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In this Internet Appendix, we offer supplementary theoretical and empirical material not in

our main paper. In Section IA.1, we present robustness test results for our main empirical

finding that constructing stocks largely drive the investment anomaly in Section 2 of our main

paper (Tables IA.1 and IA.2). In Section IA.2, we stress several implications of that finding,

revealing that construction also conditions the pricing of popular alternative investment

proxies (Table IA.3) and that a Fama-French (2015) CMA investment factor formed from

constructing stocks outperforms the corresponding factor formed from non-constructing stocks

and spans the original CMA factor (Table IA.4). Section IA.3 derives the quasi-closed-form

solution for our real options model with newly-built capacity in Section 3 of our main paper. In

Section IA.4, we offer comparative statics for the effect of real investments on the expected

firm return in that model. Section IA.5 derives the quasi-closed-form solution for an extended

version of our model including time-to-build, establishing that time-to-build does not change

our main theoretical conclusions (Table IA.5). In Section IA.6, we offer robustness test results

for our additional evidence supporting our uncertainty explanation for why construction
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conditions the investment anomaly in Section 4 of our main paper (Tables IA.6 and IA.7). In

Section IA.7, we finally offer some results based on firm fundamental comparisons refuting

alternative explanations for our main empirical evidence (Table IA.8).

IA.1 Robustness of Our Main Empirical Evidence

In this section, we examine the robustness of our main empirical evidence. We first study

how several reasonable methodological variations affect our main regression results. We next

evaluate whether our main conclusions also emerge in weighted regressions.

IA.1.1. Sample Choice and Variable Construction

In Section 2 of our main paper, we use standard portfolio sorts and Fama-MacBeth (FM; 1973)

regressions to demonstrate that constructing stocks drive the investment anomaly. In this

section, we show that this conclusion is robust to methodological variations. To do so, we repeat

the full-sample FM regression and the subsample regressions separately run on constructing

and non-constructing stocks in columns (1), (4), and (5) of Table 3 in our main paper, studying

each variation at a time. As variations, we (i) omit observations with missing PPE-CIP values

rather than setting them to zero; (ii) treat as constructing firms those with positive PPE-CIP

values at the start or end of the fiscal year ending in calendar year t − 1 rather than only those

with positive values at the end of that fiscal year; (iii) retain service firms; (iv) retain firms with

sales below $25 million over the fiscal year ending in calendar year t − 1 (or, alternatively, (v)

drop firms with a stock price below $5 at the end of June of calendar year t rather than those

with a market size below the first quartile at the end of June of calendar year t) from start July
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of calendar year t to end June of calendar year t + 1; and (vi) use delevered stock returns.1

Internet Appendix Table IA.1 presents the results from the FM regressions incorporating

the six methodological variations, with each column concentrating on a single variation. While

row (1) shows the full-sample Investment premium, rows (2) and (3) reveal the corresponding

premiums in the constructing and non-constructing stock subsamples, respectively, with row

(2)–(3) calculating the difference between the subsamples. The plain numbers and those in

square brackets are monthly estimates (in %) and Newey-West (1987) t-statistics with a six

month lag length, respectively. For the sake of brevity, the table does not report the control

variable estimates (which however remain similar to those in our main paper).

The table suggests that our main empirical results are largely robust. Columns (1) and (2)

demonstrate that our treatment of missing PPE-CIP values or our definition of constructing

firms hardly affects our inferences. Conversely, column (3) reveals that the retention of service

firms, which, in line with intuition, only rarely physically build additional capacity, dampens

(amplifies) the Investment premium in constructing (non-constructing) stocks, without however

eliminating the negative difference between the subsamples. Columns (4) and (5) confirm

that alternative screens based on market size, stock price, and sales only marginally influence

our conclusions. Finally, column (6) shows that our main empirical evidence becomes stronger

when we account for stock return variations attributable to financial leverage.

IA.1.2. Weighted-Least-Squares FM Regressions

We next address the concern that our main FM regression results in Table 3 of our main paper

could be biased if stock prices temporarily deviated from their true values, inducing an upward
1We follow Doshi et al. (2019) in calculating the delevered stock return as the original return multiplied

by one minus the stock’s financial leverage. We define financial leverage as the ratio of total liabilities to the
sum of market size and total liabilities, where market size is from the end of the prior calendar year and total
liabilities from the fiscal year ending in the prior calendar year. We use the thus calculated financial leverage
value from June of the current calendar year to May of the next calendar year.
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bias in the mean returns of especially smaller stocks. To rule out that such a bias distorts our

evidence, Internet Appendix Table IA.2 reports the results from repeating the FM regressions

in Table 3 of our main paper based on cross-sectional regressions weighting each observation

with either market size at the end of calendar month t − 1 (Panel A) or the gross return over

that month (Panel B). Since stocks with temporarily inflated (deflated) prices at the end of

calendar month t − 1 are prone to also have inflated (deflated) market sizes and gross returns

at that time, the weights correct for the mean return bias by overweighting (underweighting)

their too low (high) future returns (see Asparouhova et al. (2010; 2013) for details).

Using the same design as Table 3 in our main paper, Internet Appendix Table IA.2 suggests

that our main empirical evidence is robust to mean return bias induced through temporary

deviations between stock prices and true values. Specifically, columns (2) and (3) confirm that

Construction and the rank variable based on it continue to negatively condition the investment

anomaly in the weighted FM regressions, whereas columns (4) and (5) demonstrate that the

investment anomaly is again only significant in the constructing but not in the non-constructing

stock subsamples in those same regressions. Using the past gross return as weight, column (3)

in Panel B, for example, reports that a 25-percentile rise in PPE-CIP scaled by assets makes

the investment premium more negative by 0.62% per month (t-statistic: –3.07).

Overall, this section suggests that our main conclusions are reasonably robust with respect

to sample screens, variable definitions, as well as regression weights.

IA.2 Further Implications of Our Main Evidence

In this section, we gauge the wider implications of our main empirical evidence. We first study

whether our main conclusions continue to hold for the pricing of popular alternative investment

proxies. We next look into whether we can employ our main conclusions to come up with a
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refined version of Fama and French’s (2015) CMA investment factor.

IA.2.1. The Effect on Alternative Investment Proxies

We now evaluate whether construction work also conditions the pricing of popular alternative

investment proxies from prior studies. As firms can physically build only tangible assets, but

some alternative proxies mix investments into tangible and intangible assets, it is unclear whether

the conditioning effect of construction work also arises for those proxies.2 The alternative proxies

are: (i) Xing’s (2008) CAPEX-to-PPE; (ii) Titman et al.’s (2004) abnormal CAPEX-to-sales;

(iii) Peters and Taylor’s (2017) capital growth; as well as (iv) Cooper et al.’s (2008) asset

growth. While, in contrast to Investment, CAPEX-to-PPE and abnormal CAPEX-to-sales do

not reflect merger-and-acquisition-induced expansions of physical productive capacity, capital

growth (asset growth) also reflects expansions of intangible productive capacity (intangible

productive capacity plus tangible as well as intangible non-productive capacity).

Using the same design as Internet Appendix Table IA.1, Internet Appendix Table IA.3

suggests that construction work affects the pricing of the alternative proxies, albeit to varying

degrees. In particular, although the effect of construction work is highly significant for CAPEX-

to-PPE and capital growth (see columns (1) and (3)), it is more marginally significant for

abnormal CAPEX-to-sales and asset growth ((2) and (4), all respectively). The strong effect

for CAPEX-to-PPE is unsurprising because the variable shares a high average cross-sectional

correlation with Investment, in line with the intuition that mergers and acquisitions occur

only infrequently. In comparison, the difference between the capital growth and asset growth

effects is more noteworthy and could be driven by most investments into intangible productive
2If most intangible-capacity investments were supplementary to tangible-capacity investments, we would

expect construction work to also negatively condition the pricing of proxies considering both investments
into tangible and intangible capacity. If they were, however, largely independent, then the intangible-capacity
component in those proxies would simply dilute the conditioning effect of construction work.
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capacity — but not those into intangible non-productive capacity — being supplementary to

investments into tangible productive capacity. Finally, the weak abnormal CAPEX-to-sales

effect is also noteworthy but may result from the fact that the variable is a better proxy for the

change in investment levels over time, rather than investment levels themselves.

