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Internet Appendix A: Benchmark estimators 

In this appendix, we briefly present the established forecast models listed in Section IV.A of the 

main paper. We use them as our benchmarks to determine whether the machine learning-based ap-

proaches listed in Section IV.B of the main paper add incremental predictive power. We start with 

simple rolling-window estimators, continue with shrinkage-based approaches, and end with portfolio-

based and long-memory models. We also note the major differences between the model families. 

Panel A of Table A1 summarizes the definitions and descriptions for each of the established beta 

estimators. 

Rolling-window estimators 

In the baseline rolling-window approach, we obtain historical betas by running time-series or-

dinary least squares (OLS) regressions: 

 𝑟𝑖,𝑡𝑠 = 𝛼𝑖,𝑡
𝐻 + 𝛽𝑖,𝑡

𝐻 𝑟𝑀,𝑡𝑠 + 휀𝑖,𝑡𝑠, (A1) 

where 𝑟𝑖,𝑡𝑠 and 𝑟𝑀,𝑡𝑠 are the excess returns on stock 𝑖 and the market portfolio 𝑀, respectively. The 

subscript 𝑡 indicates that we estimate historical alphas and betas (𝛼𝑖,𝑡
𝐻  and 𝛽𝑖,𝑡

𝐻 , respectively) for each 

month 𝑡 using a rolling window of daily or monthly excess returns. The subscript 𝑠 = 1, … , 𝜏 denotes 

the returns before the end of month 𝑡, while 𝜏 refers to the length of the rolling window. The intercept 

𝛼𝑖,𝑡
𝐻  is the risk-adjusted return, while the slope 𝛽𝑖,𝑡

𝐻  is our parameter of interest. The error term 휀𝑖,𝑡𝑠 is 

an idiosyncratic return shock. 

Rolling-window beta estimators rely only on historical return information. Since there is no 

need to specify a set of conditioning variables (neither fundamental nor technical nor macroeco-

nomic), these estimators are less prone to misspecification. However, they implicitly assume that betas 

are constant within the rolling window (and going forward), which leads to an important bias−variance 
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trade-off between detecting short-term fluctuations in betas (conditionality) and accurately capturing 

long-term averages. Shorter rolling windows increase the ability to use short-term information, which 

reduces estimation bias. However, the resulting smaller rolling samples are more susceptible to mi-

crostructure noise, which increases both estimation variance and measurement error. Because of this 

trade-off, we consider two sets of rolling betas estimated from different window lengths and data 

frequencies. The first is obtained from rolling regressions using a five-year window of monthly returns 

(ols_5y_m), as proposed by Black, Jensen, and Scholes (1972) and Fama and MacBeth (1973). The 

second is obtained from rolling regressions using a one-year window of daily returns (ols_1y_d), as 

proposed by Andersen et al. (2006). Modifications to the basic rolling-window approach that help 

improve the bias−variance trade-off are numerous. In our empirical analysis, we focus on the two 

most commonly used approaches. 

First, in the traditional OLS regression setting, observations entering the market model are 

equally weighted. However, from a conceptual perspective, changing the underlying weighting 

scheme allows more recent observations to be given greater weight. Thus, the estimates are “condi-

tional”, while still incorporating sufficiently large rolling samples. In line with Hollstein et al. (2019), 

we utilize rolling-window estimators with an exponentially-weighted moving average structure. To 

obtain exponentially-weighted betas, we run time-series weighted least squares (WLS) regressions 

using a one-year window of daily returns with exponential weights. These are defined by the time it 

takes for the weights to fall below half of their initial value, i.e., their half-life. A shorter (longer) time 

span thus reflects a faster (slower) exponential decay. To give an example, Figure A1 provides a 

visualization of exponentially decaying weights based on short and long half-lives. To be conserva-

tive, we consider two sets of rolling betas estimated from different horizons: one-third (ewma_s) and 

two-thirds (ewma_l) of the number of observations of the (initial) rolling window. 
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Second, the traditional OLS regression setting is particularly prone to outliers in a stock’s return 

history, resulting in extreme and volatile beta estimates. To moderate the influence of single outlier 

returns, Welch (2022) assumes that market betas lie within the (−2, +4) interval. In theory, this in-

creases the signal-to-noise ratio, which translates into improved predictive power. To this end, stock-

level returns must first be winsorized at market return-based bounds: 𝑟𝑖,𝑡𝑠  ∈ (−2𝑟𝑀𝑡,𝑠, +4𝑟𝑀𝑡,𝑠). A 

one-year window of these winsorized daily returns is then used within the baseline rolling-window 

approach to obtain slope-winsorized betas (bsw). 

Shrinkage-based estimators 

Another approach that aims to refine beta forecasts is to enhance rolling-beta estimates with 

additional cross-sectional information. The idea is that a stock’s beta estimate should not be too dif-

ferent from those of other stocks with similar characteristics. Therefore, a prior on the true beta can 

be specified to which the sample beta estimate obtained from rolling regressions is shrunk. The estab-

lished approach for obtaining shrinkage betas is to compute the weighted average of rolling-beta es-

timates 𝛽𝑖,𝑡
𝐻  and prior belief �̅�𝑖,𝑡: 

 𝛽𝑖,𝑡 =  𝜑𝑖,𝑡𝛽𝑖,𝑡
𝐻 + (1 − 𝜑𝑖,𝑡)�̅�𝑖,𝑡. (A2) 

The shrinkage weight is: 𝜑𝑖,𝑡 =
𝜎

�̅�𝑖,𝑡

2

𝑠
𝛽𝑖,𝑡

𝐻
2 +𝜎

�̅�𝑖,𝑡

2 , where 𝑠
𝛽𝑖,𝑡

𝐻
2  and 𝜎�̅�𝑖,𝑡

2 are the variance of the sample estimates 

of beta and the prior, respectively. The degree of shrinkage is proportional to the relative precision of 

the rolling-beta estimates and the prior. The lower the relative precision of the sample estimates of 

beta (i.e., the larger 𝑠
𝛽𝑖,𝑡

𝐻
2  is relative to 𝜎�̅�𝑖,𝑡

2 ), the more weight is given to the prior. Conceptually, shrink-

ing towards a well-defined prior reduces estimation noise, which helps improve the accuracy of the 

rolling-beta estimates. Prior beliefs thereby can be specified in several ways. 
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Vasicek (1973) suggests that, if no other information is known about a stock except that it comes 

from a broad universe, the optimal prior density for the true underlying beta is based on the cross-

sectional distribution of the beta. Thus, the value-weighted mean and variance of rolling betas within 

the cross-section are used as prior information. Karolyi (1992) suggests grouping stocks into portfo-

lios based on firm fundamentals and shrinking rolling-beta estimates towards their portfolio betas. 

Specifically, the value-weighted mean and variance of rolling betas within each industry portfolio are 

used as prior information.  

However, Cosemans et al. (2016) argue that shrinkage based on Vasicek (1973) and Karolyi 

(1992) only dampens part of the noise in rolling-beta estimates. This is because the prior does not use 

the cross-sectional information embedded in firm fundamentals at all (Vasicek, 1973) or may be ham-

pered by large intra-portfolio dispersion in betas (Karolyi, 1992). They suggest specifying priors 

unique to each firm that incorporate a comprehensive set of firm fundamentals as predictors. In par-

ticular, they outline a complex Bayesian framework (which they call a “hybrid model”) for computing 

firm-specific priors.1 

In our empirical analysis, we implement the shrinkage approach as follows: We obtain rolling-

beta estimates that contribute to each of the three shrinkage betas from rolling regressions using a one-

year window of daily returns.2 Prior information for the Vasicek (1973) and Karolyi (1992) beta esti-

mates are obtained by considering the entire cross-section (vasicek) and, analogously to Cosemans et 

al. (2016), by creating 47 industry portfolios (karolyi) according to Fama and French’s (1997) industry 

 
1 The parameters of the hybrid model are estimated via Markov Chain Monte Carlo methods (Cosemans et al., 2016). 
2 While Cosemans et al. (2016) obtain the sample betas that contribute to the hybrid estimates of beta from a rolling 

regression using a half-year window of daily returns, we opt for a one-year window. First, although not the main objective 

of our empirical analysis, using the same rolling-window length for each (shrinkage) beta is the only way to compare their 

predictive performance consistently. It allows us to assess whether differences in predictive performance truly stem from 

differences in prior information, rather than from differences in rolling-window beta estimates. Second, and more im-

portantly, in our empirical setting, we find that the predictive performance of the hybrid beta estimates is better for the 

one-year window (compared to the half-year window). This makes it an even more conservative benchmark for identifying 

the value-added of machine learning techniques. 
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classification. Consistent with Cosemans et al. (2016), the prior information for the hybrid beta esti-

mates is based on the conditioning variables size, book-to-market ratio, financial leverage, operating 

leverage, momentum, and default spread (hybrid).3 

Portfolio-based estimators 

Fama and French (1992) take a different approach to estimating time-varying market betas. 

They first sort individual stocks into portfolios, then estimate rolling betas for each portfolio, and 

finally assign portfolio betas to individual stocks. In our empirical analysis, we implement their ap-

proach as follows: At the end of each month 𝑡, we sort the stocks into size deciles based on NYSE 

breakpoints. Each size decile is partitioned into ten portfolios based on sample estimates of beta ob-

tained from rolling regressions using a one-year window of daily returns. Equal-weighted daily returns 

are computed for each of the resulting 100 size−beta portfolios over the next month. Finally, we obtain 

the portfolio betas from rolling regressions using a one-year window of daily post-ranking portfolio 

returns.4 These beta estimates are assigned to the individual stocks in each of the 100 size−beta port-

folios (fama-french). 

