
nounced for SMB betas than for market betas. For HML betas, the value-weighted MSE is 19% lower
for the rf model than for ols_1y d (35.15% vs. 43.36%). In 53% of the months, the value-weighted
MSE of the rf model is significantly lower when predicting HML betas. Alternative benchmark mod-
els perform similarly or worse than ols_1y_d. Thus, this section shows that machine learning methods

are very promising for the prediction of factor betas.
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Table C1
Cross-Sectional and Time-Series Properties of Beta Estimates

This table reports the properties of the beta estimates obtained from the forecasting models presented in Section IV of the main paper. Panel A focuses
on the cross-sectional properties, reporting the time-series means of the monthly 1) value-weighted cross-sectional averages of the estimated betas, 2)

value-weighted cross-sectional standard deviations, and 3) cross-sectional minimum, median, and maximum values. Following Pastor and Stambaugh

— —_— = 1/2
(1999), the implied cross-sectional standard deviation of the true betas is also reported: Std(8F) = [Var(ﬁF) — VarﬂiR] . Panel B focuses on time-

series properties and presents the value-weighted cross-sectional means of 1) time-series averages, 2) time-series standard deviations, 3) time-series
minima, medians, and maxima, and 4) first-order autocorrelations of the estimated betas. Following Becker et al. (2021), firms with less than fifty beta
estimates are omitted from the summary statistics. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any

month during the sample period from March 1970 to December 2020, while the first beta estimates are obtained in December 1979.

Panel A: Cross-Sectional Properties Panel B: Time-Series Properties
Model Mean Std Min  Median Max Ig't%l' Mean Std Min  Median  Max ﬁg:ﬁ-
ols_5y_m 1.00 0.47 -1.09  0.97 4.68 0.31 1.09 0.32 0.49 1.06 1.82 0.96
ols_ly d 1.00 0.40 -1.39 0.78 3.22 0.26 1.05 0.29 0.44 1.02 1.84 0.95
. | ewma_s 1.00 041 -1.66  0.78 344 0.26 1.05 0.31 0.38 1.03 1.92 0.93
g ewma_| 1.00 0.40 -1.47 0.78 3.27 0.26 1.05 0.30 0.43 1.02 1.86 0.95
2 | bsw 0.98 0.36 -0.19 0.80 2.26 0.25 1.03 0.26 0.49 1.01 1.67 0.96
é vasicek 0.99 0.36 -0.18 0.83 2.29 0.25 1.04 0.26 0.48 1.02 1.72 0.96
g karolyi 0.99 0.37 -0.19 0.84 243 0.26 1.04 0.26 0.49 1.01 1.74 0.96
® hybrid 0.99 0.36 -0.30 0.86 248 0.25 1.05 0.25 0.52 1.03 1.67 0.96
fama-french 0.99 0.34 0.18 0.77 1.89 0.23 1.04 0.26 0.49 1.02 1.77 091
long-memo 1.00 0.34 -054  0.79 2.39 0.28 1.06 0.19 0.68 1.05 151 0.92
Im 1.03 0.28 -0.42 0.79 2.13 0.19 1.08 0.19 0.67 1.07 1.64 0.92
é elanet 1.03 0.26 -0.36 0.79 2.08 0.18 1.06 0.18 0.68 1.05 1.62 0.92
-é rf 0.99 0.28 0.05 0.80 1.92 0.19 1.04 0.19 0.66 1.03 1.50 0.92
; gbrt 0.98 0.29 0.00 0.78 1.92 0.20 1.02 0.20 0.61 1.02 151 091
nn_1 0.99 0.30 -0.09 0.78 2.12 0.21 1.03 0.20 0.65 1.01 1.54 091
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Table C6
Unbiasedness test

