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I. Data

A. Consumption, Dividends, and Market Returns

I follow Bansal and Yaron (2004) and construct real per capita consumption growth series

(annual, due to the frequency restriction) for the longest sample available, 1930-2016. In the

literature, consumption is defined as a sum of personal consumption expenditures on nondurable

goods and services. I download the data from the US National Income and Product Accounts

(NIPA) as provided by the Bureau of Economic Analysis. I apply the seasonally adjusted annual

quantity indexes from Table 2.3.3. (Real Personal Consumption Expenditures by Major Type of

Product, Quantity Indexes, A:1929-2016) to the corresponding series from Table 2.3.6. (Real

Personal Consumption Expenditures by Major Type of Product, Chained Dollars, A:1995-2016)

to obtain real personal consumption expenditures on nondurable goods and services for the

sample period 1929-2016. I retrieve mid-month population data from NIPA Table 7.1. to convert

real consumption series to per capita terms.

I measure the total market return as the value-weighted return including dividends, and the

dividends as the sum of total dividends, on all stocks traded on the NYSE, AMEX, and NASDAQ.

The dividends and value-weighted market return data are monthly and are retrieved from the

Center for Research in Security Prices (CRSP). To construct the monthly nominal dividend series,

I use the CRSP value-weighted returns including and excluding dividends of CRSP common

stock market indexes (NYSE, AMEX, NASDAQ, ARCA), denoted by RIt and REt, respectively.

Following Hodrick (1992), I construct the price series Pt by initializing P0 = 1 and iterating

recursively Pt = (1 +RIt)Pt−1. Next, I compute normalized nominal monthly dividends

Dt = (RIt −REt)Pt. The risk-free return Rf,t+1 is the 1-month nominal Treasury bill. The
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nominal annualized dividends are constructed by summing the corresponding monthly dividends

within the year. I retrieve the inflation index from CRSP to deflate all quantities to real values.

B. Variance Premium Data

For the variance risk premium, I closely follow Bollerslev, Tauchen, and Zhou (2009),

Bollerslev, Gibson, and Zhou (2011), Drechsler and Yaron (2011) and Drechsler (2013). Under

the no-arbitrage assumption, the risk-neutral conditional expectation of the return variance is

equal to the price of a variance swap, which is a forward contract on the realized variance of the

asset. Since the CBOE calculates the VIX index as a measure of the 30-days ahead risk-neutral

expectation of the variance of the S&P 500 index, I use the VIX index as a proxy for the

risk-neutral expectation of the market’s return variation. The VIX is quoted in an annualized

standard deviation. Hence, I first take it to a second power to transform it to variance units and

then divide it by 12 to obtain monthly frequency. Thus, I obtain a new series defined as

[VIX]2t =
VIX2

t

12
. I further use the last available observation of [VIX]2t in a particular month as a

measure of the risk-neutral expectation of return variance in that month.

For the objective expectation of return variance, a second component in the variance

premium, I calculate a one-step-ahead forecast from a simple regression similar to Drechsler and

Yaron (2011) and Drechsler (2013). I first calculate the measure of the realized variance by

summing the squared daily log returns on the S&P 500 futures and S&P 500 index obtained from

the CBOE. The constructed series are denoted by FUT2
t and IND2

t , respectively. Subsequently, I

estimate the following regression:

(1) FUT2
t+1 = β0 + β1 · IND2

t + β2 · [VIX]2t + εt+1.
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The actual expectation is measured as the one-period ahead forecast and is given by equation (1).

I refer to the resulting series as the realized variance and denote it by RVt. Theoretically, the

variance premium should be non-negative in each period. Thus, I truncate the difference between

the implied series of [VIX]2t and RVt from below by 0.

For the empirical strategy above, I obtain the daily data series of the VIX index, S&P 500

index futures, and the S&P 500 index from the CBOE. The main restriction on the length of the

constructed monthly variance premium is the VIX index, reported by the CBOE from January

1990. Using high-frequency data would provide a finer estimation precision of the quantities in

the variance premium, but my estimates remain largely consistent with the numbers reported by

the existing literature.