Long-memory estimators 

Rather than shrinking rolling-beta estimates to prior beliefs or assigning rolling portfolio betas 

to individual stocks, Becker et al. (2021) focus on the time-series properties of realized betas. They 

 
3 Our implementation differs slightly from the original Cosemans et al. (2016) shrinkage approach in two ways: First, we 

opt for the Novy-Marx (2011) definition of operating leverage (see Footnote 6 of the main paper), and for a one-year 

window of daily returns to compute sample estimates of beta obtained from rolling regressions. 
4 Fama and French (1992) estimate the pre- and post-ranking betas using monthly returns and construct the size−beta 

portfolios on an annual basis. However, Cosemans et al. (2016) and Hollstein et al. (2019) find that rolling-window beta 

estimates computed from daily returns are more accurate predictors of future betas than those computed from monthly 

returns. This is why we estimate the betas using a one-year window of daily returns. Furthermore, to always incorporate 

the most recent data, we construct the size−beta portfolios on a monthly basis. 
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find that the degree of memory within a beta time series, i.e., the order of integration 𝑑 (typically with 

0 ≤ 𝑑 ≤ 1), is the key determinant to modeling beta dynamics. A larger 𝑑 thereby indicates a longer 

memory, and vice versa. Becker et al. (2021) find that beta time series clearly exhibit long-memory 

properties (0 < 𝑑 < 1). In this case, the current value of a variable depends on past shocks, but the 

less so the further in the past these shocks are. In other words, past shocks neither die out quickly nor 

persist infinitely, but have a hyperbolical decaying effect. In our empirical analysis, we adapt their 

long-memory approach (long-memo) by implementing a 𝐹𝐼(0.4) model, i.e., a fractionally integrated 

time-series process with 𝑑 = 0.4. 
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Table A1 

Details on forecast models 

This table summarizes the definitions and descriptions for each established beta estimator listed in Section IV.A of the main paper (Panel A) and 

provides the definitions and hyperparameter specifications for each machine learning-based beta estimator listed in Section IV.B of the main paper 

(Panel B). 

Panel A: Benchmark estimators 

     Model Description Definition 

     ols_5y_m  Historical beta Rolling regressions using a five-year window of monthly returns 

     

     ols_1y_d  Historical beta Rolling regressions using a one-year window of daily returns 

     

     ewma_s  Exponentially-weighted beta 
Rolling regressions using a one-year window of daily returns with exponentially 

decaying weights (short half-life) 

       

     ewma_l  Exponentially-weighted beta 
Rolling regressions using a one-year window of daily returns with exponentially 
decaying weights (long half-life) 

     

     bsw   Slope-winsorized beta Rolling regressions using a one-year window of winsorized daily returns 

     

     vasicek   Shrinkage beta Shrinkage of ols_1y_d towards average beta within stock universe 

     

     karolyi   Shrinkage beta Shrinkage of ols_1y_d towards average beta within industry portfolio 

     

     hybrid   Shrinkage beta Shrinkage of ols_1y_d towards firm-specific beta prior 

     

     fama-french  Portfolio beta 
Assignment of portfolio betas (rolling regressions using a one-year window of 

daily post-ranking portfolio returns) to individual stocks 

     

     long-memo  Long-memory beta Application of fractionally integrated long-memory time-series process 

  Continued on the next page 
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Panel B: Machine learning estimators 

     Model Hyperparameter Specification Definition 

     lm        

 
None    

     

     elanet        

 

𝜆 (0,1) General strength of the penalization 

𝑝 {0,0.5,1} Weight on the lasso and ridge penalization 

   

     rf      

 

𝐿 (1,10) Depth of the single regression trees 

𝑀 {20,25,30,35,40} Number of predictors randomly considered as potential split variables 

𝐵 (10,500) Number of trees added to the ensemble prediction 

    

     gbrt      

 

𝐿 (1,5) Depth of the single regression trees 

𝜈 {0.01,0.05,0.1} Weight for the learning rate shrinkage 

𝐵 (10,500) Number of trees added to the ensemble prediction 
    

     nn_1–nn_5     

 batch size 1000 Batch size 

 𝑛𝑒𝑝𝑜𝑐ℎ𝑠 100 Number of epochs 

 patience 25 
Number of iterations during which the value-weighted mean squared error is al-

lowed to increase in the validation sample 

 dropout rate 0.1 Fractional rate of input variables that are randomly set to zero at each iteration 

 𝑛𝑠𝑒𝑒𝑑𝑠  10 Number of independent seeds used for each specification family 

    

    

Figure A1 

Stylized visualization | Exponentially decaying weights 

This figure depicts a stylized visualization that helps explain the concept of exponentially decaying weights based on short and long half-lives (all 

observations’ weights sum to one). 

 

  

𝑡−100 

Weight 𝑤 

𝑡−10 𝑡0 

Short horizon (e.g., 10 days) 

𝑤𝑚𝑎𝑥 

0.5 × 𝑤𝑚𝑎𝑥 

𝑡−100 𝑡0 

Weight 𝑤 
Long horizon (e.g., 100 days) 

𝑤𝑚𝑎𝑥 

0.5 × 𝑤𝑚𝑎𝑥 
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Internet Appendix B: Machine learning estimators 

In this appendix, we briefly introduce the representative set of machine learning techniques 

listed in Section IV.B of the main paper. We start with linear regressions, continue with tree-based 

models, and end up with neural networks, all of which aim to minimize the value-weighted mean 

squared error (MSE). We also note the major differences between the model families. Panel B of 

Table A1 provides the definitions and hyperparameter specifications for each machine learning-based 

beta estimator. 

Linear regressions 

Ordinary least squares regressions (lm) are the least complex approach in our empirical anal-

ysis. At each re-estimation date, we use the training sample to run pooled OLS regressions of future 

realized betas 𝛽𝑖,𝑡+𝑘
𝑅  on the set of 81 predictors.5,6 In line with Petkova and Zhang (2005), who argue 

that the relationship between firm characteristics and beta varies over the business cycle, we divide 

this set of predictors into firm characteristics 𝑧𝑖,𝑡 (including industry dummies) and the default spread 

𝑥𝑡, which we choose as an indicator of the state of the economy (Jagannathan and Wang, 1996). We 

follow Cosemans et al. (2016) and include interactions between firm characteristics and the default 

spread in the regression model:7 

 
5 While simple linear regressions do not require parameter tuning (based on the validation sample), we also estimate this 

model from only the training sample. This enhances the comparability with the machine learning-based forecast models 

(penalized linear regressions, tree-based models, and neural networks). Note that the main findings of our empirical anal-

ysis are qualitatively similar when pooling the training and validation samples together to estimate the simple linear re-

gression model at each re-estimation date. 
6 Focusing on a similar type of forecast objective (stock-level expected returns), Lewellen (2015) and Drobetz et al. (2019) 

show that this approach is promising in capturing the cross-sectional variation in the dependent variable from both a 

statistical and an economic perspective. Although Drobetz et al. (2019) use cross-sectional Fama and MacBeth (1973) 

regressions (FM regressions) that are re-estimated on a monthly basis, Drobetz and Otto (2021) show that the OLS-based 

model provides nearly identical predictions in a sample-splitting and re-estimation setting similar to ours. To ensure com-

parability with the machine learning models that cannot be re-estimated on a monthly basis (due to computational limita-

tions), we use pooled OLS regressions as a proxy for the linear FM regressions approach. 
7 For the sake of parsimony, we do not include interactions between industry dummies and the default spread. 
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 𝛽𝑖,𝑡+𝑘
𝑅 = 𝛿0 + 𝛿1𝑥𝑡 + 𝛿2

′ 𝑧𝑖,𝑡 + 𝛿3
′ 𝑥𝑡𝑧𝑖,𝑡 + 휀𝑖,𝑡+𝑘. (B1) 

Incorporating such interactions may add additional explanatory power, but it also increases the num-

ber of predictors, which leads to a high-dimensionality problem when the number of predictors be-

comes very large relative to the number of observations. Particularly in a forecasting context, because 

the convexity of the OLS objective tends to emphasize heavy-tailed observations, as the number of 

predictors increases, simple linear regression models begin to overfit noise rather than extract signal, 

thereby undermining the stability of the predictions.8 

The most common machine learning technique to overcome the overfitting problem in a high-

dimensional regression setting is penalized least squares regression. This approach helps identify 

which predictors are informative and omit those that are not. It modifies the OLS loss function by 

adding a penalty term Φ(𝜃) to favor more parsimonious model specifications: 

 𝑙(𝜃) =
1

𝑁𝑇
∑ ∑ (𝛽𝑖,𝑡+𝑘

𝑅 − 𝑔(𝑧𝑖,𝑡; 𝜃))
2

𝑇
𝑡=1

𝑁
𝑖=1 + Φ(𝜃). (B2) 

We use the elastic net approach (elanet), which combines the lasso and ridge methods.9 It computes 

the weighted sum of the lasso and ridge penalties to increase flexibility: 

 Φ(𝜃) = 𝜆(1 − 𝑝) ∑ |𝜃𝑗|𝑃
𝑗=1 + 𝜆𝑝 ∑ (𝜃𝑗)

2𝑃
𝑗=1 . (B3) 

The tuning parameters in this forecast model are 𝜆 ∈ (0,1) and 𝑝 ∈ (0,1). 𝜆 indicates the strength of 

the penalty (in particular, how strongly the regression coefficients are forced to zero); 𝑝 indicates the 

relative weights of the lasso and ridge approaches. 𝑝 = 0 corresponds to lasso; and 𝑝 = 1 corresponds 

to ridge. 