This table reports the results of Mincer and Zarnowitz (1969) regressions to test the unbiasedness of the forecasting models presented in Section IV of
the main paper. Following Fama and MacBeth (1973), at the end of each month ¢, either a weighted least squares (WLS) regression (using the stock

market capitalization-based weights) or an ordinary least squares (OLS) regression (using equal weights) of realized betas is run on the beta estimates

F,()

obtained from the different forecasting models: ﬁfHk =a, + btﬁi,t+k|t

+ e; 14« In particular, this table reports the time-series averages of the monthly

intercepts (a) and slopes (b), and the t-statistics (in parentheses) testing the null hypothesesthata = 0and b = 1, respectively. The t-tests are based
on Newey and West (1987) standard errors (with eleven lags to account for possible heteroscedasticity and autocorrelation). Panel A shows the value-
weighted results (based on WLS regressions), while Panel B adds the results for equal weights (based on OLS regressions). The sample includes all
firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from March 1970 to December 2020. The

first beta estimates are obtained in December 1979.

Panel A: Value-weighted results Panel B: Equal-weighted results

Model a B a B
ols 5y m 0.50 0.49 0.42 0.36
(3.76) (-4.72) (1.54) (-9.11)

ols_ly d 0.25 0.74 0.28 0.65
(2.88) (-3.04) (6.78) (-5.29)

ewma_s 0.26 0.73 0.30 0.62
(4.43) (-4.64) (8.42) (-6.55)

ewma_| 0.25 0.74 0.28 0.64
g (3.43) (-3.62) (7.34) (-5.77)
£ | bsw 018 0.83 0.12 0.83
2 (1.87) (-1.86) (2.85) (-2.90)
‘é vasicek 0.17 0.83 0.08 0.85
£ (1.79) (-1.84) (1.53) (-2.02)
& | karolyi 018 0.82 0.06 0.86
(1.91) (-1.98) (1.01) (-1.62)

hybrid 0.15 0.85 0.10 0.80
(1.46) (-1.64) (1.23) (-3.22)

fama-french 0.12 0.87 0.10 0.89
(1.33) (-1.40) (2.68) (-2.25)

long-memo 0.12 0.86 0.14 0.82
(1.19) (-1.59) (3.89) (-3.72)

Im -0.10 1.06 0.06 0.94
(-0.57) (0.35) (1.28) (-1.44)

elanet -0.18 1.14 0.01 1.00
g (-1.10) (1.04) (0.15) (-0.05)
| -0.09 1.08 0.00 1.03
2 (-0.75) (0.78) (-0.02) (0.34)
S |gbrt 0.05 1.06 0.03 1.01
(-0.45) (0.54) (0.38) (0.07)

nn_1 -0.02 1.02 0.03 1.00
(-0.20) (0.23) (0.44) (-0.04)
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Table C8
Minimum variance portfolios (first half of the sample period)

This table reports the properties of the minimum variance portfolios for the first half of the sample period. The portfolios are constructed based on
beta estimates obtained from the forecasting models introduced in Section IV of the main paper. For the portfolio optimization, we impose a single-
factor structure on the covariance matrix of stock returns. Thus, the market betas are the primary determinants of the stock weights in the minimum
variance portfolio. The approach is described in detail in Section VI.C of the main paper. Each month, we compute the weights that minimize the
expected portfolio variance, subject to the constraints that the weights are positive, that each individual weight is less than 5%, and that the weights
sum to 1. The forecasts for the market and idiosyncratic variances are based on daily returns over the previous year. Panel A presents the annualized
risk and return measures of the resulting minimum variance portfolios. Std reports the ex-post time-series standard deviation and Dwnd the ex-post
downside standard deviation (of negative returns). Min is the lowest monthly excess return and MaxDD is the maximum drawdown of the minimum
variance portfolio from peak to trough over multi-month periods. TV is the terminal value in November 1999 of a $1 investment in the minimum
variance portfolio in December 1979. Mean is the average portfolio return, and SR is the Sharpe ratio. Panel B reports the ex-post market betas of the
minimum variance portfolios (Bpv) as well as the beta of a market-neutral minimum variance portfolio that hedges the expected market risk (depending
on the portfolio beta forecast) each month using an additional investment in the market portfolio (Bmn). The t-statistics in parentheses are based on
Newey and West (1987) robust standard errors with 11 lags. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ
in any month during the first half of our sample period from March 1970 to November 1999 and have a market capitalization above the 20" percentile
of NYSE stocks. The first beta estimates are obtained in December 1979.