C. Options Data for the Skew Premium and Implied Volatility Skew

The empirical strategy and key definitions of the skew risk premium are in line with

Bakshi, Kapadia, and Madan (2003) and Kozhan, Neuberger, and Schneider (2013). For the

empirical analysis of the skew risk premium and implied volatility surface, I use European

options written on the S&P 500 index and traded on the CBOE. The options data set covers the

period from January 1996 to December 2016 and is from OptionMetrics. Options data elements

include the type of options (call/put) along with the contract’s variables (strike price, time to

expiration, Greeks, Black-Scholes implied volatilities, closing spot prices of the underlying) and

trading statistics (volume, open interest, closing bid and ask quotes), among other details. The

empirical estimates of the conditional skew risk premium are computed in line with Kozhan et al.

(2013). The empirical strategy consists of calculating fixed and floating legs for the skew swap,
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which correspond to the risk-neutral and physical expectations of the return skewness. For a

detailed description of the methodology, see Kozhan et al. (2013).

To construct the empirical implied volatility curves, I first compute the moneyness for

each observed option using the daily S&P 500 index on a particular trading day. I filter out all data

entries with non-standard settlements. I use the remaining observations to construct the implied

volatility surface for a range of moneyness and maturities. In particular, I follow Christoffersen

and Jacobs (2004) and perform polynomial extrapolation of volatilities in the maturity time and

strike prices. This strategy makes use of all available options and not only those with a specific

maturity time. The fitted values are further used to construct the implied volatility curves.

II. Representative Agent’s Maximization Problem

A representative agent starts with an initial wealth denoted by W0. Each period t, the

agent consumes Ct consumption goods and invests in N assets traded on the competitive market.

Denote the fraction of the total t-period wealth Wt invested in the i-th asset with gross real return

Ri,t+1 by ωi,t. Then, the agent’s budget constraint in period t takes the form:

(2) Wt+1 = (Wt − Ct)R
ω
t+1

(3)
N∑
i=1

ωi,t = 1 and Rω
t+1 =

N∑
i=1

ωi,tRi,t+1.

The agent chooses {Ct, ω1,t, ..., ωN,t} in period t to maximize the utility subject to equations

(2)-(3).
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The Bellman equation becomes:

Jt = max
Ct,ω1,t,...,ωN,t

{
(1− β)Cρ

t + β [Rt(Jt+1)]
ρ)
}1/ρ

subject to equations (2)-(3). I guess the optimal value function of the form Jt = ϕtWt. Using this

conjecture of Jt and the form of Rt, I rewrite the Bellman equation as:

ϕtWt = max
Ct,ω1,t,...,ωN,t

{
(1− β)Cρ

t + β
[
Et

[
(ϕt+1Wt+1)

αK(ϕt+1Wt+1)
]ρ/α}1/ρ

,

K(x) =
1 + θI{x ⩽ δRt(x)}

1 + θδαEt

[
I{x ⩽ δRt(x)}

] .
Note that the function K defined above is homogeneous of degree zero.

The Return on the Aggregate Consumption Claim Asset. I further conjecture that the

consumption Ct is homogeneous of degree one in wealth at the optimum, that is Ct = btWt.

Then, I obtain the Bellman equation:

(4) ϕρ
t =

{
(1− β)

(
Ct

Wt

)ρ

+ β

(
1− Ct

Wt

)ρ [
Et

[
(ϕt+1R

ω
t+1)

αK(ϕt+1R
ω
t+1)

]ρ/α}

or equivalently

(5) ϕρ
t = {(1− β)bρt + β (1− bt)

ρ y∗t }

y∗t =
[
Et

[
(ϕt+1R

ω
t+1)

αK(ϕt+1R
ω
t+1)

]ρ/α
.
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Taking the FOC of the right side of a simplified Bellman equation (4) with respect to Ct, I find:

(1− β)

(
Ct

Wt

)ρ−1

= β

(
1− Ct

Wt

)ρ−1

y∗t .

or using the notations:

(6) (1− β)bρ−1
t = β(1− bt)

ρ−1y∗t .