 
8 Note that the main results of our empirical analysis are qualitatively similar when using the WLS loss function (based 

on market capitalization-based weights of the stocks). 
9 The lasso approach penalizes the sum of absolute coefficients, thereby setting the regression coefficients of a subset of 

predictors to exactly zero (variable selection). The ridge approach penalizes the sum of squared coefficients, thereby only 

pushing regression coefficients close to zero (variable shrinkage). We also test the lasso and ridge methodologies sepa-

rately. We find no improvement in predictive performance relative to the elastic net approach, so we do not report results 

for these penalty functions. 
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Importantly, unless explicitly included as predetermined terms, pooled regressions cannot cap-

ture any nonlinear or interactive effects (neither simple nor penalized approaches). Thus, we use linear 

regressions as a benchmark to identify whether such effects, in addition to the two-way interaction 

between firm characteristics and the default spread, lead to incremental predictive power. Note that 

both tree-based models and neural networks inherently incorporate nonlinearity and multi-way inter-

actions, without the need to add new predictors to capture these effects in advance. 

Tree-based models 

The idea behind tree-based models is that they adaptively partition the dataset into groups of 

observations that behave in a similar way. They follow an iteration process that is inspired by the 

growing behavior of real trees in nature (see Figure B1): First, the process starts with an initial node, 

the root, in order to find the optimal split variable and the optimal split value for it by minimizing the 

value-weighted MSE within each partition. This results in two nodes with minimized impurity. Sec-

ond, to further disentangle the dataset, the algorithm determines optimal split variables and values on 

the subsamples left over from the previous step(s) to iteratively grow the regression tree. This results 

in multiple final nodes with minimized impurity, the leaves. The predicted beta for each leaf reflects 

the simple average of the historically realized betas for the firms sorted into that leaf. Regression trees 

are invariant to monotonic transformations of predictors, can incorporate categorical and numerical 

data in the same forecast models, and are designed to inherently capture nonlinearity and multi-way 

interactions. However, they are prone to overfitting and need to be strongly regularized. To accom-

plish this, the ensemble forecast approach aggregates forecasts from many different regression trees 

into a single one. According to Gu et al. (2020), there are two common methods: bagging and boost-

ing. 
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Random forests (rf) modify Breiman’s (2001) traditional bagging approach. The idea is to take 

multiple bootstrap samples of the original dataset, fit deep trees independently, and then average their 

predictions into an ensemble prediction to create a single strong learner. Because dominant predictors 

are always more likely to become split variables at low levels, which can lead to large correlations 

between bootstrap-replicated trees, random forests use the so-called “dropout” method. At each po-

tential branch, they randomly drop out predictors, leaving only a subset of predictors to be selected as 

potential split variables. The tuning parameters in this forecast model are the depth of the trees 𝐿, the 

number of predictors 𝑀 randomly considered as potential split variables, and the number of trees 𝐵 

added to the ensemble prediction. 

In contrast, gradient boosted regression trees (gbrt) follow the boosting approach, which is 

based on the idea that combining multiple shallow trees creates a single strong learner, even stronger 

than a single deep tree. The iterative procedure is as follows: It computes a first shallow tree to fit the 

realized betas. This oversimplified tree exhibits a high forecast error. Next, it computes a second shal-

low tree, fitting the forecast residuals from the first tree. The forecasts from these two trees are then 

added together to form an ensemble prediction. To avoid overfitting the forecast residuals, the forecast 

component from the second tree must be shrunk by a factor 𝜈 ∈ (0,1). Each additional shallow tree 

fits the forecast residual from the preceding ensemble prediction, and its shrunk forecast component 

is added to the ensemble forecast accordingly. The tuning parameters in this forecast model are the 

depth of the trees 𝐿, the shrinkage weight 𝜈, and the number of trees 𝐵 added to ensemble prediction. 

Neural networks 

Neural networks (nn) are the most complex method in our empirical analysis. They are highly 

parameterized, which makes them suitable for solving complicated machine learning problems. How-

ever, they are opaque and can be difficult to interpret. In general, they map inputs (predictors) to 
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outputs (realized betas). Inspired by the way the human brain works, they consist of many intercon-

nected computational units, so-called “neurons”. Each neuron alone provides very little predictive 

power, but a network of multiple neurons functions cohesively and improves the predictive perfor-

mance. We use feedforward neural networks, where each node has a connection to all nodes in the 

previous layer and the connections follow a one-way direction (from the input layer to the output 

layer). The input layer contains the predictor variables (e.g., lagged firm characteristics), while the 

output layer contains a prediction for the dependent variable (realized betas). The simplest neural 

network (with no hidden layers) corresponds to the OLS regression model. The addition of hidden 

layers leads from shallow to deep architectures that can capture nonlinear and interactive effects (see 

Drobetz and Otto, 2021, for stylized visualizations that help explain the structure, operation, and reg-

ularization of neural networks). 

Neural networks predict the output 𝑦 as the weighted average of inputs 𝑥. In the simplest model, 

the regression coefficients are used as weights. In more complex architectures, the weights must be 

computed iteratively by using the “backpropagation” algorithm. This algorithm initializes each con-

nection with random weights. It also calculates the initial value-weighted MSE based on the predic-

tions derived from the inputs of the (last) hidden layer. It then proceeds iteratively as follows: First, it 

recursively (from the output layer to the input layer) computes the gradient of the value-weighted 

MSE with respect to the weights. Second, it adjusts the weights slightly in the opposite direction of 

the computed gradients, since the goal is to minimize the value-weighted MSE. Third, it recalculates 

the value-weighted MSE based on the adjusted weights. The iteration process, called “gradient de-

scent”, stops when the value-weighted MSE is finally minimized. 

So far, it is assumed that each node in the hidden layer produces a signal (i.e., it is included in 

the weighted average computation). In the human brain, however, neural networks work somewhat 

differently. To avoid noise, a given node transforms each of the previous signals it transmits (if at all). 
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For example, it may amplify or condense the previous signals, or only generate a signal if the accu-

mulated impulse is strong enough. Thus, at each node, the weighted average of the preceding signals 

(𝑥, coming from either the input or the preceding layer) is subject to an activation function.10 Follow-

ing Gu et al. (2020), we choose the rectified linear unit (ReLU) activation function and apply it to 

each node in the hidden layers. To promote sparsity in the number of active neurons, it only provides 

a signal when the information from the previous layer accumulates beyond a given threshold: 

𝑅𝑒𝐿𝑈(𝑥) = {{:
0 if 𝑥 < 0
𝑥 otherwise

. 

In our empirical analysis, we consider neural networks with up to five hidden layers (𝐻𝐿 = 5) 

and thirty-two neurons (𝑁 = 32), which we choose according to the geometric pyramid rule (Masters, 

1993). 11 Following Gu et al. (2020) and Drobetz and Otto (2021), we apply several different types of 

regularization simultaneously to ensure computational feasibility and to avoid overfitting. 

First, in addition to a ReLU activation and a lasso-based penalization of the weights, we use the 

stochastic gradient descent (SGD) approach to train the neural networks. During the iteration process, 

the algorithm divides the training sample into small random subsamples, so-called “batches”, and uses 

one at each iteration. This leads to strong improvements in computational speed. The algorithm still 

sees the entire training sample (sequentially, not concurrently, and at least once, but usually several 

times), which helps to incorporate all available information, and thus avoids degrading the predictive 

performance. Consequently, the number of iterations depends on the size of the batches and the num-

ber of epochs (i.e., the number of times the algorithm sees the entire training sample). 

 
10 While all weight transformations in the different nodes are purely linear, it is the activation function that allows neural 

networks to capture nonlinearity. 
11 The pre-specified neural network architectures are: nn_1 (𝐻𝐿 = 1; 𝑁 = {32}), nn_2 (𝐻𝐿 = 2; 𝑁 = {32,16}), nn_3 

(𝐻𝐿 = 3; 𝑁 = {32,16,8}), nn_4 (𝐻𝐿 = 4; 𝑁 = {32,16,8,4}), and nn_5 (𝐻𝐿 = 5; 𝑁 = {32,16,8,4,2}). Neural networks are 

computationally intensive and can be specified in a myriad of different architectures. Therefore, we refrain from tuning 

their parameters (e.g., batch size or number of epochs) and instead pre-specify five different models. We assume that our 

nn_1–nn_5 architectures are a conservative lower bound for the predictive performance of neural network models. 
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Second, we employ the batch normalization algorithm introduced by Ioffe and Szegedy (2015). 

This aims to mitigate the internal covariate shift that occurs when the distribution of inputs to each 

hidden layer changes during training (as the parameters of the previous layers change), slowing down 

the learning process. To do this, it cross-normalizes the input to each hidden layer within each batch. 

Third, we apply learning rate shrinkage. The learning rate determines the size of the incremental 

steps in the gradient, while iteratively minimizing the value-weighted MSE. There is a trade-off be-

tween finding the global minimum instead of its local counterpart (smaller learning rate) and compu-

tational speed (larger learning rate). This regularization procedure starts with a larger learning rate to 

speed up the computation. As the gradient approaches zero, it shrinks the learning rate toward zero to 

overcome a potential local minimum. 