Panel A: Panel B:
Minimum variance Market neutrality
ols 1y d 12.96 11.08 —24.24 25.88 6.19 10.01 0.77 0.26 -0.21
(11.55)  (-8.00)
2 | bsw 12.56 10.09 -21.91 228 6.07 9.85 0.78 0.24 -0.13
£ (10.18)  (-6.44)
% | hybrid 12.76 10.11 -21.88 24.08 5.19 9.08 0.71 0.24 -0.10
?E 6.26)  (-2.17)
S | fama-french 12.47 10.02 —23.04 23.04 6.22 9.97 0.8 0.29 -0.05
@ (16.26)  (-1.90)
long-memo 12.83 9.93 -20.35 26.35 5.14 9.04 0.7 0.22 -0.11
(8.78)  (-4.18)
Im 11.94 8.36 -12.98 18.54 5.9 9.62 0.81 0.24 -0.08
(10.64)  (-3.50)
elanet 12.44 10.2 —22.34 22.34 5.31 9.17 0.74 0.22 -0.05
g (10.54)  (-1.75)
g rf 12.19 9.17 -19.32 24.84 5.09 8.91 0.73 0.21 0.04
2 (7.22)  (1.20)
s gbrt 11.16 8.84 -18.82 19.1 6.51 10.03 0.9 0.22 0.03
(9.36) (1.25)
nn_1 11.81 8.79 -16.28 20.71 6.11 9.78 0.83 0.21 0.00
(7.83)  (-0.18)
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Table C9
Minimum variance portfolios (second half of the sample period)

This table reports the properties of the minimum variance portfolios for the second half of the sample period. The portfolios are constructed based on
beta estimates obtained from the forecasting models introduced in Section IV of the main paper. For the portfolio optimization, we impose a single-
factor structure on the covariance matrix of stock returns. Thus, the market betas are the primary determinants of the stock weights in the minimum
variance portfolio. The approach is described in detail in Section VI.C of the main paper. Each month, we compute the weights that minimize the
expected portfolio variance, subject to the constraints that the weights are positive, that each individual weight is less than 5%, and that the weights
sum to 1. The forecasts for the market and idiosyncratic variances are based on daily returns over the previous year. Panel A presents the annualized
risk and return measures of the resulting minimum variance portfolios. Std reports the ex-post time-series standard deviation and Dwnd the ex-post
downside standard deviation (of negative returns). Min is the lowest monthly excess return and MaxDD is the maximum drawdown of the minimum
variance portfolio from peak to trough over multi-month periods. TV is the terminal value in December 2019 of a $1 investment in the minimum
variance portfolio in December 1999. Mean is the average portfolio return, and SR is the Sharpe ratio. Panel B reports the ex-post market betas of the
minimum variance portfolios (Bpv) as well as the beta of a market-neutral minimum variance portfolio that hedges the expected market risk (depending
on the portfolio beta forecast) each month using an additional investment in the market portfolio (Bmn). The t-statistics in parentheses are based on
Newey and West (1987) robust standard errors with 11 lags. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ
in any month during the second half of our sample period from December 1999 to December 2020 and have a market capitalization above the 20"

percentile of NYSE stocks. The first beta estimates are obtained in December 1999.