Solving for y∗t from the last equation and substituting it into equation (5), I deduce:

ϕt = (1− β)
1
ρ b

ρ−1
ρ

t = (1− β)
1
ρ

(
Ct

Wt

) ρ−1
ρ

Shifting one period ahead the formula for ϕt and substituting ϕt+1 into equation (6), I obtain:

(1− β)Cρ−1
t = β(Wt − Ct)

ρ−1

[
Et

[
(1− β)α/ρ

(
Ct+1

Wt+1

)α ρ−1
ρ (

Rω
t+1

)α K (ϕt+1R
ω
t+1

)]]ρ/α
.

Then, I rewrite the equation above as:

Cρ−1
t = βEt

( Ct+1

Wt+1

(Wt−Ct)

)α ρ−1
ρ (

Rω
t+1

)α K
( Ct+1

Wt+1

Wt−Ct

) ρ−1
ρ

Rω
t+1

ρ/α

.

and derive the asset pricing restriction for the return on the total wealth Rω
t+1 :

Et



(
β

(
Ct+1

Ct

)ρ−1

Rω
t+1

)1/ρ

︸ ︷︷ ︸
zt+1



α

K


(
β

(
Ct+1

Ct

)ρ−1

Rω
t+1

)1/ρ

︸ ︷︷ ︸
zt+1




1/α

= 1.
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Define Rc
t+1 the return on the consumption endowment. In equilibrium, Rc

t+1 = Rω
t+1 and, as in

Routledge and Zin (2010), using the definition of the certainty equivalent and the function K, the

return Rc
t+1 should satisfy the equation:

(7) Rt(zt+1) = 1, zt+1 =

(
β

(
Ct+1

Ct

)ρ−1

Rc
t+1

)1/ρ

.

Rewriting Rc
t+1 in the form:

Rc
t+1 =

Wt+1

Wt − Ct

=

Wt+1

Ct+1

Wt

Ct
− 1

· Ct+1

Ct

=
ξt+1

ξt − 1
· Ct+1

Ct

,

the wealth-consumption ratio ξt = Wt

Ct
can be found from the equation:

Et

[
β

α
ρ

(
Ct+1

Ct

)α

·
(
ξt+1

ξt − 1

)α
ρ

· K(zt+1)

]
= 1.

The Return on the Aggregate Dividend Asset. Following Routledge and Zin (2010), the

portfolio problem for the obtained values ϕt+1 reads as follows:

max
ω1,t,...,ωN,t

Rt(ϕt+1R
ω
t+1),

subject to the constraints
N∑
i=1

ωi,t = 1 and Rω
t+1 =

N∑
i=1

ωi,tRi,t+1. Taking the FOC with respect to

the weight ωi,t, I derive:

Et

[
ϕα
t+1(R

ω
t+1)

α−1[1 + θI(ϕt+1R
ω
t+1 < δRt)]Ri,t+1

]
= 0.
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Taking the difference between the i-th and j-th FOCs, I thus obtain:

Et

[
ϕα
t+1(R

ω
t+1)

α−1[1 + θI(ϕt+1R
ω
t+1 < δRt)](Ri,t+1 −Rj,t+1)

]
= 0.

