
Supplementary Material: Internet Appendices

for

Are Shadow Rate Models of the Yield Curve Structurally Stable?

IA.I. Innovation Statistics

This appendix proves invariance to model rotation and asymptotic distribution of the

innovation-based statistics discussed in Section III.C and Section IV.A.2.

Consider a general first-order Gaussian VAR. That is, suppose the N -dimensional state

vector xt follows the transition equation xt = m0 +M1xt−1 + εt, where the εt are i.i.d. N(0,Ω),

with Ω > 0. Choose any matrix decomposition such that SS ′ = Ω (for example, the Cholesky

decomposition) and let ηt = S−1εt = S−1(xt −m0 −M1xt−1). Then by construction, the ηt are

i.i.d. N(0, I). Next, take an arbitrary invariant transformation, that is, an N -vector l and invertible

N ×N -matrix L, and let x̃t = l + Lxt. Then x̃t = m̃0 + M̃1x̃t−1 + ε̃t, where the ε̃t are i.i.d.

N(0, Ω̃), with m̃0 = (I − LM1L
−1)l + Lm0, M̃1 = LM1L

−1, and Ω̃ = LΩL′. If we choose any S̃

such that S̃S̃ ′ = Ω̃ and let η̃t = S̃−1ε̃t = S̃−1(x̃t − m̃0 − M̃1x̃t−1), then, denoting the Frobenius

matrix norm by || · ||F , for u = 1, 2, . . .,
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= T−2tr(S−1
∑

tεt−uε
′
tS
−1′S−1

∑
tεtε

′
t−uS

−1′)

= ||T−1
∑

tηtη
′
t−u||2F .

The statistic ||T−1
∑

t ηtη
′
t−u||2F is thus invariant both to the original choice of S (say, whether the

Cholesky decomposition or a symmetric matrix square root is used), and to observationally

equivalent model rotations. By an analogous argument, the same is true for ||T−1
∑

t ηtη
′
t − I||2F .

Moreover, since the elements of ηt are independent both contemporaneously and across

time, E(ηt,iηt−u,j) is equal to 1 if u = 0 and i = j, and is equal to 0 otherwise. Similarly,

Cov(ηt,iηt−u,j, ηt,pηt−v,q) is 2 if u = v = 0 and i = j = p = q; is equal to 1 if u = v = 0 and either

i = p 6= j = q or i = q 6= j = p, or if u = v > 0 and either i = p, j = q or i = q, j = p; and, is

equal to 0 otherwise. Thus, by the Law of Large Numbers for random vectors,

√
T


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′
t−1
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...

vec
(
T−1

∑
tηtη

′
t−u
)


d→ N(0, I)

as T →∞. Note ηtη′t−u is symmetric only when u = 0, which is why we use half-vectorization in

that case; furthermore, the diagonal elements in that matrix have variance 2, which is accounted for

by the Hadamard operation ⊗(I + J)◦−1/2 which divides the diagonal elements by
√

2. Using this

IA.2



convergence result, the Continuous Mapping Theorem implies that

1
2
T ||T−1

∑
tηtη

′
t − I||2F

d→ χ2
(N2+N)/2

T ||T−1
∑

tηtη
′
t−u||2F

d→ χ2
N2 u = 1, 2, . . .

as T →∞. Furthermore, as the individual statistics are independent under their asymptotic

distribution, they can be added to obtain a joint statistic with asymptotic χ2 distribution and degrees

of freedom equal to the sum of the individual degrees of freedom.

IA.II. Parameter Estimates

This appendix provides the parameter estimates, in original normalization (equation

equation (13)), based on the pre-ELB sample (θ̂pre), post-ELB sample (θ̂post), and full sample

(θ̂full). The PC-rotated parameter estimates θ̂†pre and θ̂†post in Section V.B are invariant

transformations of θ̂pre and θ̂post, respectively. Recall that, to achieve econometric identification, we

impose the normalization restrictions kP0 = 03×1, Σ = 0.01I , [KP
1 ]i,j(i<j) = 0.