Panel A: Panel B:
Minimum variance Market neutrality
Model I W N T W b
ols_ly d 11.84 8.73 -14.37 43.55 4.52 8.24 0.7 0.52 -0.24
(7.67) (-3.55)
g bsw 11.55 8.42 -14.53 43.07 450 8.18 0.71 0.49 -0.18
£ (6.69)  (-2.23)
2 hybrid 11.65 8.51 -14.32 41.12 5.06 8.78 0.75 0.49 -0.19
?E 6.92) (257
é fama-french 11.57 8.99 -13.21 37.08 4.12 7.74 0.67 0.52 -0.09
@ (9.76)  (-1.36)
long-memo 11.00 8.04 -10.84 34.73 5.64 9.25 0.84 0.50 -0.14
(7.94) (-1.84)
Im 11.50 9.17 -12.11 50.15 5.99 9.62 0.84 0.59 -0.18
(8.75)  (-1.84)
elanet 11.39 9.80 -13.94 49.34 5.83 9.46 0.83 0.59 -0.15
g (9.45)  (~1.58)
g rf 10.62 7.36 -10.82 39.12 6.50 9.92 0.93 0.49 -0.02
2 (752)  (-0.12)
§ gbrt 11.06 8.06 -11.74 38.85 6.51 9.98 0.90 0.50 -0.03
(6.83) (-0.25)
nn_1 10.50 7.42 -10.95 35.08 6.14 9.63 0.92 0.49 -0.06
(6.81) (-0.50)
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Table C10
Conditional market neutrality of betting-against-beta portfolios

This table analyzes the conditional market neutrality of the betting-against-beta (BAB) portfolios. Each month, we construct decile portfolios by
sorting the stocks by their beta estimates, using the predicted beta of each forecasting model. The portfolios go long and short the extreme deciles,
buying the stocks in decile one and shorting those in decile ten. Finally, the portfolios are hedged each month with a position in the market portfolio
equal to the negative of the portfolio beta predicted by the forecasting models. We then regress the annualized BAB returns on a constant, the current
market excess return interacted with the log of the one-year to five-year market volatility ratio, the current market excess return, and the lagged market
excess returns of the previous two months. The regression equation is 7p,5; = agap + BiTueln (Y57 /G¥XTY + Bory + BsTae—1 + BaTwe—2 + €t
where 145, is the annualized monthly BAB long-short portfolio return in month t, 7, , is the market return in month t, and o}’*™ and o¥XT are the
one-year and five-year estimates of (daily) market excess return volatility, respectively, lagged by one month. Following Novy-Marx and Velikov
(2022), we standardize this volatility ratio to have a mean of zero and a standard deviation of one. The t-statistics in parentheses are based on Newey
and West (1987) robust standard errors with four lags. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in
any month during the sample period from March 1970 to December 2020 and have a market capitalization above the 20" percentile of NYSE stocks.

The first beta estimates are obtained in December 1979.

Model [02] By B Bs b A?g/;) ]RZ

ols 1y d 7.26 0.14 0.44 0.06 0.03 9.97
(2.25) (-161) (4.48) (1.19) (0.44)

2 | bsw 6.02 0.12 0.30 0.06 0.02 4.97
g (1.90) (-151) (3.22) (1.32) (0.34)

B | hybrid 9.17 ~0.08 0.22 0.03 0.00 2.05
E 2.91) (-1.05) (2.70) (0.56) (0.03)

é fama-french 7.27 -0.09 0.26 0.07 0.00 4.02
@ (2.49) (-1.15) (3.18) (1.46) (0.01)

long-memo 8.60 011 0.21 0.02 0.00 241
(2.84) (-1.76) (2.76) (0.31) (0.05)

Im 8.61 0.00 0.07 0.07 0.01 0.06
(2.61) (0.04) (0.91) (L41) (0.11)

elanet 8.42 ~0.03 0.05 0.08 0.00 021
2 (2.66) (-0.39) (0.51) (L.75) (0.08)

£ |t 8.64 0.14 0,03 0.06 ~0.02 1.32
g (2.54) (1.73) (-0.30) (1.14) (-0.43)