Fourth, we implement early stopping, since neural networks aim to minimize the value-

weighted MSE in the training sample. This regularization stops the SGD iteration process when the 

value-weighted MSE in the validation sample increases for a pre-specified number of iterations, called 

“patience”, which also speeds up the computation. 

Fifth, we adopt the ensemble approach proposed by Hansen and Salamon (1990) and Dietterich 

(2000). We compute ten neural networks from the same specification family at each re-estimation 

date, using independent seeds.12 We then average over the predictions to increase the signal-to-noise 

ratio, since the stochastic nature of the SGD approach leads to different forecasts for different seeds. 

Finally, in addition to the regularization applied by Gu et al. (2020), we use the dropout method. 

This randomly sets a fraction of the input variables to exactly zero at each iteration, and is thus one of 

the most effective methods in the neural network framework to prevent overfitting. 

  

 
12 Seeds are numbers used to initialize random processes, which ensures different but reproducible predictions. 
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Figure B1 

Stylized visualization | Regression trees 

This figure depicts a stylized visualization that helps explain the structure and functioning of regression trees (as in Gu et al., 2020). 
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Internet Appendix C: Further analyses and robustness tests 

Cross-Sectional and Time-Series Properties of Beta Estimates 

First, we examine the properties of the beta estimates obtained from the different forecasting 

models. Panel A of Table C1 focuses on the cross-sectional summary statistics. The cross-sectional 

mean is close to one for all beta estimators, while the cross-sectional dispersion varies widely across 

the forecasting models. The rolling window estimators have the largest cross-sectional standard devi-

ations. The other benchmark models produce lower cross-sectional dispersion. The machine learning-

based beta estimators have the smallest cross-sectional standard deviations and lead to the least ex-

treme beta estimates. The implied standard deviations are also lowest for the machine learning esti-

mators, providing a first indication that they may provide more accurate estimates.13 

Panel B of Table C1 focuses on the time-series summary statistics.14 These are consistent with 

the cross-sectional metrics. The machine learning estimators yield the lowest time-series standard 

deviations, while the high volatility of the historical betas likely reflects measurement noise. Despite 

the inclusion of slow-moving firm fundamentals as predictors, the average time-series autocorrela-

tions of the machine learning-based models are rather low compared to those of the benchmark ap-

proaches. Nevertheless, they are above 0.90 for all approaches. 

Forecast errors 

In this section, we present and discuss the results of further analyses and several robustness tests 

related to the forecast errors of the models. As a first step, we use the Giacomini and White (2006) 

 
13 The implied cross-sectional standard deviation of the true betas is computed following Pastor and Stambaugh (1999): 

𝑆𝑡�̂�(𝛽𝑅) = [𝑉𝑎𝑟(𝛽𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑉𝑎�̂�̅̅ ̅̅ ̅
𝛽𝑖

𝑅]
1/2

. It is the square root of the difference between the time-series average of the monthly 

value-weighted cross-sectional variances and the value-weighted cross-sectional average of each firm’s sampling variance. 

Small gaps between observed and implied standard deviations indicate small estimation errors. 
14 Following Becker et al. (2021), we omit firms with less than fifty beta estimates to allow for valid inference. 
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test to assess the relative conditional predictive performance of each model in pairwise comparisons. 

To do this, we use the mean squared forecast error differentials 𝑑𝑡
(𝑗,𝑙)

= M𝑆𝐸𝑡+𝑘|𝑡
(j)

− M𝑆𝐸𝑡+𝑘|𝑡
(𝑙)

 and 

regress them on a constant and the lagged forecast error differential, 𝛿𝑡 = (1 𝑑𝑡
(𝑗,𝑙)

)
′

. The test statistic 

is 𝐺𝑊 = 𝑇 (𝑇−1 ∑ 𝛿𝑡−1
𝑇
𝑡=1 𝑑𝑡

(𝑗,𝑙)
)

′

Ω̂−1 (𝑇−1 ∑ 𝛿𝑡−1
𝑇
𝑡=1 𝑑𝑡

(𝑗,𝑙)
), where Ω̂ is the Newey and West (1987) 

covariance matrix of 𝛿𝑡−1𝑑𝑡
(𝑗,𝑙)

. The 𝐺𝑊 test statistic is distributed as 𝜒2 with 2 degrees of freedom. 

The results are reported in Table C2. Consistent with the results in the main paper, we find that 

the machine learning-based beta estimators also outperform all other methods in terms of their condi-

tional predictive ability. The Giacomini and White (2006) GW test rejects its null hypothesis when 

comparing the random forests and neural networks with each benchmark model. 

In Table C3, we examine the robustness of our main results to changes in the specifications of 

the machine learning estimators considered in the empirical analysis. First, we report additional results 

for the neural network architectures with two to five hidden layers (nn_2–nn_5). We find that these 

more complex models perform similarly to our baseline neural network architecture with only one 

hidden layer (nn_1). However, the average forecast errors are slightly higher, indicating that the less 

complex specification tends to perform slightly better. This is consistent with findings in Gu et al. 

(2020) and Drobetz and Otto (2021), and is likely a result of (moderate) overfitting. 

Second, we test the robustness of our main results to the inclusion of additional macroeconomic 

variables in addition to the default spread (dfy). Following Welch and Goyal (2008), we add the U.S. 

T-bill rate (tbl), the U.S. T-bill rate volatility (tbl_sd), the term spread (tms), the stock variance (svar), 

the earnings-to-price ratio (ep) and the dividend payout ratio (dp), both at the market level, and the 

consumption–wealth ratio (cay). In addition, we include measures of industrial production, inflation, 

and unemployment as provided by the Federal Reserve Bank of St. Louis. Given our findings of the 
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low variable importance for dfy, we expect that additional macroeconomic variables make little dif-

ference. Indeed, the results in Table C3 for random forests with additional macroeconomic variables 

(rf_amv) are qualitatively similar. While additional macroeconomic variables do not help improve the 

predictive performance, their inclusion does not hurt much either. 

Third, we report the results for ensemble predictions, where we average the predictions of 

the lm, elanet, rf, gbrt, and nn_1 models (ens_1), the elanet, rf, gbrt, and nn_1 models (ens_2), and 

the rf, gbrt, and nn_1 models (ens_3). The ensemble approaches perform quite well, with ens_2 and 

ens_3 producing lower average MSEs than rf. Including only those machine learning techniques that 

perform best in isolation, i.e., the rf, gbrt, and nn_1 models, leads to the best ensemble prediction. 

One caveat is that applying this ensemble approach in practice is computationally intensive, as one 

must first estimate each of the three to five prediction models separately. 

Next, we examine the robustness of our main results to changes in the forecast error measure. 

In particular, we use the equal-weighted mean squared error (MSE) in Table C4: 

 𝑀𝑆𝐸𝑡+𝑘|𝑡 =
1

 𝑁
∑ (𝛽𝑖,𝑡+𝑘

𝑅 − 𝛽𝑖,𝑡+𝑘|𝑡
𝐹 )2𝑁𝑡

𝑖=1 , with 𝑘 = 12, (C1) 

and the value-weighted mean absolute error (MAE) in Table C5: 

 𝑀𝐴𝐸𝑡+𝑘|𝑡 = ∑ 𝑤𝑖,𝑡|𝛽𝑖,𝑡+𝑘
𝑅 − 𝛽𝑖,𝑡+𝑘|𝑡

𝐹 |
𝑁𝑡
𝑖=1 , with 𝑘 = 12, (C2) 

We find that the equal-weighted MSEs are notably higher for all approaches than for the value-

weighted examination. This is consistent with our previous finding that it is considerably more diffi-

cult to estimate market betas for small stocks than it is for large stocks. Moreover, the machine learn-

ing-based approaches outperform the benchmark models even more when equally weighted, support-

ing our previous finding that they are particularly beneficial for small stocks (see Figure 3 of the main 

paper). In the MAE framework, all forecast errors are penalized in the same way. As a result, large 

forecast errors have less impact than in the MSE framework. Nevertheless, the machine learning-
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based approaches still outperform the benchmark models using the MAE, suggesting that the differ-

ences in predictive performance are not predominantly driven by large outliers in the forecast errors 

for just a few stocks. 

We also use Mincer and Zarnowitz (1969) regressions in Table C6 to test for the unbiasedness 

of the different forecasting models. Following Fama and MacBeth (1973), we run either a weighted 

least squares (WLS) regression (using stock market capitalization-based weights) or an ordinary least 

squares (OLS) regression (using equal weights) of realized betas on the beta estimates obtained from 

the different forecasting models at the end of each month 𝑡: 𝛽𝑖,𝑡+𝑘
𝑅 = 𝑎𝑡 + 𝑏𝑡𝛽𝑖,𝑡+𝑘|𝑡

𝐹 + 𝑒𝑖,𝑡+𝑘. Table 

C6 reports the time-series averages of the monthly intercepts (𝑎), the slopes (𝑏), and the t-statistics 

(in parentheses) testing the null hypotheses that 𝑎 = 0 and 𝑏 = 1, respectively. For the t-tests, we use 

Newey and West (1987) standard errors with eleven lags. Consistent with our previous results, we 

find that the best-performing machine learning models are also the least biased. For all machine learn-

ing techniques, the average intercept is closer to zero and the slope is closer to one (with mostly 

insignificant t-statistics). In contrast, in the vast majority of cases, the significant t-statistics indicate 

a rejection of the unbiasedness hypotheses for the benchmark models. 