A few properties of our estimates are of note: In θ̂pre, the estimate of [KP
1 ]33 does not have a

standard error because the estimate is at the boundary ([KP
1 ]33 = [KP

1 ]22); that is, the matrix has a

repeated eigenvalue. In θ̂post, the estimate of δy does not have a standard error as it is at the

minimum bound (4 bps) that we imposed. If this parameter is left unconstrained in the post-ELB

sample estimation, the estimated Q parameters display strong signs of overfitting. In all three

models, we impose a lower bound of 50 bps on the measurement error estimate for the 5-to-10-year

survey expectation.
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θ̂pre θ̂post θ̂full
ρ0 0.0450 (0.0023) 0.0374 (0.0097) 0.0465 (0.0028)
[ρ1]1 0.4051 (0.1051) 0.2541 (0.0824) 0.3512 (0.0315)
[ρ1]2 -0.1366 (0.0803) 0.1596 (0.0600) 0.0449 (0.0485)
[ρ1]3 0.6915 (0.0711) 0.4295 (0.0615) 0.7472 (0.0533)
[KP

1 ]11 -0.0637 (0.0192) -0.1109 (0.4311) -0.0917 (0.0167)
[KP

1 ]21 0.0584 (0.1125) 0.1390 (0.3667) 0.1235 (0.0603)
[KP

1 ]31 -0.0744 (0.2951) -0.2366 (0.7887) -0.0151 (0.0582)
[KP

1 ]22 -1.1215 (0.0538) -0.6351 (0.0956) -0.8391 (0.2096)
[KP

1 ]32 2.5296 (0.3192) 2.8466 (0.9364) 1.8229 (0.2069)
[KP

1 ]33 -1.1215 -0.6784 (0.0576) -0.9855 (0.0375)
[kQ0 ]1 0.0073 (0.0015) -0.0069 (0.0098) 0.0049 (0.0002)
[kQ0 ]2 -0.0068 (0.0016) 0.0063 (0.0086) -0.0022 (0.0014)
[kQ0 ]3 0.0048 (0.0038) 0.0124 (0.0127) 0.0045 (0.0012)
[KQ

1 ]11 0.1194 (0.1783) -0.3428 (0.1242) 0.0138 (0.0066)
[KQ

1 ]21 0.1212 (0.1129) 0.3423 (0.1345) 0.1212 (0.0089)
[KQ

1 ]31 0.3998 (0.3284) 0.0872 (0.4703) 0.1682 (0.0074)
[KQ

1 ]12 1.4357 (0.2536) -0.5689 (0.3800) 0.6421 (0.0099)
[KQ

1 ]22 -0.9906 (0.1593) 0.3044 (0.2306) -0.4941 (0.0166)
[KQ

1 ]32 2.5270 (0.3326) 2.1732 (0.6383) 1.7591 (0.0097)
[KQ

1 ]13 -0.6656 (0.0794) 0.0465 (0.0371) -0.2775 (0.0072)
[KQ

1 ]23 0.1049 (0.0692) -0.0081 (0.0272) -0.0464 (0.0081)
[KQ

1 ]33 -1.3073 (0.1178) -0.4557 (0.0813) -0.8964 (0.0097)
δy 0.0006 (0.0000) 0.0004 0.0006 (0.0000)
δz,6m 0.0017 (0.0001) 0.0011 (0.0001) 0.0018 (0.0001)
δz,12m 0.0023 (0.0001) 0.0017 (0.0001) 0.0025 (0.0007)
δz,5−10y 0.0050 0.0050 0.0050
r 0.0006 (0.0000) 0.0007 (0.0000)

Table IA.1

Parameter estimates for the three models used in the paper.
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IA.III. Yields-Only Model

As a robustness check, we estimate a full-sample, single-regime shadow rate model based

only on yield data, omitting surveys. We find, as expected, that the parameter estimates differ

somewhat from those reported for the analogous model with surveys in Table IA.1. Particularly

notable are a lower estimate of the long-term short rate ρ0, at 0.0381, albeit with substantially larger

standard error (0.0133), as well as a more negative eigenvalue [KP
1 ]11, estimated to be −0.1755,

implying a faster rate of convergence to the long-term mean, though equally with a relatively large

standard error (0.1175). Both observations are consistent with the issues raised by Kim and

Orphanides (2012) which motivate the use of survey data in the first place.