Multiplying the last equation by ωj,t and summing over j, I further obtain:

Et

ϕα
t+1(R

ω
t+1)

α−1[1 + θI(ϕt+1R
ω
t+1 < δRt)]Ri,t+1

N∑
j=1

ωj,t︸ ︷︷ ︸
=1

 =

= Et

ϕα
t+1(R

ω
t+1)

α−1[1 + θI(ϕt+1R
ω
t+1 < δRt)]

N∑
j=1

Rj,t+1ωj,t︸ ︷︷ ︸
=Rω

t+1



Et

[
ϕα
t+1(R

ω
t+1)

α−1[1 + θI(ϕt+1R
ω
t+1 < δRt)]Ri,t+1

]
=

= Et

[
ϕα
t+1(R

ω
t+1)

α[1 + θI(ϕt+1R
ω
t+1 < δRt)]

]
.(8)

Following Epstein and Zin (1989), it is straightforward to show that ϕt+1 =
zt+1

Rω
t+1

holds in

equilibrium. Using these equilibrium conditions and the definition of Rt, I have:

Et

[
ϕα
t+1(R

ω
t+1)

α[1 + θI(ϕt+1R
ω
t+1 < δRt)]

]
= Et

[
zαt+1[1 + θI(zt+1 < δRt)]

]
=

Et

1 + θδαI(zt+1 < δRt(zt+1)︸ ︷︷ ︸
=1

)]

Rt(zt+1)
α︸ ︷︷ ︸

=1

= Et [1 + θδαI(zt+1 < δ]] .(9)

Combining equations (8)-(9) and using the equilibrium condition Rc
t+1 = Rω

t+1, I finally obtain
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the asset pricing restriction for the gross return Ri,t+1 :

(10) Et

[
zαt+1(R

c
t+1)

−1(1 + θI(zt+1 < δ)Ri,t+1

1 + θδαEt [I(zt+1 < δ)]

]
= 1,

Moreover, the pricing kernel Mt+1 is:

Mt+1 =
zαt+1(R

c
t+1)

−1(1 + θI(zt+1 < δ))

1 + θδαE [I(zt+1 < δ)]
.

Rewriting Ri,t+1 in the form:

Ri,t+1 =
Pi,t+1 +Di,t+1

Pi,t

=

Pi,t+1

Di,t+1
+ 1

Pi,t

Di,t

· Di,t+1

Di,t

=
λt+1 + 1

λt
· Di,t+1

Di,t

,

the price-dividend ratio of the i-th asset λt =
Pi,t

Di,t
can be found from the equation:

Et

[
β

α
ρ

(
Ct+1

Ct

)α−1
Di,t+1

Di,t

·
(
ξt+1

ξt − 1

)α
ρ
−1

· K(zt+1) · (λt+1 + 1)

]
= λt.

III. Numerical Solution

Following the notation from the paper, aggregate consumption growth is

∆ct+1 = µst+1 + σεt+1, εt+1 ∼ N(0, 1).
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The consumption volatility σ is constant, whereas the mean growth rate µst+1 is driven by a

two-state Markov-switching process st+1 with a state space:

S = {1 = expansion, 2 = recession},

a transition matrix

P =

 π11 1− π11

1− π22 π22


and transition probabilities πii ∈ (0, 1), i = 1, 2. Let

X (y1, y2, y3) =
1 + θI

{
βeρy1

(
y2

y3−1

)
⩽ δρ

}
1 + θδαEt

[
I
{
βeρy1

(
y2

y3−1

)
⩽ δρ

}] ,
then, the wealth-consumption ratio ξt = Wt

Ct
satisfies the equation:

(11) Et

[
β

α
ρ eα∆ct+1 ·

(
ξt+1

ξt − 1

)α
ρ

· X
(
∆ct+1, ξt+1, ξt

)]
= 1,

and the price-dividend ratio λt = Pt

Dt
of the asset with a gross return Rt+1 (I skip the subscript i

for convenience) is given by:

(12) Et

[
β

α
ρ e(α−1)∆ct+1+∆dt+1 ·

(
ξt+1

ξt − 1

)α
ρ
−1

· X
(
∆ct+1, ξt+1, ξt

)
· λt+1 + 1

λt

]
= 1.
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A. Projection Method

Following Pohl, Schmedders, and Wilms (2018), I apply a projection method of Judd

(1992) to solve for the equilibrium pricing functions defined by equations (11)-(12). The model

solution consists of two steps. First, I find the wealth-consumption ratio from equation (11).