IA.2.2. A Refined CMA Investment Factor

Given our evidence that construction work conditions the asset growth anomaly in the prior

subsection, it could also be behind the pricing power of the investment factors featured in

recent linear factor models (see, e.g., Fama and French (2015; 2016) and Hou et al. (2015;

2021)). To find out, we follow Fama and French (2015; 2016) and exactly replicate their CMA

investment factor using either all stocks, constructing stocks (DummyConstruction=1), or non-

constructing stocks (0).3,4 Figure IA1 plots the cumulative returns of the three versions of

the CMA factor over our sample period. Strikingly, the figure suggests that, despite the

relatively marginal ability of construction work to condition the asset growth premium in

Internet Appendix Table IA.3, the CMA factor formed from constructing stocks is far more

profitable than those formed from all or non-constructing stocks. More specifically, while the

constructing-stock factor earns an almost 150% excess return, the corresponding number for
3More specifically, at the end of each June in calendar year t, we first consider either all stocks, constructing

stocks, or non-constructing stocks from the sample of NYSE, AMEX, and Nasdaq stocks with share codes
10 and 11 and non-missing market size on that date and non-missing total asset values over the fiscal years
ending in calendar years t − 1 and t − 2. We then form those stocks into two portfolios according to the
NYSE median of the market size distribution on that date and, independently, into three portfolios according
to the NYSE 30th and 70th percentiles of the distribution of total asset growth over the fiscal year ending in
calendar year t − 1. We value-weight the portfolios and hold them from start July of calendar year t to end
June of calendar year t + 1. We next form a high (low) investment portfolio by taking an equal position in
the small and large-size top (bottom) investment portfolios. We finally construct the CMA investment factor
as the spread portfolio long the low and short the high investment portfolio. See Kenneth French’s website,
<https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/>, for more details.

4We focus on Fama and French’s (2015; 2016) investment factor since Hou et al.’s (2015; 2021) is formed
from an independent triple sort based on market capitalization, quarterly profitability (i.e., ROE), and
investment. Separately replicating Hou et al.’s (2015; 2021) factor on constructing and non-constructing stocks
thus produces many empty or ill-diversified portfolios, especially in the early sample years.

6



Figure IA1: The Cumulative Returns of CMA Investment Factors Formed from All, Con-
structing, and Non-Constructing Stocks In this figure, we plot the cumulative returns of Fama and
French’s (2015; 2016) CMA investment factor formed from either all stocks (solid blue line), constructing
stocks (dashed red line), and non-constructing stocks (dotted yellow line) over our sample period.

the all (non-constructing) stock factors are about 100% and 75%, respectively.

Since the greater profitability of the constructing-stock CMA factor in Figure IA1 does not

necessarily imply that the factor explains a larger fraction of the ability of the original factor

to price stocks than its counterpart, we next consider spanning tests. In the spanning tests,

we run time-series regressions of the original factor on combinations of the contemporaneous

constructing and non-constructing stock factors. A statistically insignificant intercept implies

that the regressor factors span the regressant factor and, in turn, explain the factor’s pricing

ability. Internet Appendix Table IA.4 shows the spanning test results. Column (1) confirms that

the original factor is significantly positively priced over our sample period. More importantly,

while column (2) reports that the constructing-stock factor spans the pricing power of the

original factor (intercept: 0.04; t-statistic: 0.77), column (3) indicates that the non-constructing

factor does not do so (intercept: 0.07; t-statistic: 2.30). In accordance, column (4) reveals

that the two factors together also span the original factor. A noteworthy aspect of these

results is that the greater spanning of the constructing-stock factor arises despite the fact
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that the factor is less strongly related to the original factor than its counterpart (compare

the coefficients and t-statistics of the two factors in columns (2) to (4)).

Taken together, this section shows that construction work also conditions the stock pricing

ability of alternative investment proxies, albeit sometimes more weakly. In line with that

result, it further establishes that a refined Fama-French (2015; 2016) CMA investment factor

formed from constructing stocks is more profitable than the original factor and its counterpart

formed from non-constructing stocks and that this factor (but not its counterpart) explains

the well-established success of the original factor to price stock returns.

IA.3 Main Real Options Model Derivations

In this section, we derive the quasi-closed-form solutions for the values and expected returns of

the mature factory, the newly-built factory, and the growth option on the newly-built factory,

each allowing the firm to produce one output unit per time unit at a long-run cost of Ck and to

sell that at the price θ. To do so, we first show how to derive the ordinary differential equation

(ODE) which the assets have to fulfill. Based on that ODE, we next derive the expected

returns of the assets. After that, we detail how to solve the ODEs of the assets subject to the

asset-specific boundary conditions. We finally derive the optimal number of factories.

IA.3.1. Ordinary Differential Equation and Expected Return

IA.3.1.1. Deriving The Ordinary Differential Equation

Consider an asset whose value, V , depends on the state variable θ; whose instantaneous

profits are π per time unit; and which in each instant has a fixed idiosyncratic probability

equal to λ per time unit of transforming into another asset with value V a. Let us further
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assume that the state variable θ obeys the geometric Brownian motion (GBM):

dθ = αθdt + σθdW, (IA1)

where α is the constant drift and σ the constant volatility of the state variable, and W is a

Brownian motion. We finally assume that the expected return of an asset (or asset portfolio)

perfectly positively correlated with the state variable is a constant µ.

Assuming complete spanning and the absence of arbitrage opportunities, the first two

fundamental theorems of asset pricing state that the expected excess return (i.e., the expected

return minus the riskfree rate) of each asset equals minus one times the covariance between

the asset’s return and the realization of a unique stochastic discount factor. Denoting that

stochastic dicount factor by Λ, let us posit that its differential obeys the GBM:

dΛ = −rΛdt + σΛΛdW (Λ), (IA2)

where r is the constant riskfree rate of return, σΛ the constant volatility of the stochastic

discount factor, and W (Λ) a Brownian motion. Moreover, dWdW (Λ) = ρdt, where ρ is the

instantaneous correlation between the Brownian motions modelling the output price and the

stochastic discount factor. In that case, the expected excess return of the asset is:

E[dV/V ] + π/V dt − rdt = −cov(dV/V, dΛ/Λ), (IA3)

or equivalently:

E[dV ] + πdt − rV dt = −cov(dV, dΛ/Λ). (IA4)

Using Itô’s Lemma, it is obvious that E[dV ] = αθVθdt+ 1
2σ2θ2Vθθdt+λ(V a −V )dt and that
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−cov(dV, dΛ/Λ) = −ρσσΛθVθdt. Plugging in, dividing by dt, and shuffling all the summands

to the left-hand side, we are able to rewrite Equation (IA4) as:

1
2σ2θ2Vθθ + (α + ρσσΛ)θVθ − (r + λ)V + π + λV a = 0. (IA5)

Defining µ ≡ r − ρσσΛ,5 recalling that δ ≡ µ − α = r − ρσσΛ − α, and plugging in, we arrive

at the ODE which the asset needs to satisfy subject to boundary conditions:

1
2σ2θ2Vθθ + (r − δ)θVθ − (r + λ)V + π + λV a = 0. (IA6)

IA.3.1.2. Deriving The Expected Asset Return

We next derive the instantaneous expected excess return of the asset from the prior subsection,

E[RA] − r. To achieve that goal, we start from the definition of that return:

(E[RA] − r)dt = E[dV/V ] + π/V dt − rdt. (IA7)

Using Itô’s Lemma, we can rewrite that definition as:

(E[RA] − r)dt = αθVθ/V dt + 1
2σ2θ2Vθθ/V dt + λ(V a − V )/V dt + π/V dt − rdt. (IA8)

We now notice that we can rewrite ODE (IA6) as:

αθVθdt + 1
2σ2θ2Vθθdt + λ(V a − V )dt = αθVθdt + (δ − r)θVθdt + rV dt − πdt, (IA9)

5We can interpret µ as the expected return of the asset (or asset portfolio) perfectly replicating the state
variable θ since −cov(dθ/θ, dΛ/Λ) = −ρσσΛdt.
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or, recalling that δ ≡ µ − α, as:

αθVθdt + 1
2σ2θ2Vθθdt + λ(V a − V )dt = (µ − r)θVθdt + rV dt − πdt. (IA10)

Plugging Equation (IA10) into (IA8), we finally have:

E[RA] − r = Vθθ/V (µ − r). (IA11)

In words, the expected excess return of the asset is the asset’s elasticity, Vθθ/V , multiplied

by the expected excess return of the state variable replication portfolio.

IA.3.2. Valuing the Mature Factories

We next value the mature factory allowing the firm to produce one output unit per time unit

at a unit cost of Ck when the firm decides to switch on the factory. Since the mature factory

can no longer transform into another asset, it has to fulfill ODE (IA6) with λ = 0. Also, since

switching on the factory is costless and instantaneous, the firm optimally does so whenever

the factory produces a profit (i.e., whenever θ ≥ Ck), implying that the profit per time unit,

π, is equal to θ − Ck whenever the factory is switched on and else zero.