Based on this yields-only model, we repeat the LM tests from Section IV.B. As seen in

Figure IA.1, the time series of statistics differs minimally from that based on the model with

surveys (consistent with the small difference seen in the Ghysell-Hall statistics with and without

surveys reported in Table 5). Note, however, that the close match between the LM statistics does not

imply that the two models must have nearly identical parameter estimates, nor that survey data by

itself does not reflect a structural break; it merely suggests that survey data contains little

incremental information about a structural break, over and above the yield data. We conclude from

this exercise that the evidence in favor of the existence of a structural break based on single-regime

models (which is derived from information in the neighborhood of a single estimated parameter

vector) is not meaningfully affected by the presence of survey data. Nevertheless, the addition of

survey information may help characterize the nature of the structural break (i.e., identify the

different estimated pre- and post-break parameter vectors); indeed, we have not been able to
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Figure IA.1

Time series of Lagrange multiplier statistics for the yields-only model (solid yellow line), with the

dotted blue line replicating the statistics based on our model with surveys from Figure 3.

estimate a structurally broken model without survey data analogous to Section V due to the limited

length of the post-ELB sample.38

IA.IV. Q-Stable Model

In this appendix, we present results from a model in which the P parameters are permitted

to change at the end of 2008 while the Q parameters remain stable. Such a model is motivated by

38With yields-only estimation of the post-ELB period data, we were not able to arrive at a global maximum of the

likelihood function with any reasonable degree of confidence. The estimate with the highest likelihood value among the

estimates we found had unreasonable properties; e.g., its implied time series of the 5-to-10-year-ahead expected shadow

rate had negative values throughout the post-ELB sample period.
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the desire to specify the structural break more parsimoniously than we do in Section V, where we

allow all model parameters to change at the time of the structural break. While we are thus able to

analyze the characteristics of the structural break in the greatest possible generality, this flexibility

comes at the cost of doubling the number of free parameters.

Here, we follow an approach inspired by studies such as Andreasen et al. (2019) and

Giacoletti et al. (2021), who argue that structural changes in the economic environment can be

captured by allowing P parameters to vary while keeping Q parameters fixed. In particular, we

estimate a model in which we normalize ρ1 = (1, . . . , 1)′ and kQ0 = 0, and keep ρ0, the eigenvalues

of KQ
0 , as well as the instantaneous covariance matrix Σ fixed throughout the sample. Meanwhile,

kP0 and KP
1 are allowed to change in 2008.

As shown in Figure IA.2, this model fits the cross section of yields comparably as well as

the fully flexible structurally broken model, with no readily discernible deterioration of fit in the

post-ELB period. At the same time, as shown in Figure IA.3, the shadow rate implied by the model

with stable Q parameters is more closely aligned with that implied by the structurally stable model;

this is particularly notable in 2014 and 2015. Thus, while the model with stable Q parameters

seems to fit the cross section of yields better than the structurally stable model in the post-ELB

period, it does so at inferred state variables that are closer to the structurally stable model than the

fully flexible structurally broken model. As seen in the left panel of Figure IA.4, the two-year yield

term premium implied by the model with stable Q parameters periodically deviates from the term

premium implied by the fully flexible structurally broken model.

Analogously to Section IV.B, we conduct an LM test for structural stability, here with

respect to only the Q parameters. The statistic is 287.25, about half the value we obtain in the

model in which we test for a break in all parameters (see Figure 3), but still very highly significant
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as the test here has fewer degrees of freedom; the 1% cutoff for 10 d.f. is 23.21. In other words,

from a purely statistical perspective, the null hypothesis of structural stability in the Q parameters is

strongly rejected in a model in which the P parameters are allowed to change. Interestingly, this is

the case even though such a model appears to be able to fit the cross section of yields adequately (as

seen in Figure IA.2). Two related factors likely contribute to this finding: First, even modest

improvements in yield fit tend to translate into large gains in likelihood. Second, such

improvements in cross-sectional fit might be achieved by compromising the time-series properties

of the filtered state variables. Indeed, recall from Figure IA.3 that the implied shadow rate of the

model with stable Q parameters—a linear function of its filtered state variables—tracks more

closely the shadow rate implied by the structurally stable model than that implied by the fully

flexible structurally broken model.