Finally, we examine different forecast horizons and sampling frequencies for the realized beta. 

In particular, we alternatively consider forecast horizons of three months and six months. For both, 

we continue to use daily data to compute the realized beta. We also consider a 12-month forecast 

horizon with weekly data and a 60-month forecast horizon with monthly data. The results are pre-

sented in Table C7.15 For each combination of forecast horizon and valuation metric, we find that the 

 
15 Note that we skip the hybrid and nn_1 models for this analysis. This is because both of them are prohibitively compu-

tationally expensive. Furthermore, as the main analysis shows, the hybrid model is generally not the best benchmark, and 

the nn_1 model is generally not the best machine learning-based model. Thus, the loss of information from omitting these 

two models appears to be limited. 
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machine learning-based estimators perform best, with the rf model generally producing the lowest 

forecast or hedging errors. 

Minimum variance portfolios 

We examine the robustness of the MVP results to the use of subsample periods. Successful 

MVPs should perform well on a period-by-period basis. Therefore, we split the sample in two and 

examine the MVPs in the first and second halves separately. We present the results in Tables C8 and 

C9. Consistent with the main analysis, we find that the machine learning-based approaches clearly 

outperform the benchmarks for both halves of the sample period. 

Anomaly performance 

In the main paper, we show that machine learning techniques lead to betting-against-beta (BAB) 

portfolios that are truly market neutral ex-post. Novy-Marx and Velikov (2022) argue that in addition 

to unconditional market neutrality, conditional market neutrality is also important. To examine this, 

we follow their approach and run time-series regressions of monthly BAB portfolio returns on a con-

stant, the current market excess return interacted with the log of the one-year to five-year market 

volatility ratio, the current market excess return, and the lagged market excess returns of the previous 

two months: 

𝑟𝐵𝐴𝐵,𝑡 = 𝛼𝐵𝐴𝐵 + 𝛽1𝑟𝑀,𝑡ln (σ1
𝑀𝐾𝑇/σ5

𝑀𝐾𝑇) + 𝛽2𝑟𝑀,𝑡 + 𝛽3𝑟𝑀,𝑡−1 + 𝛽4𝑟𝑀,𝑡−2 + 휀𝑖,𝑡,           (C3) 

where σ1
𝑀𝐾𝑇 and σ5

𝑀𝐾𝑇 are the past one-year and five-year estimates of the volatility of the (daily) 

market excess return, lagged by one month. Following Novy-Marx and Velikov (2022), we standard-

ize the volatility ratio to have a mean of zero and a standard deviation of one. All other variables are 

defined as before. 
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Novy-Marx and Velikov (2022) show that the original BAB portfolio of Frazzini and Pedersen 

(2014), but also their improved version of it, is significantly related to 𝛽1𝑟𝑀,𝑡ln (σ1
𝑀𝐾𝑇/σ5

𝑀𝐾𝑇). Thus, 

the standard BAB strategy has a low exposure to the market during periods of high volatility and a 

high exposure during periods of low volatility, introducing a market-timing element that positively 

affects the performance. 

The results are presented in Table C10. These results confirm that all machine learning-based 

betting-against-beta strategies are also conditionally market neutral. All coefficient estimates from 

Equation (C3) are insignificant at the 5% level. For the benchmark estimators, however, the 𝛽2 coef-

ficient estimates are all statistically significant. 

Nonlinearity and interactions 

The results in the main paper suggest that tree-based models and neural networks are superior 

to established beta estimators. Both machine learning-based model families are designed to capture 

nonlinearity and interactions in the relationship between predictors and future market betas. Im-

portantly, they also outperform linear regressions that include the exact same set of covariates. As a 

result, much of this outperformance may be due to their ability to exploit nonlinear and interactive 

patterns in estimating future market betas. We therefore investigate whether the best-performing ma-

chine learning approach, random forests (rf), actually captures nonlinearity and interactions. For com-

parison, we contrast the results with beta estimates from simple linear regressions (lm).16 

We first examine the marginal association between a single predictor and its beta estimates 

(𝛽𝑖,𝑡+𝑘|𝑡
𝐹 , with 𝑘 =  12). To illustrate, we select a firm’s sample beta estimate from rolling regressions 

 
16 Note that the patterns identified and their implications are qualitatively similar when comparing gradient boosted re-

gression trees (gbrt) and neural networks (nn_1) to estimates obtained from penalized linear regressions (elanet). This 

underscores that the ability to exploit nonlinear and interactive patterns does indeed lead to the outperformance of tree-

based models and neural networks over linear regressions. 
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using a one-year window of daily returns (ols_1y_d). It is the most influential predictor in our empir-

ical analysis (see Figure 5, Panel B of the main paper) and helps to address the problem of underesti-

mation and overestimation inherent in estimating time-varying market betas (see Figure 2 of the main 

paper).17 To visualize the average effect of ols_1y_d on 𝛽𝑖,𝑡+𝑘|𝑡
𝐹 , we set all predictors to their unin-

formative median values within the training sample at each re-estimation date, and the industry dum-

mies to zero. We then vary ols_1y_d over the interval (−1, +3) and compute the beta estimates. Fi-

nally, we average the beta estimates over all re-estimation dates. 

Panel A of Figure C1 illustrates the marginal association between ols_1y_d and 𝛽𝑖,𝑡+𝑘|𝑡
𝐹 . To this 

visualization we add a histogram showing the historical distribution of ols_1y_d. This allows us to 

assess the relevance of the differences in the predictions obtained from the lm and rf models to the 

overall forecast results. As expected, higher values of the one-year rolling betas lead to higher beta 

estimates for both model families. We observe an increasing linear relationship between ols_1y_d and 

𝛽𝑖,𝑡+𝑘|𝑡
𝐹  for the lm model. In the center of the distribution, approximately in the interval (+0.3, +1.5), 

the marginal association between ols_1y_d and the beta forecasts is also nearly linear for the rf model. 

Outside this interval, however, the rf model provides nearly constant predictions, resulting in an over-

all S-shaped relationship. In contrast, the lm model, by construction, must adhere to the increasing 

linear relationship. This results in less extreme beta estimates for random forests (compared to simple 

linear regressions) as ols_1y_d becomes small or large. Since a substantial fraction of the observations 

lies within these outer regions of the historical distribution, differences in predictions are highly rele-

vant. This highlights the need to account for nonlinear effects of the predictor variables. We also 

observe such S-shaped relationships for other predictors (unreported), such as turnover (to) and size 

 
17 Note that the patterns identified and their implications are qualitatively similar for other predictor variables. 
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(me). Taken together, these visualizations provide an explanation for our previous findings that ran-

dom forests generally provide less extreme beta forecasts while avoiding the systematic underestima-

tion of low-beta stocks and the systematic overestimation of high-beta stocks (see Figure 2 of the main 

paper). These results also help to explain the outperformance of random forests over established and 

linear approaches in terms of lower forecast errors (see Tables 2 and 3 of the main paper) and their 

dominance over benchmark estimators in the construction of market-neutral portfolios (see Tables 4 

and 5 of the main paper). 

Next, we examine the interactions between predictors in estimating future market betas, again 

using ols_1y_d as our baseline covariate. We select me, another highly influential predictor in our 

empirical analysis (see Figure 5, Panel B of the main paper), as our interactive counterpart and repeat 

the procedure outlined above. In this case, however, we compute the beta estimates for different levels 

of me over the interval (−1, +1). The interactive effect between ols_1y_d and me on 𝛽𝑖,𝑡+𝑘|𝑡
𝐹  is shown 

in Panel B of Figure C1. Low and high levels for me are marked with red and green lines, respectively. 

Conceptually, if there is no interaction, or if the model is unable to capture such interactions, calcu-

lating estimated betas for different levels of me simply shifts the lines up or down in parallel. In this 

case, the distance between the lines is identical for any given value of ols_1y_d. This pattern is appar-

ent for simple linear regressions because no pre-specified interaction term, e.g., ols_1y_d × me for 

the interaction between ols_1y_d and me, is included as a predictor in the OLS-based framework. The 

lines are shifted upward as me increases, indicating that an increase in me also increases 𝛽𝑖,𝑡+𝑘|𝑡
𝐹 , but 

independently of ols_1y_d. Unlike the lm model, the rf model uncovers the interactive effect between 

a firm’s historical beta and size in estimating future betas.18 While the lines are also shifted upward 

 
18 Although somewhat less pronounced, the rf model also reveals the interactive effects between other firm characteristics 

in estimating future betas, such as between a firm’s historical beta (ols_1y_d) and turnover (to). 
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for higher levels of me, the strength of the shift is much more pronounced for larger values of ols_1y_d. 

Thus, the effect of a firm’s size on its future beta estimate appears to be much stronger if the firm has 

historically been more sensitive to systematic market risk. 

As this example shows, incorporating nonlinear effects of individual predictors and interactions 

between predictors is both essential and fundamental to the superior predictive performance of random 

forests. These effects explain the advantage of machine learning methods over established and linear 

benchmark models. 