Using standard techniques (see, e.g., Dixit and Pindyck (1994)), we can show that the

solutions to the two ODEs of the mature factory with production cost Ck and therefore its

operating and idle values, V m
k,o and V m

k,i, respectively, need to be of the general forms:

V m
k,o = A1θ

β2 + θ

δ
− Ck

r
, (IA12)

V m
k,i = A2θ

β1 , (IA13)
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where A1 and A2 are free parameters, and:

β1 = −(r − δ − σ2/2)/σ2 +
√

(r − δ − σ2/2)2 + 2rσ2/σ2, (IA14)

β2 = −(r − δ − σ2/2)/σ2 −
√

(r − δ − σ2/2)2 + 2rσ2/σ2. (IA15)

To determine the values of the A1 and A2 parameters, we ensure that the values of the

idle and operating factory value-match and smooth-paste at the optimal switching-on state

variable threshold. Defining that threshold as θs ≡ Ck, we thus have:

A1(θs)β2 + (θs)
δ

− Ck

r
= A2(θs)β1 , (IA16)

β2A1(θs)β2−1 + 1
δ

= β1A2(θs)β1−1. (IA17)

Solving Equations (IA16) and (IA17) for A1 and A2, we obtain:

A1 =
(

r − β1(r − δ)
rδ(β1 − β2)

)
C1−β2

k , (IA18)

A2 =
(

r − β2(r − δ)
rδ(β1 − β2)

)
C1−β1

k . (IA19)

IA.3.3. Valuing the Newly-Built Factories

We next value the newly-built factory allowing the firm to produce one output unit per time

unit at an initial unit cost of Ct
2 and a later unit cost of C2 when the firm decides to switch on

the factory, with the (constant) probability of the cost changing from Ct
2 to C2 equal to λdt

per instant after installation of the factory. While the firm does not directly observe the initial

cost Ct
2 until it owns the factory, investors never find out the exact value of that cost but are

able to observe when it changes from Ct
2 to C2. Before their uncertainty is resolved, the firm
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and investors are, however, able to learn about the initial cost using a signal, allowing them

to form a posterior distribution for the natural log of that cost, ct
2 ≡ ln(Ct

2). The posterior

distribution is normal, with an expectation equal to µct
2

and variance equal to σ2
ct

2
.

To find the value of the newly-built factory with uncertain Ct
2, V nb

2 , we start off with

forming the expectation of the integral of its discounted profits under the equivalent martingale

measure and then condition on the value of Ct
2 inside of the expectation:

V nb
2 = EQ

[∫ ∞

0
e−rsπnb(s, θ, Ct

2)ds
]

= EQ
[
EQ

[∫ ∞

0
e−rsπnb(s, θ, Ct

2)ds|Ct
2

]]
, (IA20)

where the inner expectation on the right-hand side of the second equality is simply the value

of a factory allowing the firm to produce one output unit at a certain initial unit cost of Ct
2

and a later unit cost of C2 when the firm decides to switch on the factory.6 Denoting the

value of the factory with certain production costs by V̄ nb
2 , it is obvious that it has to fulfill

ODE (IA6) with V a equal to V m, the value of the mature factory (see Section IA.3.2.). In the

following, we find V̄ nb
2 separately for the cases (i) Ct

2 ≥ C2 and (ii) Ct
2 < C2.7

Ct
2 ≥ C2 Case: When the initial production cost is higher than the later, then the firm

switches on the factory both before and after it matures if the state variable value is above

the initial cost (i.e., θ ≥ Ct
2); it only switches on the factory after but not before it matures if

the state variable value lies between the two costs (i.e., Ct
2 > θ ≥ C2); and it never switches

on the factory if the state variable value lies below the later cost (i.e., θ < C2). Denoting the

values of the factories in the three cases by V̄ nb1
2,oo , V̄ nb1

2,io , and V̄ nb1
2,ii , respectively, we can show

that the solutions to the ODEs of the newly-built factory with certain initial costs above
6Notice that, in contrast to other equations, we explicitly show the dependence of the profit, π(t, θ, Ct

2),
on time t, the output price θ, and the initial production cost Ct

2 in Equation (IA20).
7Hull and White (1987) employ the same “trick” to find the solution for the value of a European call

option under stochastic volatility when the asset value and volatility diffusions are uncorrelated.
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later costs and thus its values need to be of the general form:

V̄ nb1
2,oo = B1θ

β′
2 + A1θ

β2 + θ

δ
− C2

r
− Ct

2 − C2

r + λ
, (IA21)

V̄ nb1
2,io = B2θ

β′
1 + B3θ

β′
2 + A1θ

β2 + θ

δ
− C2

r
− θ

δ + λ
+ C2

r + λ
, (IA22)

V̄ nb1
2,ii = B4θ

β′
1 + A2θ

β1 , (IA23)

where B1 to B4 are free parameters, and:

β′
1 = −(r − δ − σ2/2)/σ2 +

√
(r − δ − σ2/2)2 + 2(r + λ)σ2/σ2, (IA24)

β′
2 = −(r − δ − σ2/2)/σ2 −

√
(r − δ − σ2/2)2 + 2(r + λ)σ2/σ2. (IA25)

To determine the values of the B1 to B4 parameters, we ensure that the values of the

three component solutions value-match and smooth-paste at the appropriate state variable

thresholds. Defining the upper threshold as θs1 ≡ Ct
2, we thus have:

B1(θs1)β′
2 − Ct

2
r + λ

= B2(θs1)β′
1 + B3(θs1)β′

2 − θs1

δ + λ
, (IA26)

β′
2B1(θs1)β′

2−1 = β′
1B2(θs1)β′

1−1 + β′
2B3(θs1)β′

2−1 − 1
δ + λ

. (IA27)

Solving Equations (IA26) and (IA27) for B1 − B3 and B2, we obtain:

B1 − B3 =
(

r + λ − β′
1(r − δ)

(β′
1 − β′

2)(r + λ)(δ + λ)

)
(Ct

2)1−β′
2 , (IA28)

B2 =
(

r + λ − β′
2(r − δ)

(β′
1 − β′

2)(r + λ)(δ + λ)

)
(Ct

2)1−β′
1 . (IA29)
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Defining the lower threshold as θs2 ≡ C2, we equivalently have:

B2(θs2)β′
1 + B3(θs2)β′

2 − (θs2)
δ + λ

+ C2

r + λ
= B4(θs2)β′

1 , (IA30)

β′
1B2(θs2)β′

1−1 + β′
2B3(θs2)β′

2−1 − 1
δ + λ

= β′
1B4(θs2)β′

1−1, (IA31)

where we use the fact that A1(θs2)β2 + (θs2)
δ

− C2
r

= A2(θs2)β1 (see Equation (IA16)). Solving

Equations (IA30) and (IA31) for B3 and B2 − B4, we obtain:

B2 − B4 =
(

r + λ − β′
2(r − δ)

(β′
1 − β′

2)(r + λ)(δ + λ)

)
(C2)1−β′

1 , (IA32)

B3 =
(

−(r + λ) + β′
1(r − δ)

(β′
1 − β′

2)(r + λ)(δ + λ)

)
(C2)1−β′

2 , (IA33)

Using Equations (IA28), (IA29), (IA32), and (IA33), we can finally calculate B1 to B4.

Ct
2 < C2 Case: When the initial production cost is lower than the later, then the firm

switches on the factory both before and after it matures if the state variable value is above

the later cost (i.e., θ ≥ C2); it only switches on the factory before but not after it matures if

the state variable value lies between the two costs (i.e., C2 > θ ≥ Ct
2); and it never switches

on the factory if the state variable value lies below the initial cost (i.e., θ < Ct
2). Denoting the

values of the factories in the three cases by V̄ nb2
2,oo , V̄ nb2

2,oi , and V̄ nb2
2,ii , respectively, we can show

that the solutions to the ODEs of the newly-built factory with certain initial costs above

later costs and thus its values need to be of the general form:

V̄ nb2
2,oo = D1θ

β′
2 + A1θ

β2 + θ

δ
− C2

r
− Ct

2 − C2

r + λ
, (IA34)

V̄ nb2
2,oi = D2θ

β′
1 + D3θ

β′
2 + A2θ

β1 + θ

δ + λ
− Ct

2
r + λ

, (IA35)

V̄ nb2
2,ii = D4θ

β′
1 + A2θ

β1 , (IA36)
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where D1 to D4 are free parameters.

To determine the values of the D1 to D4 parameters, we ensure that the values of the

three component solutions value-match and smooth-paste at the appropriate state variable

thresholds. Defining the upper threshold as θs3 ≡ C2, we thus have:

D1(θs3)β′
2 + C2

r + λ
= D2(θs3)β′

1 + D3(θs3)β′
2 + (θs3)

δ + λ
, (IA37)

β′
2D1(θs3)β′

2−1 = β′
1D2(θs3)β′

1−1 + β′
2D3(θs3)β′

2−1 + 1
δ + λ

, (IA38)

where we again make use of the fact that A1(θs3)β2 + (θs3)
δ

− C2
r

= A2(θs3)β1 . Solving Equa-

tions (IA37) and (IA38) for D1 − D3 and D2, we obtain:

D1 − D3 =
(

−(r + λ) + β′
1(r − δ)

(β′
1 − β′

2)(r + λ)(δ + λ)

)
(C2)1−β′

2 , (IA39)

D2 =
(

−(r + λ) + β′
2(r − δ)

(β′
1 − β′

2)(r + λ)(δ + λ)

)
(C2)1−β′

1 . (IA40)

Defining the lower threshold as θs4 ≡ Ct
2, we equivalently have:

D2(θs4)β′
1 + D3(θs4)β′

2 + (θs4)
δ + λ

− Ct
2

r + λ
= D4(θs4)β′

1 , (IA41)

β′
1D2(θs4)β′

1−1 + β′
2D3(θs4)β′

2−1 + 1
δ + λ

= β′
1D4(θs4)β′

1−1. (IA42)

Solving Equations (IA41) and (IA42) for D2 − D4 and D3, we obtain:

D2 − D4 =
(

−(r + λ) + β′
2(r − δ)

(β′
1 − β′

2)(r + λ)(δ + λ)

)
(Ct

2)1−β′
1 , (IA43)

D3 =
(

r + λ − β′
1(r − δ)

(β′
1 − β′

2)(r + λ)(δ + λ)

)
(Ct

2)1−β′
2 . (IA44)

Using Equations (IA39), (IA40), (IA43), and (IA44), we can finally calculate D1 to D4.