IA.V. Additional Materials for Section V

V.A. Decomposition of Shadow Yields

Here we further examine the shadow yields, yst,τ , defined as

yst,τ = −1

τ
logP s

t,τ , P s
t,τ = EQ

t

[
exp

(
−
∫ t+τ

t

sudu

)]
,

with the shadow rate st. As in the decomposition of (actual) yield into expectations component and

term premium component, we can decompose shadow yield into “shadow yield expectations”
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Figure IA.2

Time series of mean-root-squared yield fitting errors in different models. The pre-ELB period is

shaded.
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Time series of estimated shadow rates.
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Figure IA.4

Two- (left panel) and ten-year (right panel) yield term premiums implied by our different models,

shown for the post-ELB subsample.
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component YEs and “shadow yield term premium” component YTPs, i.e.,

yst,τ = YEs
t,τ + YTPs

t,τ .

Note that ys, YEs, and YTPs are all affine in the state vector xt.

Figure IA.5 displays the time series of the shadow yields, shadow expectations components,

and shadow term premiums for the 2-year maturity, implied by the structurally broken model and

the structurally stable model. It can be seen that the 2-year shadow yields implied by the two

models (structurally stable vs. broken) are fairly similar, but there is considerable difference in the

behavior of 2-year shadow term premiums. In particular, the shadow term premium in the

structurally stable model is more volatile and lower in level than the shadow term premium in the

structurally broken model during much of the post-ELB sample period; this seems to be consistent

with the feature in Figure 5 of the paper that the actual (i.e. not shadow) term premium in the 2-year

yield is more negative and volatile in the structurally stable model than in the structurally broken

model, and also with the findings in Section V.C of the paper that the shadow yields in the

structurally broken model are close to the expectations hypothesis for short maturities in the

post-ELB sample. In the case of longer maturities such as the 10-year horizon shown in Figure

IA.6, the structurally broken model implies a greater gap between actual and shadow yields, relative

to the structurally stable model. Our interpretation is that after the Financial Crisis (i.e., in the

post-ELB period), permanently higher risk-adjusted odds of the scenario of returning to ELB are

priced into yields, and this is manifesting itself as a greater gap between actual yields and shadow

yields (lower than actual yields) in the structurally broken model. The decomposition of 10-year

shadow yields into shadow EH and shadow term premium components indicate that the shadow
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Figure IA.5

Decomposition of the 2-year shadow yields into shadow expectations components and shadow term

premium components, based on structurally stable and broken models.

term premium in the structurally broken model tends to be lower than that in the structurally stable

model in the post-ELB period, significantly contributing to the greater gap between shadow yields

and actual yields in the structurally broken model.

V.B. Model-implied Shadow Rate Paths

Here we examine the time series of P-measure expectations of the shadow rate implied by

the structurally broken and structurally stable models. Figure IA.7 displays the time series of the

shadow rate itself and the shadow rate expected at horizons of 1 year, 2 years, and 3 years, for both

models. Interestingly, while the level of the shadow rate was much lower for the structurally stable
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Figure IA.6

Decomposition of the 10-year shadow yields into shadow expectations components and shadow

term premium components, based on structurally stable and broken models.