Size and value beta forecasting 

Finally, we extend the beta forecasting analysis to the size and value factors of Fama and French 

(1993). That is, we adapt our estimation and evaluation procedure to a three-factor setup. We compute 

historical size (SMB) and value (HML) betas from multiple regressions including all three Fama and 

French (1993) factors:19 

𝑟𝑖,𝑡𝑠 = 𝛼𝑖,𝑡
𝐻 + 𝛽𝑖,𝑡

𝐻 𝑟𝑀,𝑡𝑠 + 𝛽𝑖,𝑡
𝑆 𝑟𝑆𝑀𝐵,𝑡𝑠 + 𝛽𝑖,𝑡

𝑉 𝑟𝐻𝑀𝐿,𝑡𝑠 + 휀𝑖,𝑡𝑠,   (C4) 

where 𝑟𝑆𝑀𝐵,𝑡𝑠 and 𝑟𝐻𝑀𝐿,𝑡𝑠 are the excess returns of the SMB and HML portfolios, respectively. We 

use the same set of covariates for predicting 𝛽𝑖,𝑡
𝑆  and 𝛽𝑖,𝑡

𝑉  as for predicting market betas, and separately 

forecast these factor betas for all stocks. We also use the same sample splitting scheme and hyperpa-

rameter sets. After computing the factor beta forecasts, we evaluate them against the realized factor 

betas over the next year. We compute these realized factor betas from a multiple regression of daily 

returns on a constant and the three factors. MSE and MAE are used to evaluate the forecast accuracy. 

The results are shown in Table C11. We find that the machine learning-based models produce 

clearly smaller forecast errors than the benchmarks. This is true for both SMB and HML betas. For 

 
19 Not all benchmark estimators naturally extend to a multi-factor setup. We skip these benchmarks for the present analysis. 

In addition, we omit the nn_1 model from the presentation because it is computationally very expensive. 
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example, for SMB betas, the ols_1y_d benchmark estimator produces an average value-weighted MSE 

of 20.68%. The rf model, on the other hand, produces an average value-weighted MSE that is more 

than 30% lower (14.37%). In 88% of the months, the value-weighted MSE of the rf model is signifi-

cantly lower. Thus, the outperformance of the machine learning-based estimators is even more pro-

nounced for SMB betas than for market betas. For HML betas, the value-weighted MSE is 19% lower 

for the rf model than for ols_1y_d (35.15% vs. 43.36%). In 53% of the months, the value-weighted 

MSE of the rf model is significantly lower when predicting HML betas. Alternative benchmark mod-

els perform similarly or worse than ols_1y_d. Thus, this section shows that machine learning methods 

are very promising for the prediction of factor betas. 
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Table C1 

Cross-Sectional and Time-Series Properties of Beta Estimates 

This table reports the properties of the beta estimates obtained from the forecasting models presented in Section IV of the main paper. Panel A focuses 

on the cross-sectional properties, reporting the time-series means of the monthly 1) value-weighted cross-sectional averages of the estimated betas, 2) 

value-weighted cross-sectional standard deviations, and 3) cross-sectional minimum, median, and maximum values. Following Pastor and Stambaugh 

(1999), the implied cross-sectional standard deviation of the true betas is also reported: 𝑆𝑡�̂�(𝛽𝑅) = [𝑉𝑎𝑟(𝛽𝐹)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 𝑉𝑎�̂�̅̅ ̅̅ ̅
𝛽𝑖

𝑅]
1/2

. Panel B focuses on time-

series properties and presents the value-weighted cross-sectional means of 1) time-series averages, 2) time-series standard deviations, 3) time-series 

minima, medians, and maxima, and 4) first-order autocorrelations of the estimated betas. Following Becker et al. (2021), firms with less than fifty beta 

estimates are omitted from the summary statistics. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any 

month during the sample period from March 1970 to December 2020, while the first beta estimates are obtained in December 1979. 

      Panel A: Cross-Sectional Properties   Panel B: Time-Series Properties 

  Model   Mean Std   Min Median Max   
Impl. 

Std 
  Mean Std   Min Median Max   

Auto-

corr. 

B
en

ch
m

ar
k

 E
st

im
at

o
rs

 

ols_5y_m   1.00 0.47   –1.09 0.97 4.68   0.31   1.09 0.32   0.49 1.06 1.82   0.96 

ols_1y_d   1.00 0.40   –1.39 0.78 3.22   0.26   1.05 0.29   0.44 1.02 1.84   0.95 

ewma_s   1.00 0.41   –1.66 0.78 3.44   0.26   1.05 0.31   0.38 1.03 1.92   0.93 

ewma_l   1.00 0.40   –1.47 0.78 3.27   0.26   1.05 0.30   0.43 1.02 1.86   0.95 

bsw   0.98 0.36   –0.19 0.80 2.26   0.25   1.03 0.26   0.49 1.01 1.67   0.96 

vasicek   0.99 0.36   –0.18 0.83 2.29   0.25   1.04 0.26   0.48 1.02 1.72   0.96 

karolyi   0.99 0.37   –0.19 0.84 2.43   0.26   1.04 0.26   0.49 1.01 1.74   0.96 

hybrid   0.99 0.36   –0.30 0.86 2.48   0.25   1.05 0.25   0.52 1.03 1.67   0.96 

fama-french 0.99 0.34   0.18 0.77 1.89   0.23   1.04 0.26   0.49 1.02 1.77   0.91 

long-memo   1.00 0.34   –0.54 0.79 2.39   0.28   1.06 0.19   0.68 1.05 1.51   0.92 

                                       

M
L

 E
st

im
at

o
rs

 

lm   1.03 0.28   –0.42 0.79 2.13   0.19   1.08 0.19   0.67 1.07 1.64   0.92 

elanet  1.03 0.26   –0.36 0.79 2.08   0.18   1.06 0.18   0.68 1.05 1.62   0.92 

rf   0.99 0.28   0.05 0.80 1.92   0.19   1.04 0.19   0.66 1.03 1.50   0.92 

gbrt   0.98 0.29   0.00 0.78 1.92   0.20   1.02 0.20   0.61 1.02 1.51   0.91 

nn_1   0.99 0.30   –0.09 0.78 2.12   0.21   1.03 0.20   0.65 1.01 1.54   0.91 
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Table C6 

Unbiasedness test 

This table reports the results of Mincer and Zarnowitz (1969) regressions to test the unbiasedness of the forecasting models presented in Section IV of 

the main paper. Following Fama and MacBeth (1973), at the end of each month 𝑡, either a weighted least squares (WLS) regression (using the stock 

market capitalization-based weights) or an ordinary least squares (OLS) regression (using equal weights) of realized betas is run on the beta estimates 

obtained from the different forecasting models: 𝛽𝑖,𝑡+𝑘
𝑅 = 𝑎𝑡 + 𝑏𝑡𝛽𝑖,𝑡+𝑘|𝑡

𝐹,(𝑗)
+ 𝑒𝑖,𝑡+𝑘. In particular, this table reports the time-series averages of the monthly 

intercepts (𝑎) and slopes (𝑏), and the t-statistics (in parentheses) testing the null hypotheses that 𝑎 =  0 and 𝑏 =  1, respectively. The t-tests are based 

on Newey and West (1987) standard errors (with eleven lags to account for possible heteroscedasticity and autocorrelation). Panel A shows the value-

weighted results (based on WLS regressions), while Panel B adds the results for equal weights (based on OLS regressions). The sample includes all 

firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from March 1970 to December 2020. The 

first beta estimates are obtained in December 1979. 

      Panel A: Value-weighted results  Panel B: Equal-weighted results 

  Model   α β   α β 

B
en

ch
m

ar
k

 e
st

im
at

o
rs

 

ols_5y_m   0.50 0.49   0.42 0.36 

    (3.76) (–4.72)   (1.54) (–9.11) 

ols_1y_d   0.25 0.74   0.28 0.65 

    (2.88) (–3.04)   (6.78) (–5.29) 

ewma_s   0.26 0.73   0.30 0.62 

    (4.43) (–4.64)   (8.42) (–6.55) 

ewma_l   0.25 0.74   0.28 0.64 

    (3.43) (–3.62)   (7.34) (–5.77) 

bsw   0.18 0.83   0.12 0.83 

    (1.87) (–1.86)   (2.85) (–2.90) 

vasicek   0.17 0.83   0.08 0.85 

    (1.79) (–1.84)   (1.53) (–2.02) 

karolyi   0.18 0.82   0.06 0.86 

    (1.91) (–1.98)   (1.01) (–1.62) 

hybrid   0.15 0.85   0.10 0.80 

    (1.46) (–1.64)   (1.23) (–3.22) 

fama-french  0.12 0.87   0.10 0.89 

    (1.33) (–1.40)   (2.68) (–2.25) 

long-memo   0.12 0.86   0.14 0.82 

    (1.19) (–1.59)   (3.89) (–3.72) 

                

M
L

 e
st

im
at

o
rs

 

lm   –0.10 1.06   0.06 0.94 

    (–0.57) (0.35)   (1.28) (–1.44) 

elanet   –0.18 1.14   0.01 1.00 

    (–1.10) (1.04)   (0.15) (–0.05) 

rf   –0.09 1.08   0.00 1.03 

    (–0.75) (0.78)   (–0.02) (0.34) 

gbrt   –0.05 1.06   0.03 1.01 

    (–0.45) (0.54)   (0.38) (0.07) 

nn_1   –0.02 1.02   0.03 1.00 

    (–0.20) (0.23)   (0.44) (–0.04) 
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Table C8  

Minimum variance portfolios (first half of the sample period) 