16



Having derived a closed-form solution for V̄ nb
2 , the value of the factory with certain initial

and later production costs, we can now return to finding a closed-form solution for V nb
2 , the

value of the factory with uncertain initial costs. To find the closed-form solution for V nb
2 , we

simply need to integrate over V̄ nb
2 separately for the cases (i) θ ≥ C2 and (ii) θ < C2 (recall

Equation (IA20)). Starting with the θ ≥ C2 case, we have:

V nb
2 =

∫ +∞

ln θ
V̄ nb1

2,io p(s)ds +
∫ ln θ

c2
V̄ nb1

2,oop(s)ds +
∫ c2

−∞
V̄ nb2

2,oop(s)ds (IA45)

= P{Ct
2≥θ}

(
E1[B2]θβ′

1 + B3θ
β′

2 − θ

δ + λ

)
+ P{θ>Ct

2≥C2}

(
E2[B1]θβ′

2 − E2[Ct
2]

r + λ

)

+P{Ct
2<C2}

(
E3[D1]θβ′

2 − E3[Ct
2]

r + λ

)
+ A1θ

β2 + θ

δ
− C2

r
+ C2

r + λ
, (IA46)

where p(s) is the normal probability density function with an expectation of µct
2

and a variance

of σ2
ct

2
; P{Ct

2≥θ}, P{θ>Ct
2≥C2}, and P{Ct

2<C2} are the probabilities that the initial cost lies above

the state variable value, between the state variable value and the later cost, and below the

later cost, respectively; and E1[.], E2[.], and E3[.] are expectations conditional on the initial

cost lying above the state variable value, between the state variable value and the later cost,

and below the later cost, respectively. Turning to the θ < C2 case, we have:

V nb
2 =

∫ +∞

c2
V̄ nb1

2,ii p(s)ds +
∫ c2

ln θ
V̄ nb2

2,ii p(s)ds +
∫ ln θ

−∞
V̄ nb2

2;oi p(s)ds (IA47)

= P{Ct
2≥C2}E4[B4]θβ′

1 + P{C2>Ct
2≥θ}E5[D4]θβ′

1

+P{Ct
2<θ}

(
D2θ

β′
1 + E6[D3]θβ′

2 + θ

δ + λ
− E6[Ct

2]
r + λ

)
+ A2θ

β1 , (IA48)

where, in a similar vein as before, P{Ct
2≥C2}, P{C2>Ct

2≥θ}, and P{Ct
2<θ} are the probabilities that

the initial cost lies above the later cost, between the later cost and the state variable value,

and below the state variable value, respectively; and E4[.], E5[.], and E6[.] are expectations
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conditional on the initial cost lying above the later cost, between the later cost and the state

variable value, and below the state variable value, respectively.

Finally, since the natural log of the initial cost Ct
2 is normal with an expectation equal to

µct
2

and a variance equal to σ2
ct

2
, it is well known that:

P{U>Ct
2≥L} = P

( ln(U) − µct
2

σct
2

>
ct

2 − µct
2

σct
2

≥
ln(L) − µct

2

σct
2

)
(IA49)

= N

[ ln(U) − µct
2

σct
2

]
− N

[ ln(L) − µct
2

σct
2

]
, (IA50)

where U ≥ L ≥ 0 are constants. Moreover, notice that the input argument of each conditional

expectation, Ex[.], takes the general form a(Ct
2)b, where a > 0 and b are constants. Conditioning

on the initial cost Ct
2 lying between L and U (where U ≥ L ≥ 0 are again constants), a direct

evaluation of the integral underlying the conditional expectation yields:

E[a(Ct
2)b|U > Ct

2 ≥ L] = e
ln(a)+bµ

ct
2

+ 1
2 b2σ2

ct
2N [(u − µct

2
− bσ2

ct
2
)/σct

2
] − N [(l − µct

2
− bσ2

ct
2
)/σct

2
]

N [(u − µct
2
)/σct

2
] − N [(l − µct

2
)/σct

2
]

 ,(IA51)

where u ≡ ln(U) and l ≡ ln(L).

IA.3.4. Valuing Growth Options on the Newly-Built Factories

We next value the growth option allowing the firm to construct the newly-built factory

enabling it to produce one output unit per time unit at an initial (unknown) unit cost of Ct
2

and a later (fixed) cost of C2 for an installation cost equal to I. Since the growth option is

unable to transform into another asset and never pays out profits, it has to fulfill ODE (IA6)

with λ = 0 and π = 0. Also, the firm’s optimal policy is to exercise the growth option when
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the state variable value θ exceeds the constant positive threshold θ∗.

Denoting the growth option’s value after and before its optimal exercise by Ga
2 and Gb

2,

respectively, the solutions to the ODE and thus the option’s values take on the forms:

Ga
2 = V nb

2 − I, (IA52)

Gb
2 = Eθβ1 , (IA53)

where E is a free parameter. To determine the values of E and θ∗, we ensure that the values

of the two component solutions value-match and smooth-paste at the threshold θ∗:

V nb
2 |θ=θ∗ − I = E(θ∗)β1 , (IA54)
∂V nb

2
∂θ∗ |θ=θ∗ = β1E(θ∗)β1−1. (IA55)

Dividing Equation (IA54) by (IA55), we obtain:

β1(V nb
2 |θ=θ∗ − I) = ∂V nb

2
∂θ∗ |θ=θ∗θ∗, (IA56)

which we need to numerically solve for θ∗. Having determined the value of θ∗, we plug in into

Equation (IA54), allowing us to calculate E as (V nb
2 |θ=θ∗ − I)/(θ∗)β1 .

IA.3.5. Determining the Optimal Capacity

We can determine the optimal number of factories which the firm should own from:

K =
2∑

k=1
I{θ≥θ∗

k
}, (IA57)
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where the sum is taken over all available factories k ∈ {1, 2}, I{θ≥θ∗
k

} is an indicator variable

equal to one if the state variable value θ is greater or equal to θ∗
k and else zero, and the

subscript of θ∗
k highlights that the optimal investment threshold varies across factories. Notice

that the actual number of factories owned by a firm is always greater or equal to the optimal

number since the firm is unable to disinvest factories.

IA.4 Main Model Comparative Statics

In Section 3.4 of our main paper, we show that our real options model suggests that the

expected return of a firm building a second factory temporarily drops, before eventually rising

back toward its initial level. In this section of the Internet Appendix, we now verify that this

conclusion is robust to reasonable variations in our parameter choices. To do so, we repeat the

calculations in the above section of our main paper separately varying one single parameter

from its basecase value whilst keeping all other parameters at their basecase values. Also, we

choose the moderate level of uncertainty about the initial log production cost, σct
2

= 0.50. We

next calculate the firm’s expected excess return (i) before the investment, (ii) directly after

it, and (iii) long after it (i.e., when the newly-built factory has matured).

Figure IA2 offers the results from this robustness exercise, plotting the expected excess

firm return on the y-axis, the three model states on the x-axis, and the values of the single

varied parameter on the z-axis. We vary the expected return of the output-price replication

portfolio (µ), the output price drift rate (α), the output price volatility (σ), the investment

cost (I), the conversion probability (λ), and the mean difference between the initial and

long-run log production costs (µct
2
) in Panels A to F, respectively. The figure corroborates

that our main theoretical conclusions are largely robust to our parameter value choices. In

particular, the figure reveals that while the overall level of the expected excess return is
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Figure IA2: Comparative Statics In this figure, we plot the expected excess return of a firm building a
second factory with moderate initial production cost uncertainty (σct

2
= 0.50, y-axis) before the investment,

directly after it, and long after it (x-axis) separately varying a single parameter from its basecase value
(z-axis). The single parameter is the expected return of the output price replication portfolio (µ; Panel A),
the output price drift (α; Panel B), the output price volatility (σ; Panel C), the investment cost (I; Panel D),
the conversion probability (λ; Panel E), and the mean difference between the initial and long run production
cost (µct

2
; Panel F). We describe the basecase parameter values in Section 3.4 of our main paper.
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sensitive to our parameter value choices, each choice induces the expected excess return to

drop with investments but to eventually return to almost its initial level. Most noteworthily,

Panel F shows that our main conclusions do not hinge on the extent to which initial production

costs tend to be higher or lower than long-run costs, highlighting that our conclusions are

driven by uncertainty about the initial production costs, and not their expectation.