IA.13



2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04
shadow rates from structurally stable and broken models

current (broken)
current (stable)
1y-ahead (broken)
1y-ahead (stable)
2y-ahead (broken)
2y-ahead (stable)
3y-ahead (broken)
3y-ahead (stable)

Figure IA.7

Times series of shadow rates and their P-measure expectations 1-, 2-, and 3-years ahead, based on

the structurally stable model and structurally broken model.

model during 2014–15, the expected shadow rate for horizons of 1 year and beyond are roughly

similar during that period (i.e., the expected path of the shadow rate for horizons below 1 year was

much steeper for the structurally stable model during 2014–15), highlighting that a lower level of

shadow rate does not necessarily imply a lower path for the shadow rate beyond very near-term

horizons. It can be also seen that for much of the post-ELB (2008–19) period, the 1∼2-year horizon

shadow rate expectations based on the structurally stable model are persistently higher than those of

the structurally broken model (especially during periods of 2010–2012 and 2016–2018). This is

also consistent with the persistently more negative 2-year shadow yield term premium seen in

Figure IA.5.
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V.C. Economic Variables as Functions of PC Factors

We also examine model-implied economic variables of interest from the perspective of PC

components, to discern how their roles might have changed between the structurally stable and the

structurally broken models. Figure IA.8 shows the filtered estimates of these PC factors for the

structurally stable model and the structurally broken model. While all three PC factors show some

differences between the structurally stable and broken models, the question of how much a specific

PC factor contributes to the difference between the structurally stable and broken models will

depend on the specific object under consideration. For example, the “shadow yields” (of various

maturities) can be written as affine functions of PC factors (i.e., const.+
∑N

i=1 biPCit), and

therefore the impact of a structural break can show up as either changes in the PC factors (PCi), in

the factor loadings (bi), or both. Therefore, to compare a PC factor’s overall contribution to an

object, we examine the product of the factor with its factor loading for the object (biPCi). In Figure

IA.9, we plot this product for each of the PC factors (PC1, PC2, PC3), for the 2-year shadow

yield.39 This decomposition indicates that the slope factor (PC2) has a notably different role in the

variation of the 2-year shadow yield, with PC2 contributing little in the case of the structurally

stable model, and PC2 contributing substantially in the case of the structurally broken model.

Similarly, we can examine the contribution of each of the PC factors to the expectations component

of the 2-year shadow yield (YEs
t,2y); this is shown in Figure IA.10. It can be seen that there are

visible differences in the contribution to the 2-year shadow expectations component between

39Here we focus on the 2-year maturity, as the results in Section V.D indicated important qualitative differences

between structurally stable and broken models for relatively short-term maturities such as 2 years. Note also that we

focus on shadow yields instead of actual yields, because the actual yields are nonlinear in the PC factors (or state

variables more generally) and hence it is ambiguous how to define the contribution of each factor to actual yields.
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Figure IA.8

Time series of PC factors (level, slope, curvature) based on structurally stable and broken models.

structurally stable and structurally broken models for all three PC factors. Moreover, the differences

are not confined to a relatively narrow period, say, for example, 2013–15.
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Figure IA.9

PC factors (PC1, PC2, PC3)’s contribution to the 2-year shadow yield (yst,2y), based on structurally

stable and broken models.
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Figure IA.10

PC factors (PC1, PC2, PC3)’s contribution to the 2-year shadow yield expectations component

(YEs
t,2y).

IA.18


	Introduction
	Model and Data
	Shadow Rate Term Structure Model and Implementation
	Data, Sample Period, and Break Point

	Empirical Strategies
	Challenges in Dealing with Latent-Factor Models
	Tests for Structural Change
	Diagnostics Based on Fitting Errors or Innovation Vectors
	Tests Based on Likelihood Scores

	Empirical Evidence Regarding Structural Instability
	Yield Fitting Errors and Innovation Vectors
	Yield Fitting Errors
	Innovation Vectors
	Innovation Vectors in Post-ELB Sub-Samples

	Likelihood Score–Based Tests

	Shadow Rate Model with a Structural Break
	Comparison of PCs
	PC-Rotated Parameters
	EH Regressions for Shadow Yields
	Expectations and Term Premiums
	Economic Interpretations of Structural Break Evidence
	Conclusion
	Innovation Statistics

	Parameter Estimates
	Yields-Only Model
	Q-Stable Model
	Additional Materials for Section V
	Decomposition of Shadow Yields
	Model-implied Shadow Rate Paths
	Economic Variables as Functions of PC Factors