Second, I use the wealth return from the first step and substitute it into equation (12) to find the

price-dividend ratio for the equity claim.

The Return on the Aggregate Consumption Claim Asset. I conjecture the

wealth-consumption ratio of the form ξt = G(πt), in which πt is the posterior belief. I seek to

approximate the functional form of G(πt) by a basis of complete Chebyshev polynomials

Ψ = {Ψk(πt)}nk=0 of order n with coefficients ψ = {ψk}nk=0 :

(13) G(πt) =
n∑

k=0

ψkΨk(πt) πt ∈ [1− p, q].

I further define the function:

Γ(πt; j) = Et,j

[
β

α
ρ eα∆ct+1 ·

(
ξt+1

ξt − 1

)α
ρ

· X
(
∆ct+1, ξt+1, ξt

)]
=

= β
α
ρ

∫
eαy
(
G(B(y, πt))

G(πt)− 1

)α
ρ

· X
(
y,G(B(y, πt)), G(πt)

)
f(y, j)dy,(14)

B(y, πt) =
(1− q)f(y, 1)(1− πt) + pf(y, 2)πt

f(y, 1)(1− πt) + f(y, 2)πt
,

f(y, j) is the probability density function of a normal distribution N(µst , σ
2) conditional on

st = 1, 2. I further apply the Gauss-Hermite quadrature to calculate expectations in equation (14).
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Substituting G(πt) from equation (13) and Γ(πt; j) from equation (14) into equation (11), I obtain:

Rc(πt;ψ) = (1− πt)Γ(πt, 1) + πtΓ(πt, 2)− 1.

The objective is to choose the unknown coefficients ψ to make Rc(πt;ψ) close to zero

∀πt ∈ [1− p, q]. I apply the orthogonal collocation method. Formally, I evaluate the residual

function in the collocation points {rk}n+1
k=1 given by the roots of the n+ 1 order Chebyshev

polynomial and then solve the system of n+ 1 equations:

Rc(rk;ψ) = 0 k = 1, ..., n+ 1

for n+ 1 unknowns ψ = {ψk}nk=0. Let ξ̃t = G̃(πt) =
n∑

k=0

ψ̃kΨk(πt) denote an approximation of

the wealth-consumption ratio, which will be used in the second step.

The Return on the Aggregate Dividend Asset. I conjecture the price-dividend ratio of

the form λt = H(πt). Now, I seek to approximate the functional form of H(πt), which solves

equation (12). I approximate H(πt) by a basis of complete Chebyshev polynomials

Υ = {Υk(πt)}nk=0 of order n with coefficients υ = {υk}nk=0 :

(15) H(πt) =
n∑

k=0

υkΥk(πt) πt ∈ [1− p, q].
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I define the function:

Λ(πt; j) = Et,j

β α
ρ e(α−1)∆ct+1+∆dt+1

(
ξ̃t+1

ξ̃t − 1

)α
ρ
−1

· X
(
∆ct+1, ξ̃t+1, ξ̃t

)
· λt+1 + 1

λt

 =

= β
α
ρ

∫∫
e(α+λ−1)y+gd+z

(
G̃(B(y, πt))

G̃(πt)− 1

)α
ρ
−1

· X
(
y, G̃(B(y, πt), G̃(πt)

)
·(16)

·H(B(y, πt))

H(πt)− 1
f(y, j)g(z, j)dydz,

in which f(y, j) and g(z, j) are probability density functions of normal distributions N(µst+1 , σ)

and N(gd, σd), respectively, conditional on st+1 = 1, 2. Substituting H(πt) from equation (15)

and Λ(πt; j) from equation (16) into equation (12), I obtain:

Rd(πt; υ) = (1− πt)Λ(πt, 1) + πtΛ(πt, 2)− 1.