This table reports the properties of the minimum variance portfolios for the first half of the sample period. The portfolios are constructed based on 

beta estimates obtained from the forecasting models introduced in Section IV of the main paper. For the portfolio optimization, we impose a single-

factor structure on the covariance matrix of stock returns. Thus, the market betas are the primary determinants of the stock weights in the minimum 

variance portfolio. The approach is described in detail in Section VI.C of the main paper. Each month, we compute the weights that minimize the 

expected portfolio variance, subject to the constraints that the weights are positive, that each individual weight is less than 5%, and that the weights 

sum to 1. The forecasts for the market and idiosyncratic variances are based on daily returns over the previous year. Panel A presents the annualized 

risk and return measures of the resulting minimum variance portfolios. Std reports the ex-post time-series standard deviation and Dwnd the ex-post 

downside standard deviation (of negative returns). Min is the lowest monthly excess return and MaxDD is the maximum drawdown of the minimum 

variance portfolio from peak to trough over multi-month periods. TV is the terminal value in November 1999 of a $1 investment in the minimum 

variance portfolio in December 1979. Mean is the average portfolio return, and SR is the Sharpe ratio. Panel B reports the ex-post market betas of the 

minimum variance portfolios (βpv) as well as the beta of a market-neutral minimum variance portfolio that hedges the expected market risk (depending 

on the portfolio beta forecast) each month using an additional investment in the market portfolio (βmn). The t-statistics in parentheses are based on 

Newey and West (1987) robust standard errors with 11 lags. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ 

in any month during the first half of our sample period from March 1970 to November 1999 and have a market capitalization above the 20𝑡ℎ percentile 

of NYSE stocks. The first beta estimates are obtained in December 1979. 
 

      
Panel A: 

Minimum variance 
 Panel B: 

Market neutrality  

  Model   
Std 

[%] 

Dwnd 

[%] 

Min 

[%] 

MaxDD 

[%] 

TV 

[%] 

Mean 

[%] 
SR   βpv βmn 

B
en

ch
m

ar
k

 e
st

im
at

o
rs

 

ols_1y_d   12.96 11.08 –24.24 25.88 6.19 10.01 0.77   0.26 –0.21 

                    (11.55) (–8.00) 

bsw   12.56 10.09 –21.91 22.8 6.07 9.85 0.78   0.24 –0.13 

                    (10.18) (–6.44) 

hybrid   12.76 10.11 –21.88 24.08 5.19 9.08 0.71   0.24 –0.10 

                    (6.26) (–2.17) 

fama-french   12.47 10.02 –23.04 23.04 6.22 9.97 0.8   0.29 –0.05 

                    (16.26) (–1.90) 

long-memo   12.83 9.93 –20.35 26.35 5.14 9.04 0.7   0.22 –0.11 

                    (8.78) (–4.18) 

                          

M
L

 e
st

im
at

o
rs

 

lm   11.94 8.36 –12.98 18.54 5.9 9.62 0.81   0.24 –0.08 

                    (10.64) (–3.50) 

elanet   12.44 10.2 –22.34 22.34 5.31 9.17 0.74   0.22 –0.05 

                    (10.54) (–1.75) 

rf   12.19 9.17 –19.32 24.84 5.09 8.91 0.73   0.21 0.04 

                    (7.22) (1.20) 

gbrt   11.16 8.84 –18.82 19.1 6.51 10.03 0.9   0.22 0.03 

                    (9.36) (1.25) 

nn_1   11.81 8.79 –16.28 20.71 6.11 9.78 0.83   0.21 0.00 

           (7.83) (–0.18) 
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Table C9 

Minimum variance portfolios (second half of the sample period) 

This table reports the properties of the minimum variance portfolios for the second half of the sample period. The portfolios are constructed based on 

beta estimates obtained from the forecasting models introduced in Section IV of the main paper. For the portfolio optimization, we impose a single-

factor structure on the covariance matrix of stock returns. Thus, the market betas are the primary determinants of the stock weights in the minimum 

variance portfolio. The approach is described in detail in Section VI.C of the main paper. Each month, we compute the weights that minimize the 

expected portfolio variance, subject to the constraints that the weights are positive, that each individual weight is less than 5%, and that the weights 

sum to 1. The forecasts for the market and idiosyncratic variances are based on daily returns over the previous year. Panel A presents the annualized 

risk and return measures of the resulting minimum variance portfolios. Std reports the ex-post time-series standard deviation and Dwnd the ex-post 

downside standard deviation (of negative returns). Min is the lowest monthly excess return and MaxDD is the maximum drawdown of the minimum 

variance portfolio from peak to trough over multi-month periods. TV is the terminal value in December 2019 of a $1 investment in the minimum 

variance portfolio in December 1999. Mean is the average portfolio return, and SR is the Sharpe ratio. Panel B reports the ex-post market betas of the 

minimum variance portfolios (βpv) as well as the beta of a market-neutral minimum variance portfolio that hedges the expected market risk (depending 

on the portfolio beta forecast) each month using an additional investment in the market portfolio (βmn). The t-statistics in parentheses are based on 

Newey and West (1987) robust standard errors with 11 lags. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ 

in any month during the second half of our sample period from December 1999 to December 2020 and have a market capitalization above the 20𝑡ℎ 

percentile of NYSE stocks. The first beta estimates are obtained in December 1999. 
 

      
Panel A: 

Minimum variance 
 Panel B: 

Market neutrality  

  Model   
Std 

[%] 

Dwnd 

[%] 

Min 

[%] 

MaxDD 

[%] 

TV 

[%] 

Mean 

[%] 
SR   βpv βmn 

B
en

ch
m

ar
k

 e
st

im
at

o
rs

 

ols_1y_d   11.84 8.73 –14.37 43.55 4.52 8.24 0.7   0.52 –0.24 

                    (7.67) (–3.55) 

bsw   11.55 8.42 –14.53 43.07 4.50 8.18 0.71   0.49 –0.18 

                    (6.69) (–2.23) 

hybrid   11.65 8.51 –14.32 41.12 5.06 8.78 0.75   0.49 –0.19 

                    (6.92) (–2.57) 

fama-french   11.57 8.99 –13.21 37.08 4.12 7.74 0.67   0.52 –0.09 

                    (9.76) (–1.36) 

long-memo   11.00 8.04 –10.84 34.73 5.64 9.25 0.84   0.50 –0.14 

                    (7.94) (–1.84) 

                          

M
L

 e
st

im
at

o
rs

 

lm   11.50 9.17 –12.11 50.15 5.99 9.62 0.84   0.59 –0.18 

                    (8.75) (–1.84) 

elanet   11.39 9.80 –13.94 49.34 5.83 9.46 0.83   0.59 –0.15 

                    (9.45) (–1.58) 

rf   10.62 7.36 –10.82 39.12 6.50 9.92 0.93   0.49 –0.02 

                    (7.52) (–0.12) 

gbrt   11.06 8.06 –11.74 38.85 6.51 9.98 0.90   0.50 –0.03 

                    (6.83) (–0.25) 

nn_1   10.50 7.42 –10.95 35.08 6.14 9.63 0.92   0.49 –0.06 

           (6.81) (–0.50) 
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Table C10 

Conditional market neutrality of betting-against-beta portfolios 

This table analyzes the conditional market neutrality of the betting-against-beta (BAB) portfolios. Each month, we construct decile portfolios by 

sorting the stocks by their beta estimates, using the predicted beta of each forecasting model. The portfolios go long and short the extreme deciles, 

buying the stocks in decile one and shorting those in decile ten. Finally, the portfolios are hedged each month with a position in the market portfolio 

equal to the negative of the portfolio beta predicted by the forecasting models. We then regress the annualized BAB returns on a constant, the current 

market excess return interacted with the log of the one-year to five-year market volatility ratio, the current market excess return, and the lagged market 

excess returns of the previous two months. The regression equation is 𝑟𝐵𝐴𝐵,𝑡 = 𝛼𝐵𝐴𝐵 + 𝛽1𝑟𝑀,𝑡ln (σ1
𝑀𝐾𝑇/σ5

𝑀𝐾𝑇) + 𝛽2𝑟𝑀,𝑡 + 𝛽3𝑟𝑀,𝑡−1 + 𝛽4𝑟𝑀,𝑡−2 + 휀𝑖,𝑡, 

where 𝑟𝐵𝐴𝐵,𝑡 is the annualized monthly BAB long–short portfolio return in month t, 𝑟𝑀,𝑡 is the market return in month t, and σ1
𝑀𝐾𝑇 and σ5

𝑀𝐾𝑇 are the 

one-year and five-year estimates of (daily) market excess return volatility, respectively, lagged by one month. Following Novy-Marx and Velikov 

(2022), we standardize this volatility ratio to have a mean of zero and a standard deviation of one. The t-statistics in parentheses are based on Newey 

and West (1987) robust standard errors with four lags. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in 

any month during the sample period from March 1970 to December 2020 and have a market capitalization above the 20𝑡ℎ percentile of NYSE stocks. 

The first beta estimates are obtained in December 1979. 