IA.5 The Time-to-Build Extension

In this section, we look into an extended version of our main model including time-to-build. We

start off with deriving the quasi-closed-form solutions for that extension. We next illustrate

that time-to-build has virtually no effect on our main model conclusions.

IA.5.1. Derivations

In the real options model in our main paper, we abstract from the fact that it requires time

to build a factory in the real world since other studies typically find that time-to-build has no

first-order asset pricing implications in their models (see, e.g., Carlson et al. (2010)). We now

establish that the same conclusion holds for the model in our main paper. To do so, we extend

that model by assuming that, once a firm decides to build a factory, it takes T̄ time units for

the factory to become operational, where we can interpret T̄ as the length of the construction

period. Denoting the time at which the firm makes the building decision by tuc, it is obvious

that construction finishes at time tuc + T̄ . While the profit of an under-construction factory

is exactly zero, the factory converges to the newly-built factory without time-to-build in the

model in our main paper at the end of the construction period (see Section IA.3.3.).

Following the same derivations as in Section IA.3.1.1. except for recognizing that the value

of an under-construction factory, V uc, must also depend on the remaining construction time
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tuc + T̄ − t (so that dV uc = V uc
θ dθ + 1

2V uc
θθ dθdθ + V uc

t dt), we can derive the partial differential

equation which the value of that factory has to fulfill subject to boundary conditions:

1
2σ2θ2V uc

θθ + (r − δ)θV uc
θ − (r + λ)V uc + V uc

t + π + λV a = 0. (IA58)

Since an under-construction factory produces a profit strictly equal to zero (so that π = 0)

and cannot transform into another asset before the end of the construction time (so that

λ = 0), the partial differential equation in Equation (IA58) simplifies to:

1
2σ2θ2V uc

θθ + (r − δ)θV uc
θ − rV uc + V uc

t = 0. (IA59)

We next turn to the boundary conditions which the value of the under-construction factory

indexed by 2 (i.e., the factory able to produce an output unit at a long-term production cost

of C2; V uc
2 ) must fulfill. Letting the output price θ rise to infinity, the firm knows for certain

that it will obtain a factory whose long-term production costs, C2, are below the output price

at the end of the construction period, so that the value of the under-construction factory is

V nb
2 (θ ≥ C2) in Equation (IA46) discounted to the present at the upper boundary. Letting the

output price drop to zero, the firm knows for certain that it will obtain a worthless factory

at the end of the construction period, so that the value of the under-construction factory is

zero at the lower boundary. Finally, letting tuc + T̄ − t converge to zero, the firm obtains the

newly-built factory, so that the value of the under-construction factory is:

V uc
2 =



P{Ct
2≥θ}

(
E1[B2]θβ′

1 + B3θβ′
2 − θ

δ+λ

)
+ P{θ>Ct

2≥C2}

(
E2[B1]θβ′

2 − E2[Ct
2]

r+λ

)
+P{Ct

2<C2}

(
E3[D1]θβ′

2 − E3[Ct
2]

r+λ

)
+ A1θβ2 + θ

δ − C2
r + C2

r+λ if θ ≥ C2,

P{Ct
2≥C2}E4[B4]θβ′

1 + P{C2>Ct
2≥θ}E5[D4]θβ′

1

+P{Ct
2<θ}

(
D2θβ′

1 + E6[D3]θβ′
2 + θ

δ+λ − E6[Ct
2]

r+λ

)
+ A2θβ1 if θ < C2
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at the right boundary (see Equations (IA46) and (IA48)).

To obtain a solution for the value of the above under-construction factory, V uc
2 , we denote

the remaining construction time by τ ≡ tuc + T̄ − t and introduce the auxiliary functions

δ1(n) = r − (r − δ)n − 1
2σ2n(n − 1) and δ2(n) = δ − σ2(n − 1). We next observe that the

following two functions satisfy the partial differential equation in Equation (IA59):

Θ1(n) = θne−δ1(n)τ N

 ln
(

θe−δ2(n)τ

C2

)
+ (r + 1

2σ2)τ
σ

√
τ

 (IA60)

and

Θ2(n) = θne−δ1(n)τ N

−
ln
(

θe−δ2(n)τ

C2

)
+ (r + 1

2σ2)τ
σ

√
τ

 , (IA61)

where n is an arbitrary constant. We finally note that scaled versions of Θ1(n) and Θ2(n) (e.g.,

sΘ1(n), where s is an arbitrary constant) also fulfill that partial differential equation.

Using the definitions and functions defined above, we can write the value of the under-

construction factory indexed by 2 and with remaining construction time τ as:

V uc
2 = V uc

2;1 + V uc
2;2, (IA62)

where:

V uc
2;1 = P{Ct

2≥θ}E1[B2]Θ1(β′
1) +

(
P{Ct

2≥θ}B3 + P{θ>Ct
2≥C2}E2[B1]

+P{Ct
2<C2}E3[D1]

)
Θ1(β′

2) + A1Θ1(β2) −
(

P{Ct
2≥θ}

1
δ + λ

− 1
δ

)
Θ1(1)

−
(

P{θ>Ct
2≥C2}

E2[Ct
2]

r + λ
+ P{Ct

2<C2}
E3[Ct

2]
r + λ

+ C2

r
− C2

r + λ

)
Θ1(0) (IA63)

and
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V uc
2;2 =

(
P{Ct

2≥C2}E4[B4] + P{C2>Ct
2≥θ}E5[D4] + P{Ct

2<θ}D2

)
Θ2(β′

1) + P{Ct
2<θ}E6[D3]Θ2(β′

2)

+A2Θ2(β1) + P{Ct
2<θ}

1
δ + λ

Θ2(1) − P{Ct
2<θ}

E6[Ct
2]

r + λ
Θ2(0). (IA64)

We next look into the growth option to acquire the under-construction factory indexed by

2 and with a remaining construction time equal to T̄ , Ĝ2. Toward that goal, we first recognize

that this growth option has to fulfill the same ODE as the growth option in the model in our

main paper (i.e., Equation (IA6) with π = λ = 0). As a result, the option’s value after (Ĝa
2)

and before (Ĝb
2) its optimal exercise are again of the forms:

Ĝa
2 = V uc

2 − I, (IA65)

Ĝb
2 = Êθβ1 , (IA66)

where Ê is a free parameter. To find the values of Ê and θ̂∗ (the investment-triggering output

price threshold for the under-construction factory), we ensure that the values of the two

component solutions once again value-match and smooth-paste at the threshold θ̂∗:

V uc
2 |θ=θ̂∗ − I = Ê(θ̂∗)β1 , (IA67)
∂V uc

2

∂θ̂∗
|θ=θ̂∗ = β1Ê(θ̂∗)β1−1. (IA68)

Dividing Equation (IA67) by (IA68), we obtain:

β1(V uc
2 |θ=θ̂∗ − I) = ∂V uc

2

∂θ̂∗
|θ=θ̂∗ θ̂∗, (IA69)

which we need to numerically solve for θ̂∗. Having done so, we are then able to plug θ̂∗ into

Equation (IA67), rearrange that equation, and back out the value of Ê.
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IA.5.2. The Effect of Time-to-Build

We next explore whether our model extension featuring time-to-build yields different effects

of real investment on the firm’s expected excess return relative to our main model in Section 3

of our main paper. To that end, we redo the calculations in Section 3.4.2 of our main paper

based on the model extension, setting the time to build the second factory, T̄ , to zero (for

comparison),8 0.25, 0.50, 1.00, and 2.00. Conversely, we set all other parameters to the same

values as in Section 3.4. We then again raise the output price from 0.01 below (“Before

Investing”) the second factory’s optimal investment-triggering output-price threshold, θ̂∗
2, to

0.01 above (“Directly After Investing” and “Long After Investing”) it, separately contrasting

the cases in which the decision to build the factory has just been made (“Directly After

Investing”) and in which that factory has already matured (“Long After Investing”).