Again, I apply the orthogonal collocation method. Formally, I evaluate Rd(πt;ψ) in the

collocation points {sk}n+1
k=1 given by the roots of the n+ 1 order Chebyshev polynomial and solve

the system of n+ 1 equations

Rd(sk; υ) = 0 ∀k = 1, ..., n+ 1

for n+ 1 unknowns υ = {υk}nk=0.
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B. Implementation in Matlab

This paper implements a one-dimensional projection method for solving functional

equations. I approximate unknown functions using Chebyshev polynomials of the first kind and

compute them recursively as:

T0(z) = 1, T1(z) = z, Tk(z) = 2zTk(z)− Tk−1(z), k = 2, ..., n ∧ z ∈ [−1, 1].

I adjust the domain of Chebyshev polynomials to the state space of pricing ratios and use

modified polynomials in the approximation. Thus, the following equalities hold on the interval

[πmin, πmax] = [1− p, q] :

Ψk(πt) = Υk(πt) = Tk

(
2

[
πt − πmin

πmax − πmin

]
− 1

)
, k = 0, ..., n.

I present the results based on the collocation method. For this purpose, I evaluate residual

functions in a set of nodes corresponding to n+ 1 zeros of the (n+ 1)-order Chebyshev

polynomial, which are formally defined as:

zk = cos

(
2k + 1

2n+ 2
π

)
, k = 0, ..., n.

I adjust the nodes zk ∈ [−1, 1] to the domain of the state variable πt :

πk = πmin +
πmax − πmin

2
(1 + zk), k = 0, ..., n.

The numerical algorithm, which requires solving a system of nonlinear equations, is
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efficiently programmed in Matlab. I experiment with different nonlinear solvers to achieve better

performance of the code. Initially, I used the simple solver ”fsolve”. Then I found the solution to

the system of nonlinear equations by minimizing a constant subject to the system of nonlinear

functions. I apply the nonlinear programming solver ”fmincon” with the SQP algorithm for this

purpose. Similar to Pohl et al. (2018), I found that ”fmincon” provides faster running of the code

and a more accurate solution compared to ”fsolve”. Thus, I present all results based on the

”fmincon” approach.

Additional numerical details involve the choices of an order of Chebychev polynomials

used in the approximation of unknown functions (n), a number of Gauss-Hermite quadrature

points used in the numerical integration of expectations in the residual functions (NGH), and a

number of draws used in Monte-Carlo simulations to compute model-based European put prices

(NMC). I report the results of all models in the main text based on the numerical solution, in

which n = 400, NGH = 150, and NMC = 4, 000, 000. The next section performs a sensitivity

analysis of alternative approximation choices.

C. Accuracy of Numerical Solution

To better assess the numerical accuracy, I first calculate the root mean squared error

(RMSE) in the residual function for the wealth-consumption ratio. I evaluate Rc(πt;ψ) on a dense

grid of points {πi}NRMSE
i=1 that are equally spaced on the interval [πmin, πmax]. I choose
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NRMSE = 10, 000 of these points. The RMSE is calculated as:

RMSEc =

√√√√ 1

NRMSE

NRMSE∑
k=1

[
Rc(πk;ψ)

]2
,(17)

πk = πmin +
πmax − πmin

NRMSE − 1
(k − 1), k = 1, ..., NRMSE.

I consider four pairs of (n,NGH) : (200, 100), (200, 150), (400, 100), (400, 150). For each pair, I

solve different model calibrations of this paper and compute the RMSE.

Table A1 reports the Euler errors implied by various approximation and integration

choices. Several observations are noteworthy. First, the numerical solution technique is highly

accurate, producing errors consistently below 6e-7 for all cases. Second, the projection method

generates smaller RMSE for the models with Epstein-Zin preferences relative to the calibrations

with disappointment aversion and generalized disappointment aversion utility functions. This

result is expected in light of nonlinearities in the pricing kernel implied by disappointing

outcomes in consumption growth. Third, increasing either the degree of Chebyshev polynomials

or the number of quadrature points generally leads to a better approximation precision.