  Model   
α 

[%] 
β1 β2 β3 β4 

Adj. R2 
[%] 

B
en

ch
m

ar
k

 e
st

im
at

o
rs

 

ols_1y_d   7.26 –0.14 0.44 0.06 0.03 9.97 

    (2.25) (–1.61) (4.48) (1.19) (0.44)   

bsw   6.02 –0.12 0.30 0.06 0.02 4.97 

    (1.90) (–1.51) (3.22) (1.32) (0.34)   

hybrid   9.17 –0.08 0.22 0.03 0.00 2.05 

    (2.91) (–1.05) (2.70) (0.56) (0.03)   

fama-french  7.27 –0.09 0.26 0.07 0.00 4.02 

    (2.49) (–1.15) (3.18) (1.46) (0.01)   

long-memo   8.60 –0.11 0.21 0.02 0.00 2.41 

    (2.84) (–1.76) (2.76) (0.31) (0.05)   

                  

M
L

 e
st

im
at

o
rs

 

lm   8.61 0.00 0.07 0.07 0.01 0.06 

    (2.61) (0.04) (0.91) (1.41) (0.11)   

elanet   8.42 –0.03 0.05 0.08 0.00 –0.21 

    (2.66) (–0.39) (0.51) (1.75) (0.08)   

rf   8.64 –0.14 –0.03 0.06 –0.02 1.32 

    (2.54) (–1.73) (–0.30) (1.14) (–0.43)   

gbrt   9.86 –0.14 0.00 0.05 –0.03 0.76 

    (2.92) (–1.49) (0.04) (0.89) (–0.66)   

nn_1   9.51 –0.12 0.05 0.05 –0.03 0.18 

    (2.88) (–1.30) (0.59) (0.91) (–0.46)   
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Table C11 

Forecast errors of size and value betas 

This table shows the differences in forecast errors for realized factor betas. We consider forecasts for betas of the Fama and French (1993) three-factor 

model. Specifically, we forecast realized size (small-minus-big; SMB) and value (high-minus-low; HML) betas. The realized betas are computed 

from a multiple regression of daily returns over the next year on a constant and the three Fama and French (1993) factors. The forecasting models are 

adapted versions of those presented in Section IV of the main paper. We report the time-series averages of the monthly value-weighted MSEs, equal-

weighted MSEs, and value-weighted MAEs. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month 

during the sample period from March 1970 to December 2020. The first beta estimates are obtained in December 1979. 

   Benchmark estimators  ML estimators 

      ols_5y_m ols_1y_d ewma_s ewma_l   lm elanet rf gbrt 

S
M

B
 MSE, v.w. [%]   37.87 20.68 21.68 20.67  24.30 23.46 14.37 14.51 

MSE, e.w. [%]   127.47 62.40 68.92 63.74  43.16 42.60 38.46 38.78 

MAE, v.w. [%]   44.97 33.23 34.06 33.26  37.32 36.87 27.70 27.88 

      
                 

H
M

L
 MSE, v.w. [%]   65.43 43.36 43.80 42.63  43.30 41.41 35.15 35.44 

MSE, e.w. [%]   134.25 96.61 107.57 99.08  61.02 59.86 57.27 58.42 

MAE, v.w. [%]   59.41 47.29 47.70 46.98  47.86 46.70 42.94 43.16 
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Table C12 

Statistical Significance of Alpha Differences 
This table shows the t-statistics for the alpha differences presented in Table 5 of the main paper. Each month, we construct decile portfolios by sorting 

the stocks by their momentum (MOM), idiosyncratic volatility (IVOL), and beta estimates (BAB). For the latter, we use the predicted beta of each 

forecasting model. The anomaly portfolios go long and short in the extreme deciles. For momentum, the resulting portfolio goes long in decile ten and 

short in decile one, while those for the other two anomalies go long in decile one and short in decile ten. Finally, the portfolios are hedged each month 

with a position in the market portfolio equal to the negative of the portfolio beta predicted by the forecasting models. We report the alphas of the 

returns over the next month of these strategies with respect to the CAPM and the Fama and French (2015) 5-factor model (FF5). The t-statistics are 

based on Newey and West (1987) robust standard errors with four lags. We print in bold all t-statistics that are significant at the 10% level. The sample 

includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from March 1970 to December 

2020. The first beta estimates are obtained in December 1979. 

   Benchmark estimators  ML estimators 

      bsw hybrid fama-french long-memo   lm elanet rf gbrt nn_1 

M
O

M
 𝛼

𝐶
𝐴

𝑃
𝑀

 

ols_1y_d   1.24 0.47 0.17 1.07  1.21 0.39 1.63 1.48 1.40 

bsw   
 

-0.63 -0.77 0.82  0.97 0.08 1.71 1.49 1.30 

hybrid   
  

-0.14 1.00  1.20 0.26 1.64 1.44 1.45 

fama-french     1.47  0.97 0.29 2.03 1.80 1.44 

long-memo       0.24 -0.35 1.01 0.80 0.35 

lm        -1.30 0.31 0.20 -0.11 

elanet         1.11 1.01 0.82 

rf          -0.64 -1.10 

gbrt           -0.72 

             

M
O

M
 𝛼

𝐹
𝐹

5
 

ols_1y_d   1.29 0.23 0.40 1.25  0.98 0.05 1.75 1.66 1.50 

bsw    -0.93 -0.53 1.04  0.66 -0.29 1.87 1.72 1.43 

hybrid     0.23 1.35  1.00 -0.01 1.87 1.73 1.71 

fama-french     1.62  0.66 -0.10 2.21 2.04 1.49 

long-memo       -0.12 -0.69 0.84 0.71 0.11 

lm        -1.51 0.62 0.57 0.30 

elanet         1.35 1.30 1.11 

rf          -0.37 -1.22 

gbrt           -0.96 

             

IV
O

L
 𝛼

𝐶
𝐴

𝑃
𝑀

 

ols_1y_d   -0.02 -0.39 -0.15 1.15  0.95 1.00 1.03 1.19 1.41 

bsw    -0.53 -0.10 1.54  1.25 1.36 1.56 1.67 1.99 

hybrid     0.36 1.82  1.39 1.31 1.56 1.68 2.02 

fama-french     1.24  1.03 1.10 1.14 1.30 1.51 

long-memo       0.45 0.26 0.27 0.78 1.09 

lm        -0.15 -0.45 0.18 0.42 

elanet         -0.18 0.30 0.45 

rf          1.37 1.97 

gbrt           0.33 

 Continued on the next page 
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Table C12 continued 

Statistical Significance of Alpha Differences 
  

   Benchmark estimators  ML estimators 

      bsw hybrid fama-french long-memo   lm elanet rf gbrt nn_1 

IV
O

L
 𝛼

𝐹
𝐹

5
 

ols_1y_d   -0.26 -0.47 -0.43 1.14  0.82 0.71 0.97 1.15 1.32 

bsw    -0.36 -0.07 1.56  1.14 1.08 1.57 1.67 1.91 

hybrid     0.25 1.78  1.26 1.04 1.55 1.66 1.95 

fama-french     1.30  0.95 0.86 1.15 1.31 1.47 

long-memo       0.19 -0.19 0.02 0.59 0.81 

lm        -0.37 -0.27 0.35 0.58 

elanet         0.33 0.74 0.84 

rf          1.31 1.83 

gbrt           0.27 

 

            

B
A

B
 𝛼

𝐶
𝐴

𝑃
𝑀

 

ols_1y_d   -2.10 1.42 -0.08 0.64  0.48 0.53 1.01 1.54 1.35 

bsw    3.05 1.24 1.71  1.27 1.39 2.29 2.68 2.44 

hybrid     -1.39 -0.47  -0.34 -0.34 -0.19 0.47 0.38 

fama-french     0.63  0.53 0.58 0.90 1.40 1.26 

long-memo       0.03 0.05 0.30 0.86 0.76 

lm        0.05 0.23 0.82 0.75 

elanet         0.21 0.84 0.80 

rf          1.11 0.84 

gbrt           -0.15 

             

B
A

B
 𝛼

𝐹
𝐹

5
 

ols_1y_d   -2.18 1.04 -0.21 0.52  0.03 0.13 0.72 1.33 1.06 

bsw    2.84 1.22 1.65  0.77 1.00 2.08 2.56 2.19 

hybrid     -1.07 -0.21  -0.50 -0.45 -0.06 0.66 0.46 

fama-french     0.63  0.15 0.27 0.77 1.32 1.09 

long-memo       -0.35 -0.26 0.15 0.78 0.57 

lm        0.26 0.52 1.07 0.89 

elanet         0.45 1.08 0.90 

rf          1.17 0.74 

gbrt           -0.27 
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Figure C1 

Nonlinear and interactive effects in estimating future market betas 

This figure illustrates the ability to capture nonlinear and interactive effects in estimating future market betas for both random forests and simple linear 

regressions (rf and lm, introduced in Section IV.B of the main paper). Panel A shows the marginal association between a firm’s sample beta estimate 

from rolling regressions using a one-year window of daily returns (ols_1y_d) and its beta estimates (βit+k|t
F , with k =  12). To visualize the average 

effect of ols_1y_d on βit+k|t
F , all predictors are set to their uninformative median values within the training sample at each re-estimation date, and the 

industry dummies are set to zero. ols_1y_d is then varied over the interval (– 1, +3) and the beta estimates are computed. Finally, the beta estimates 

are averaged over all re-estimation dates. This visualization is accompanied by a histogram showing the historical distribution of ols_1y_d. Panel B 

shows the interactive effect of ols_1y_d and firm size (me) on βit+k|t
F . For this purpose, the procedure described above is repeated. In this case, however, 

the beta estimates are computed for different levels of me over the interval (– 1, +1). Low and high levels of me are marked with red and green lines, 

respectively. The sample includes all firms that were or are listed on the NYSE, AMEX, or NASDAQ in any month during the sample period from 

March 1970 to December 2020, while the first beta estimates are obtained in December 1979. 

 

 
  

Panel A 

Panel B 
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