Table IA.5 reports the results from those calculations, with Panels A and B assuming a

moderate (σct
2

= 0.50) or high (1.00) initial production cost uncertainty, respectively. While

the columns of the table assume different time-to-build values, the rows within each panel

show the firm’s expected excess return before investing, directly after investing, and long after

investing. The table confirms that time-to-build only marginally influences the response of the

expected excess return to real investments. Looking, for example, into the high cost uncertainty

case, Panel B demonstrates that the initial expected excess return is always between 0.39

and 0.42 (see first row), while that same expected return directly after investing is always

between 0.31 and 0.32 (see second row). Conversely, the long-after-investing expected excess

return is always between 0.38 and 0.40 in the final row. We find similarly small variations

relative to our main model in the moderate uncertainty case in Panel A.
8Note that the model extension collapses to our main model when time-to-build is equal to zero.
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IA.6 Robustness of Our Additional Evidence

In this section, we demonstrate that our additional results supporting our uncertainty ex-

planation for our main empirical evidence are robust to our choice of the pre-construction,

post-construction, and long-post-construction windows. To do so, Internet Appendix Ta-

ble IA.6 starts off with showing the results from repeating panel regression (9) in our main

paper of a firm’s profit growth on an interaction between its industry’s mean output-price-

growth and a dummy variable indicating whether the firm reports positive PPE-CIP expenses

over some subsequent period, some prior period, and some longer-ago prior period, the main

effects, controls, and firm and time fixed effects. In contrast to our main paper, we now

however use alternative definitions for the three periods. To be more specific, Panel A (B)

[C] now considers the one (three) [five] years after, the one (three) [five] years before, and the

one (three) [five] years before the prior one (three) [five]. We include Panel B for comparison

with our main results. While the table uses the same conventions as its counterpart in the

main paper (i.e., Table 5), it omits the control variable effects for the sake of brevity.

The table corroborates that the profit growth panel regression results are robust to the

choice of the three construction windows. While column (1) shows that firms with newly-built

capacity always have a statistically similar profit sensitivity to their industry’s mean output

price relative to their peers before the capacity’s installation, column (2) reveals that their

sensitivities always become significantly lower directly after (contrast Panels A to C). In each

case, columns (3) and (4) clarify that the lower sensitivities mostly come from bad industry

states (contrast the same panels). Finally, columns (5) and (6) confirm that the sensitivities of

firms with newly-built capacity always converge back to those of their peers as we move away

from the capacity’s installation date (see Panels A to C). In fact, the columns suggest that

the effect of newly-built capacity is weaker the deeper in the past the long-post-construction
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window is, in line with the idea that the effect slowly tapers off over time.

In Internet Appendix Table IA.7, we next report the results from repeating panel regression

(11) in our main paper of the absolute analyst forecast error on dummy variables indicating

whether the firm reports positive PPE-CIP expenses over some subsequent period, some prior

period, and some longer-ago prior period, controls, and firm and time fixed effects. Just like

before, we now however use the alternative definitions for the three periods also applied in

our robustness profit growth regressions. The table again uses the same conventions as its

counterpart in the main paper (i.e., Table 6) and omits the control variable effects.

The table demonstrates that our absolute analyst forecast error panel regressions are also

robust to the choice of the three construction windows. While column (1) shows that analysts

never struggle more with predicting the earnings of firms with newly-built capacity relative

to those of their peers before the capacity’s installation, column (2) reveals that they always

do so directly after (compare Panels A to C). Just like before, however, column (3) indicates

that analysts’ ability to predict the earnings of firms with newly-built capacity always rises

back toward their ability to predict those of other firms the further we move away from the

capacity’s installation date (compare the same panels). Interestingly, the column again shows

that the difference between the two types of firms gradually fads over time.

IA.7 Refuting Alternative Hypotheses

In this section, we finally refute several alternative explanations for our main empirical result

that constructing stocks are behind the investment anomaly. The first alternative explanation

is that investments into building capacity may be larger than others, implying that constructing

firms convert a greater amount of high-risk growth options into low-risk assets-in-place than
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their counterparts. In turn, the larger investments produce stronger expected return drops.9 A

second alternative explanation is that investments into building capacity could be more often

financed by overvalued equity (or, alternatively, debt) than others, inducing the market values

of constructing firms to fall as investors become aware of the mispricing and correct it (see,

e.g., Agrawal and Jaffe (2000) and Baker et al. (2003)). Spurred by anecdotal evidence, a

third alternative explanation is that many construction projects go over-budget, inducing

the market values of constructing stocks to fall as investors become aware of unexpected

construction costs. A final alternative explanation is that constructing stocks could be smaller

than others, leading investments to more negatively affect their mean future returns since

the investment anomaly is stronger for smaller stocks (Fama and French (2008)).

We use simple comparisons of firm fundamentals across constructing and non-constructing

stocks over the investment year and the subsequent five to shed some light on the alternative

explanations. To do so, we start from the sample of firm-fiscal year observations included in

the asset pricing tests in Section 2 of our main paper. We extract from that sample all those

observations with an Investment value within the top decile and then split them according to

whether DummyConstruction is equal to zero or one, retaining, however, only observations

with non-missing data for the current fiscal year and the subsequent five. For each subsample

and fiscal year, we then calculate the mean value of some firm fundamental for the current

year and the subsequent five, before averaging over our sample period. We finally also calculate

the change from the investment year to five years later (“5–0”) and the difference across

constructing and non-constructing firms for each of the six years (“(1)–(2)”).

Table IA.8 presents the results from the univariate comparisons. While plain numbers are

mean estimates or the differences in them, those in square brackets are Newey-West (1987)
9We notice that the first alternative explanation suffers from the same problem as other standard real

options explanations. To be more specific, it cannot account for the stylized fact that the effect of investments
on future stock returns only persists for a relatively small number of years.
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t-statistics with a six-month lag length. As firm characteristics, we look into Investment, Book-

ToMarket, total equity financing, total debt financing, Profitability, and MarketSize in Panels A

to F, respectively.10 While we measure Investment over the current fiscal year, we measure

all others over the prior. The table does not suggest that constructing firms convert a greater

amount of high-risk growth options into low-risk assets-in-place than other firms. To be more

specific, Panel A reveals that, if anything at all, constructing stocks produce smaller PPE

changes than other firms. Even if these PPE changes were a distorted proxy for investments

into additional productive capacity, Panel B indicates that constructing firms hold a similar

amount of growth options (as measured through the book-to-market ratio) as others before

their investments, and that the decline in that amount in the investment year is similar across

constructing and non-constructing firms (see the spread between rows (1) and (2)).11

Panels C and D of Table IA.8 also refute the conjecture that the investments of constructing

firms are more often financed through overvalued equity or debt than those of other firms,

showing that equity as well as debt financing is similar across constructing and non-constructing

firms in the pre-investment year and the subsequent five. In the same vein, Panel E renders it

unlikely that constructing firms suffer from significant unexpected construction costs. While

constructing firms may not be required to immediately expense these costs, we find no evidence

that such costs make constructing firms less profitable than their counterparts over the five

years after their investments. Finally, Panel F suggests that constructing stocks share a similar

market size with non-constructing stocks, refuting the hypothesis that our main empirical

evidence is simply due to the investment anomaly being stronger for smaller stocks.12

10See Table A.1 in Appendix A of our main paper for more details about the construction of those variables
also used in our main empirical tests in our main paper. See the caption of Table IA.8 for more details about
the construction of the total equity and debt financing variables (see also Cooper et al. (2008)).

11In line with some literature, we interpret the book-to-market ratio as the fraction of stock value attributable
to assets-in-place. In accordance, an increase in the book-to-market ratio indicates that a firm exercises some
of its growth options, converting them into additional assets-in-place.

12We also looked into other firm fundamentals, including MarketBeta, financial leverage, operating leverage
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Table IA.1
FM Regressions Using Alternative Screens and Proxies
The table presents the investment premium estimates from full-sample (row (1)) and subsample ((2) and
(3)) Fama-MacBeth (1973) regressions of stock returns over month t on investment and controls measured
until the start of that month using alternative sample screens and proxies. The subsample regressions in
rows (2) and (3) are separately run on firms with a positive and zero Construction value, respectively. Row
(2)–(3) reports the difference in estimates across the subsamples. In column (1), we exclude observations
with missing Construction values from our sample. In column (2), we select as constructing firms those
with a positive PPE-CIP balance at the start and/or end of the fiscal year ending in calendar year t − 1. In
column (3), we retain service firms. In column (4) ((5)), we retain firms with sales below $25 million over
the fiscal year ending in calendar year t − 1 (remove stocks with a price below $5 (but not those with a
market capitalization below the first quartile) at the end of June of calendar year t), over the period from
start-July of calendar year t to end-June of calendar year t + 1. In column (6), we use delevered returns
as dependent variable. We use the same controls as in Table 3 in our main paper. The plain numbers
are the monthly investment premium estimates or their difference, stated in percent. The numbers in
square brackets are Newey and West (1987) t-statistics with a six-month lag length. See Table A.1 in the
appendix of our main paper for more details about variable definitions.