S | gort 9.86 0.14 0.00 0.05 ~0.03 0.76
2.92) (-1.49) (0.04) (0.89) (-0.66)

nn_1 9.51 012 0.05 0.05 0,03 0.18
(2.88) (-1.30) (0.59) (0.91) (-0.46)
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Table C11
Forecast errors of size and value betas

This table shows the differences in forecast errors for realized factor betas. We consider forecasts for betas of the Fama and French (1993) three-factor
model. Specifically, we forecast realized size (small-minus-big; SMB) and value (high-minus-low; HML) betas. The realized betas are computed
from a multiple regression of daily returns over the next year on a constant and the three Fama and French (1993) factors. The forecasting models are
adapted versions of those presented in Section IV of the main paper. We report the time-series averages of the monthly value-weighted MSEs, equal-
weighted MSEs, and value-weighted MAEs. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month
during the sample period from March 1970 to December 2020. The first beta estimates are obtained in December 1979.

Benchmark estimators ML estimators

ols 5y m ols_ 1y d ewma_s ewma_| Im elanet rf gbrt

MSE, v.w. [%] 37.87 20.68 21.68 20.67 24.30 23.46 14.37 14.51

g MSE, e.w. [%] 127.47 62.40 68.92 63.74 43.16 42.60 38.46 38.78
@ | MAE, v.w. [%] 44.97 33.23 34.06 33.26 37.32 36.87 27.70 27.88
MSE, v.w. [%] 65.43 43.36 43.80 42.63 43.30 4141 35.15 35.44

3‘ MSE, e.w. [%] 134.25 96.61 107.57 99.08 61.02 59.86 57.27 58.42
T MAE, v.w. [%] 59.41 47.29 47.70 46.98 47.86 46.70 42.94 43.16
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Table C12
Statistical Significance of Alpha Differences

This table shows the t-statistics for the alpha differences presented in Table 5 of the main paper. Each month, we construct decile portfolios by sorting
the stocks by their momentum (MOM), idiosyncratic volatility (IVOL), and beta estimates (BAB). For the latter, we use the predicted beta of each
forecasting model. The anomaly portfolios go long and short in the extreme deciles. For momentum, the resulting portfolio goes long in decile ten and
short in decile one, while those for the other two anomalies go long in decile one and short in decile ten. Finally, the portfolios are hedged each month
with a position in the market portfolio equal to the negative of the portfolio beta predicted by the forecasting models. We report the alphas of the
returns over the next month of these strategies with respect to the CAPM and the Fama and French (2015) 5-factor model (FF5). The t-statistics are
based on Newey and West (1987) robust standard errors with four lags. We print in bold all t-statistics that are significant at the 10% level. The sample
includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from March 1970 to December
2020. The first beta estimates are obtained in December 1979.

Benchmark estimators ML estimators

bsw hybrid ~ fama-french long-memo Im elanet rf gbrt nn_1

ols_1y d 1.24 0.47 0.17 1.07 1.21 0.39 1.63 1.48 1.40
bsw -0.63 -0.77 0.82 0.97 0.08 1.71 149 1.30

. hybrid -0.14 1.00 1.20 0.26 1.64 144 1.45
% | fama-french 1.47 0.97 0.29 2.03 1.80 1.44
; long-memo 0.24 035 1.01 0.80 0.35
g Im -1.30 0.31 0.20 -0.11
elanet 111 1.01 0.82

rf -0.64 -1.10
gbrt -0.72
ols_1y d 1.29 0.23 0.40 1.25 0.98 0.05 1.75 1.66 1.50
bsw -0.93 -0.53 1.04 0.66 -0.29 1.87 1.72 1.43
hybrid 0.23 1.35 1.00 -0.01 1.87 1.73 171