[Insert Table A1 here]

Figure A1 conducts further robustness checks. It compares the results of the two solutions

of the original GDA calibration. First, the ”GDA” lines correspond to the variance term structures

as presented in the main text. Second, the ”GDA2” curves represent the results of the same

calibration, which is solved with a twice larger order of Chebyshev polynomials. The panels in

Figure A1 show that the results across the two solutions are very similar, confirming the

high-precision solution obtained by the projection method.

[Insert Figure A1 here]
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IV. Asset Prices

The empirical evidence concerning the variance term structure and higher moment risk

premiums is based on the data at the daily frequency and is then expressed in monthly terms. The

risk-neutral neutral expectation of return variance can be synthesized using options data in a

model-free way or proxied by synthetic variance swap rates (Britten-Jones and Neuberger (2000),

Bakshi et al. (2003), Carr and Wu (2009), Dew-Becker, Giglio, Le, and Rodriguez (2017)). The

ex-post total return variance is commonly estimated by a sum of squared daily returns. The

ex-ante expectation of total return variance under the physical measure requires using the

high-frequency data to compute ex-post return variation and then forecasting the future return

variance using lagged realized variance or additional predictors. Kozhan et al. (2013) further

extend these approaches for computing the risk-neutral and physical expectations of return

skewness.

Turning to the model-based asset prices, one needs to calibrate the model at a daily

frequency in order to exactly follow the procedure used to obtain empirical estimates. Bonomo,

Garcia, Meddahi, and Tédongap (2015) build a discrete-time model with the daily interval. I want

to be as close as possible to the existing long-run risk and rare disaster models in discrete time,

particularly Drechsler and Yaron (2011) and Gabaix (2012), which fail to replicate the variance

term structure, a key focus of my paper, as shown by Dew-Becker et al. (2017). Therefore, I

calibrate my framework at the monthly frequency and present the model-based asset prices in this

section.
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A. Prices and Returns of Variance Claims

Consider an n-month variance swap, a claim to realized variance over months t+ 1 to

t+ n. Given the discrete nature of the model, the total variance of the return is equal to the sum of

conditional variances RVt+i in each subperiod. Following Dew-Becker et al. (2017), the price of

an n-month variance swap is

V Sn
t = EQ

t

[
n∑

i=1

RVt+i

]
.

In turn, the price of a zero coupon forward claim on realized variance is

F n
t = EQ

t [RVt+n] .

Thus, F n
t is equal to the risk-neutral expectation of return variance during the n-th month from

the current period. F 0
t is naturally defined as the realized variance in the current period. Next, I

define the return on the n-month variance forward as a return on the trading strategy in which

investors buy the n-month forward at the time t and sell it in the next period as a forward claim

with maturity n− 1. The proceeds from selling the forward are then used to purchase a new

n-month variance at price F n
t+1. Formally, the excess return of an n-period variance forward is

Rn
t+1 =

F n−1
t+1 − F n

t

F n
t

.

Using the law of iterated expectations and the Radon-Nikodym derivative defined as

dQ
dP = Mt+1

Et(Mt+1)
, I recursively compute the prices and returns of variance forwards for different

maturities.
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B. Variance and Skew Risk Premiums

The focus of this paper is on the monthly variance and skew risk premiums associated

with equity returns. Since I calibrate the economy at the monthly frequency, the t-time monthly

variance premium vpt is defined as the difference between risk-neutral and physical expectations

of the total return variance between t and t+ 1. The monthly decision horizon of a discrete-time

model considered in this paper implies that the variance premium simply equals

(18) vpt = varQt (re,t+1)− varPt (re,t+1),

in which varQt (re,t+1) and varPt (re,t+1) are t-period conditional variances of the log return

re,t+1 = ln(Re,t+1) under the risk-neutral Q and physical P probability measures, respectively.