Exclude Use Retain Swap
Missing Two-Year Retain Firms With Market Cap Unlevered
Cons. Cons. Service Sales Below For Price Stock
Obs. Average Firmes $25m Filter Returns

(1) (2) (3) (4) (5) (6)

Full Sample (1) −1.90 −1.19 −1.34 −1.35 −0.90 −0.68
[−5.81] [−3.23] [−4.01] [−3.81] [−2.57] [−3.05]

Cons. Stocks (2) −2.51 −2.46 −2.11 −2.58 −1.93 −1.57
[−6.94] [−6.70] [−6.36] [−7.45] [−5.49] [−6.33]

Non-Cons. Stocks (3) −0.82 −0.62 −1.02 −0.80 −0.45 −0.31
[−1.56] [−1.56] [−2.53] [−2.04] [−1.19] [−1.35]

Difference (2)–(3) −1.69 −1.84 −1.09 −1.77 −1.48 −1.26
[−2.86] [−3.99] [−2.27] [−3.81] [−3.26] [−4.36]
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Table IA.2
WLS Regressions of Stock Returns on Investment Interacted with Construction
The table presents the results from weighted-least squares (WLS) Fama-MacBeth (1973) regressions of
stock returns over month t on combinations of investment, construction, and controls measured until the
start of that month. In Panels A and B, we weight each cross-sectional observation by market size at
the end of month t − 1 or by the gross return over that same month. In columns (1) to (3), we report
the results from full-sample regressions on, respectively, Investment and the controls; Investment, an
interaction between Investment and Construction, Construction, and the controls; and Investment, an
interaction between Investment and a Construction rank variable, the rank variable, and the controls.
In columns (4) and (5), we report the results from subsample regressions run separately on firms with
a positive and zero Construction value, respectively. Column (4)–(5) finally reports the difference in
estimates across the subsamples. The plain numbers are monthly premium estimates, in percent. The
numbers in square brackets are Newey and West (1987) t-statistics with a six-month lag length. See Table
A.1 in the appendix of our main paper for more details about variable definitions.

Zero Spread
Full Full Full Cons. Cons. Between

Sample Sample Sample Subsample Subsample Subsamples

(1) (2) (3) (4) (5) (4)–(5)

Panel A: Using Past Market Size As Weight

Investment (I) −0.80 −0.49 −0.49 −1.98 −0.35 −1.63
[−2.35] [−1.28] [−1.21] [−3.63] [−0.98] [−2.59]

I×Construction −28.51
[−2.37]

Construction 2.54
[1.69]

I×RankConstruction −2.15
[−2.19]

RankConstruction 0.22
[2.64]

MarketBeta −0.04 −0.03 −0.03 −0.16 0.03 −0.19
[−0.16] [−0.12] [−0.10] [−0.53] [0.12] [−1.25]

MarketSize −0.06 −0.06 −0.06 −0.06 −0.06 0.01
[−1.18] [−1.26] [−1.26] [−1.11] [−1.26] [0.25]

BookToMarket 0.12 0.11 0.12 −0.05 0.21 −0.26
[1.29] [1.19] [1.26] [−0.46] [2.18] [−2.86]

Momentum 0.60 0.58 0.59 0.43 0.71 −0.28
[2.08] [2.04] [2.08] [1.49] [2.33] [−1.59]

Profitability 0.40 0.40 0.40 −0.12 0.66 −0.78
[2.05] [2.10] [2.08] [−0.44] [2.98] [−2.66]

Constant 1.11 1.09 1.08 1.31 1.02 0.29
[2.31] [2.29] [2.27] [2.70] [2.05] [1.03]

(continued on next page)
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Table IA.2
WLS Regressions of Stock Returns on Investment Interacted with Construction (cont.)

Zero Spread
Full Full Full Cons. Cons. Between

Sample Sample Sample Subsample Subsample Subsamples

(1) (2) (3) (4) (5) (4)–(5)

Panel B: Using Past Gross Return As Weight

Investment (I) −1.12 −0.77 −0.72 −2.39 −0.54 −1.85
[−3.04] [−1.86] [−1.63] [−6.48] [−1.36] [−3.88]

I×Construction −22.07
[−2.51]

Construction 0.65
[0.44]

I×RankConstruction −2.50
[−3.07]

RankConstruction 0.20
[2.01]

MarketBeta −0.01 −0.01 −0.01 0.02 −0.01 0.03
[−0.05] [−0.04] [−0.03] [0.11] [−0.04] [0.31]

MarketSize −0.02 −0.03 −0.03 −0.07 −0.01 −0.05
[−0.53] [−0.57] [−0.64] [−1.45] [−0.29] [−2.21]

BookToMarket 0.24 0.24 0.24 0.14 0.28 −0.14
[2.74] [2.68] [2.69] [1.16] [3.30] [−1.57]

Momentum 1.04 1.04 1.04 0.96 1.10 −0.15
[4.87] [4.84] [4.88] [3.94] [5.24] [−1.04]

Profitability 0.69 0.69 0.69 0.63 0.70 −0.07
[2.93] [2.92] [2.94] [2.10] [3.01] [−0.31]

Constant 0.82 0.82 0.81 1.09 0.74 0.35
[1.83] [1.84] [1.84] [2.51] [1.61] [1.86]
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Table IA.3
FM Regressions Using Alternative Investment Proxies
The table presents the investment premium estimates from full-sample (row (1)) and subsample ((2) and
(3)) Fama-MacBeth (1973) regressions of stock returns over month t on investment and controls measured
until the start of that month using alternative investment proxies. The subsample regressions in rows
(2) and (3) are separately run on firms with a positive and zero Construction value, respectively. Row
(2)–(3) reports the difference in estimates across the subsamples. In columns (1) to (4), we use the ratio of
CAPEX to gross property, plant, and equipment; the ratio of CAPEX to sales over its moving average
taken over the prior three years; the percentage growth in total productive capacity; and the percentage
growth in total assets, respectively. We use the same controls as in Table 3. The plain numbers are the
monthly investment premium estimates or their difference across the subsamples, stated in percent. The
numbers in square brackets are Newey and West (1987) t-statistics with a six-month lag length. See
Table A.1 in the appendix of our main paper for more details about variable definitions.

CAPEX- Abnormal Capital Asset
to-PPE CAPEX Growth Growth

(1) (2) (3) (4)

Full Sample (1) −0.83 −0.13 −0.55 −0.56
[−4.42] [−4.52] [−5.40] [−6.37]

Cons. Stocks (2) −1.32 −0.19 −0.83 −0.73
[−4.66] [−4.37] [−5.92] [−5.24]

Non-Cons. Stocks (3) −0.61 −0.10 −0.45 −0.51
[−3.26] [−2.67] [−4.06] [−5.75]

Difference (2)–(3) −0.71 −0.10 −0.38 −0.23
[−2.72] [−1.78] [−2.64] [−1.74]
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Table IA.4
Spanning Tests of the Fama-French (2015) CMA Factor
The table presents the results from time-series regressions of the Fama-French (2015) CMA factor over
month t on combinations of a concurrent version of that factor formed from constructing stocks (Dummy-
Construction=1; “Cons. CMA”), a concurrent version formed from non-constructing stocks (DummyCon-
struction=0; “Non-Cons. CMA”), and a constant. Plain numbers are monthly estimates (in percent), while
those in square brackets are Newey and West (1987) t-statistics with a six-month lag length.

Fama-French (2015) CMA

(1) (2) (3) (4)

Constant 0.26 0.04 0.07 0.00
[2.55] [0.77] [2.30] [−0.02]

Cons. CMA 0.60 0.31
[14.54] [12.30]

Non-Cons. CMA 0.93 0.72
[22.82] [46.79]
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Table IA.5
The Effect of Time-to-Build on the Investment-Expected Firm Return Relation
The table presents the effect of real investments on the firm’s expected excess return when the firm builds
a second factory with either a moderate (Panel A) or high (Panel B) initial production cost uncertainty
in the model extension with time-to-build. We set time-to-build to zero (for comparison), 0.25, 0.50,
1.00, and 2.00 in columns (1) to (5), respectively. For each initial cost uncertainty (σct

2
)-time-to-build (T̄ )

combination, we raise the output price from 0.01 below (“Before Investing”) the second factory’s optimal
investment-triggering output-price threshold, θ∗

2, to 0.01 above (“Directly After Investing” and “Long After
Investing”) it. Also, we either assume that the newly-built factory operates at its initial (“Directly After
Investing”) or its long-run (“Long after Investing”) production costs. The table entries are expected excess
returns. We describe the basecase parameter values in Section 3.4 of our main paper. In Panels A and B,
we set the initial production cost uncertainty parameter, σct

2
, to 0.50 and 1.00, respectively.