§ fama-french 1.62 0.66 -0.10 221 204 1.49
s | long-memo -0.12 -0.69 0.84 0.71 0.11
S |m -151 0.62 0.57 0.30
elanet 1.35 1.30 111

rf -0.37 -1.22
gbrt -0.96
ols_1y d -0.02 -0.39 -0.15 1.15 0.95 1.00 1.03 1.19 1.41
bsw -0.53 -0.10 1.54 1.25 1.36 1.56 1.67 1.99

- hybrid 0.36 1.82 1.39 131 1.56 1.68 2.02
% fama-french 1.24 1.03 1.10 1.14 1.30 151
S| long-memo 0.45 0.26 0.27 0.78 1.09
S lim -0.15 -0.45 018 0.42
elanet -0.18 0.30 0.45

rf 1.37 1.97
gbrt 0.33

Continued on the next page
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Table C12 continued
Statistical Significance of Alpha Differences

IVOL tpps

BAB acapy

BAB yps

Benchmark estimators

ML estimators

bsw hybrid ~ fama-french long-memo Im elanet rf gbrt nn_1
ols_1ly d -0.26 -0.47 -0.43 1.14 0.82 0.71 0.97 1.15 1.32
bsw -0.36 -0.07 1.56 1.14 1.08 1.57 1.67 1.91
hybrid 0.25 1.78 1.26 1.04 1.55 1.66 1.95
fama-french 1.30 0.95 0.86 1.15 131 1.47
long-memo 0.19 -0.19 0.02 0.59 0.81
Im -0.37 -0.27 0.35 0.58
elanet 0.33 0.74 0.84
rf 131 1.83
gbrt 0.27
ols_1ly d -2.10 1.42 -0.08 0.64 0.48 0.53 1.01 1.54 1.35
bsw 3.05 1.24 1.71 1.27 1.39 2.29 2.68 2.44
hybrid -1.39 -0.47 -0.34 -0.34 -0.19 0.47 0.38
fama-french 0.63 0.53 0.58 0.90 1.40 1.26
long-memo 0.03 0.05 0.30 0.86 0.76
Im 0.05 0.23 0.82 0.75
elanet 0.21 0.84 0.80
rf 111 0.84
gbrt -0.15
ols_1ly d -2.18 1.04 -0.21 0.52 0.03 0.13 0.72 1.33 1.06
bsw 2.84 1.22 1.65 0.77 1.00 2.08 2.56 2.19
hybrid -1.07 -0.21 -0.50 -0.45 -0.06 0.66 0.46
fama-french 0.63 0.15 0.27 0.77 1.32 1.09
long-memo -0.35 -0.26 0.15 0.78 0.57
Im 0.26 0.52 1.07 0.89
elanet 0.45 1.08 0.90
rf 117 0.74
gbrt -0.27
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Figure C1
Nonlinear and interactive effects in estimating future market betas

This figure illustrates the ability to capture nonlinear and interactive effects in estimating future market betas for both random forests and simple linear
regressions (rf and Im, introduced in Section 1V.B of the main paper). Panel A shows the marginal association between a firm’s sample beta estimate
from rolling regressions using a one-year window of daily returns (ols_1y d) and its beta estimates (B}:Hklt, with k = 12). To visualize the average
effect of ols_1y don Bfﬁklt, all predictors are set to their uninformative median values within the training sample at each re-estimation date, and the
industry dummies are set to zero. ols_1y d is then varied over the interval (- 1, 43) and the beta estimates are computed. Finally, the beta estimates
are averaged over all re-estimation dates. This visualization is accompanied by a histogram showing the historical distribution of ols_1y_d. Panel B
shows the interactive effect of ols_1y d and firm size (me) on Bfﬁku. For this purpose, the procedure described above is repeated. In this case, however,
the beta estimates are computed for different levels of me over the interval (- 1,4+1). Low and high levels of me are marked with red and green lines,
respectively. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from
March 1970 to December 2020, while the first beta estimates are obtained in December 1979.
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