Time-to-Build

0.00 0.25 0.50 1.00 2.00

(1) (2) (3) (4) (5)

Panel A: Building with Moderate Cost Uncertainty (σct
2

= 0.50)

Before Investing 0.33 0.33 0.33 0.32 0.32
Directly After Investing 0.29 0.29 0.29 0.28 0.28
Long After Investing 0.32 0.32 0.32 0.32 0.32

Panel B: Building with High Cost Uncertainty (σct
2

= 1.00)

Before Investing 0.42 0.42 0.41 0.41 0.39
Directly After Investing 0.32 0.32 0.32 0.32 0.31
Long After Investing 0.40 0.40 0.40 0.39 0.38
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Table IA.6
Profit Regressions Using Alternative Construction Windows
The table presents the results from panel regressions of a firm’s profit growth over quarter t on
its industry’s mean-output-price growth over that quarter, output price growth interacted with a
dummy variable equal to one if the firm engages in construction work over the following X year(s)
(PreConstruction), the previous X year(s) (PostConstruction), or the X years before the previous X
year(s) (LongPostConstruction) and else zero, controls, and firm and time fixed effects. We set X equal
to one, three, and five in Panels A, B, and C, respectively. While columns (1) and (2) show the results
from full-sample regressions, columns (3) to (6) show those from subsample regressions on observations
with a past X-year mean-output-price growth above ((3) and (5)) and below ((4) and (6)) the median.
Plain numbers are estimates, while the numbers in square brackets are White (1980) t-statistics. For
the sake of brevity, the table does not report the control effects. See Tables A.1 and A.3 in Appendix A
of our main paper for variable and industry definitions, respectively.

Subsamples

Full Full Price Growth Price Growth

Sample Sample High Low High Low

(1) (2) (3) (4) (5) (6)

Panel A: One-Year Construction Windows

∆OutputPrice (∆OP) 0.39 0.38 0.32 0.47 0.36 0.39
[7.82] [8.01] [4.28] [7.11] [4.76] [5.91]

∆OP×PreConstruction −0.20
[−0.81]

∆OP×PostConstruction −0.23 −0.15 −0.35
[−3.66] [−1.52] [−4.00]

∆OP×LongPostConstruction −0.19 −0.24
[−1.82] [−2.69]

Panel B: Three-Year Construction Windows (Repeated for Convenience)

∆OutputPrice (∆OP) 0.39 0.40 0.38 0.46 0.31 0.18
[7.47] [8.33] [4.91] [6.80] [3.80] [2.37]

∆OP×PreConstruction 0.02
[0.09]

∆OP×PostConstruction −0.23 −0.15 −0.34
[−3.62] [−1.48] [−3.76]

∆OP×LongPostConstruction −0.09 −0.25
[−0.83] [−1.96]

(continued on next page)
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Table IA.6
Profit Regressions Using Alternative Construction Windows (cont.)

Subsamples

Full Full Price Growth Price Growth

Sample Sample High Low High Low

(1) (2) (3) (4) (5) (6)

Panel C: Five-Year Construction Windows

∆OutputPrice (∆OP) 0.41 0.41 0.39 0.48 0.31 0.42
[7.66] [8.37] [4.84] [6.99] [3.50] [5.72]

∆OP×PreConstruction 0.06
[0.33]

∆OP×PostConstruction −0.23 −0.12 −0.35
[−3.45] [−1.13] [−3.86]

∆OP×LongPostConstruction −0.10 −0.19
[−0.82] [−1.85]
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Table IA.7
Absolute Forecast Error Regressions Using Alternative Construction Windows
The table presents the results from panel regressions of a firm’s absolute analyst earnings-forecast error
scaled by realized earnings on a dummy variable equal to one if the firm engages in construction work over
the following X years (PreConstruction), the prior X (PostConstruction), or the X-year period before the
prior X years (LongPostConstruction) and else zero, controls, and firm and time fixed effects. We set X
equal to one, three, and five in Panels A, B, and C, respectively. Plain numbers are coefficient estimates,
while the numbers in square brackets are White (1980) t-statistics. For the sake of brevity, the table does
not report the control effects. See Table A.1 in Appendix A of our main paper for variable definitions.

(1) (2) (3)

Panel A: One-Year Construction Windows

PreConstruction 0.01
[0.41]

PostConstruction 0.03
[3.30]

LongPostConstruction 0.02
[2.42]

Panel B: Three-Year Construction Windows (Repeated For Convenience)

PreConstruction 0.02
[1.42]

PostConstruction 0.04
[4.07]

LongPostConstruction 0.03
[3.18]

Panel C: Five-Year Construction Windows

PreConstruction 0.02
[1.33]

PostConstruction 0.04
[3.84]

LongPostConstruction 0.02
[1.85]

41



Table IA.8
Comparing Fundamentals Across Constructing and Non-Constructing Stocks
The table compares firm characteristics across high-investment constructing and non-constructing firms
over their investment year and the subsequent five. We select as high-investment firms those with an
Investment value above the last decile at the end of each fiscal year t in our sample period. We next split
those firms into constructing and non-constructing firms according to whether DummyConstruction=0 or
1 at that time, respectively. The fundamentals are investment intensity over the current year (Investment;
Panel A), the prior-year book-to-market ratio (BookToMarket; Panel B), equity (Panel C) and debt
(Panel D) financing over the prior year, total profitability over the prior year (Profitability; Panel E), and
the prior-year market size (MarketSize; Panel F). Excluding firms with incomplete data over the six-year
period, we first calculate mean values by constructing (row (1)) and non-constructing (row (2)) firm and
year (columns (1) to (6)). We then average over our sample period. Row (1)–(2) reports the difference
across constructing and non-constructing firms by year, while column (7) reports the change in the mean
values over the six years by subsample. Plain numbers are mean estimates or their differences, while
those in square brackets are Newey-West (1987) t-statistics with a six-month lag length. See Table A.1
in Appendix A of our main paper for more details about the definitions of those variables also used in
our main paper. Equity financing is the change in preferred stock (pstk) plus common equity (ceq) plus
minority interest (mib) minus retained earnings (re) over the fiscal year ending in calendar year t − 1
scaled by total assets (at) at the start of that year. Debt financing is the change in total current liabilities
(dlc) over the fiscal year ending in calendar year t − 1 scaled by total assets (at) at the start of that year.

Year Relative to Investment Year Difference

0 +1 +2 +3 +4 +5 +5–0 t-stat.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Investment Intensity

Cons. Stocks (1) 0.20 0.12 0.10 0.09 0.08 0.07 −0.14 [−8.20]
Non-Cons. Stocks (2) 0.24 0.15 0.13 0.12 0.12 0.10 −0.14 [−8.57]

Difference (1)–(2) −0.04 −0.03 −0.04 −0.03 −0.04 −0.03
t-statistic [−3.29] [−3.39] [−3.30] [−2.49] [−3.35] [−4.24]

Panel B: Prior-Year Book-to-Market

Cons. Stocks (1) 0.57 0.62 0.66 0.67 0.67 0.68 0.11 [1.83]
Non-Cons. Stocks (2) 0.59 0.64 0.66 0.67 0.69 0.69 0.11 [2.18]

Difference (1)–(2) −0.02 −0.02 −0.01 0.00 −0.02 −0.02
t-statistic [−0.52] [−0.72] [−0.19] [−0.19] [−0.63] [−0.42]

(continued on next page)
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Table IA.8
Comparing Fundamentals Across Constructing and Non-Constructing Stocks (cont.)

Year Relative to Investment Year Difference

0 +1 +2 +3 +4 +5 +5–0 t-stat.

(1) (2) (3) (4) (5) (6) (7) (8)

Panel C: Prior-Year Equity Financing

Cons. Stocks (1) 0.11 0.05 0.03 0.03 0.02 0.02 −0.09 [−3.53]
Non-Cons. Stocks (2) 0.11 0.06 0.04 0.04 0.04 0.03 −0.08 [−4.44]

Difference (1)–(2) 0.00 −0.01 −0.01 −0.02 −0.02 −0.01
t-statistic [−0.32] [−1.61] [−3.48] [−3.28] [−3.68] [−3.98]

Panel D: Prior-Year Debt Financing

Cons. Stocks (1) 0.01 0.00 0.00 0.00 0.00 0.00 −0.01 [−3.32]
Non-Cons. Stocks (2) 0.01 0.01 0.00 0.00 0.00 0.00 −0.01 [−3.41]

Difference (1)–(2) 0.00 0.00 0.00 0.00 0.00 0.00
t-statistic [−0.16] [−1.32] [0.37] [−0.49] [−0.57] [0.56]

Panel E: Prior-Year Profitability

Cons. Stocks (1) 0.30 0.30 0.28 0.27 0.28 0.30 0.00 [−0.05]
Non-Cons. Stocks (2) 0.29 0.28 0.27 0.28 0.27 0.28 −0.02 [−0.91]

Difference (1)–(2) 0.00 0.02 0.01 0.00 0.01 0.02
t-statistic [0.34] [1.57] [0.96] [−0.47] [0.62] [0.97]

Panel F: Prior-Year Market Size

Cons. Stocks (1) 3.50 3.67 4.00 4.40 4.69 5.12 1.62 [2.35]
Non-Cons. Stocks (2) 4.96 5.47 5.62 6.18 6.50 6.77 1.82 [4.42]

Difference (1)–(2) −1.46 −1.80 −1.62 −1.78 −1.81 −1.66
t-statistic [−1.42] [−1.64] [−1.51] [−1.59] [−1.55] [−1.46]
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