Drechsler and Yaron (2011) call the definition (18) as the level difference. Furthermore, they

argue that calibrating the model at a higher frequency would imply

(19) vpt = EQ
t

[
n−1∑
i=1

varQ
t+ i−1

n

(
re,t+ i−1

n
,t+ i

n

)]
− EP

t

[
n−1∑
i=1

varP
t+ i−1

n

(
re,t+ i−1

n
,t+ i

n

)]
,

in which vart+ i−1
n

(
re,t+ i−1

n
,t+ i

n

)
denotes the conditional variance of the market return between

t+ i−1
n

and t+ i
n
. Following equation (19) for calibrations at the higher frequency, Drechsler and

Yaron (2011) define the variance premium as

(20) vpt = EQ
t (var

Q
t+1(re,t+2))− EP

t (var
P
t+1(re,t+2)),

18



in which vpt is the sum of the level difference and the drift difference defined as:

(21)

drift difference =
[
EQ

t (var
Q
t+1(re,t+2))− varQt (re,t+1)

]
−
[
(EP

t (var
P
t+1(re,t+2))− varPt (re,t+1))

]
.

As I compare the predictions of our model with those implied by Drechsler and Yaron (2011), I

similarly define the variance premium by equation (20). However, in the unreported results, I

confirm that the main results related to the variance premium are robust to the alternative

formulation in equation (21) because the drift difference strongly dominates vpt, the finding also

reported by Drechsler and Yaron (2011) and Lorenz, Schmedders, and Schumacher (2020).

The t-time monthly skew premium is defined as a return on a skew swap, a contract

paying the realized skew of the return between time t and t+ 1. Following Kozhan et al. (2013), I

define the skew premium as

skt =
EP

t (skew
P
t+1(re,t+2))

EQ
t (skew

Q
t+1(re,t+2))

− 1,

in which skewQ
t+1(re,t+2) and skewP

t+1(re,t+2) are (t+ 1)-period conditional skewness of the log

return re,t+2 = ln(Re,t+2) under the risk-neutral Q and physical P probability measures,

respectively. Note that Kozhan et al. (2013) define the skew premium as the ratio between the

risk-neutral and physical expectation of return skewness, unlike the difference between the

expectations in the case of the variance premium. This leads to an economic interpretation that is

different from the variance premium: the skew premium measures the average return on a skew

swap, a synthetic instrument with a price equal to the risk-neutral expectation of return skewness
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that pays off the realized return skewness. I want to be consistent with Kozhan et al. (2013) and

their estimates, therefore, I follow their definition of the skew premium.

C. Option Prices and Implied Volatilities

I now describe how I compute model-based option prices and solve for their

Black-Scholes implied volatilities. Consider a European put option written on the price of the

equity that is traded in the economy. Note that the equity price should not include dividend

payments; that is, options are written on the ex-dividend stock price index. Using the Euler

equation, the relative price Ot(πt, τ,K) =
P o
t (πt,τ,K)

P e
t (πt)

of the τ -period European put option with the

strike price K, expressed as a ratio to the initial price of the equity P e
t , should satisfy

(22) Ot(πt, τ,K) = Et

[
τ∏

k=1

Mt+k ·max

(
K −

P e
t+τ

P e
t

, 0

)]
.

Note that a put price P o
t depends on the equity price P e

t , whereas the normalized price Ot does

not. One can express the ratio P e
t+τ

P e
t

in terms of dividend growth rates and price-dividend ratios on

the equity and hence the state belief πt provides sufficient information for the calculation of the

option prices. Specifically, I compute model-based European put prices Ot = Ot(πt, τ,K) via

Monte Carlo simulations. I convert them into Black-Scholes implied volatilities with a properly

annualized continuous interest rate rt = rt (πt) and dividend yield qt = qt (πt) . Thus, given the

maturity τ, the strike price K, the risk-free rate rt, and dividend yield qt, the implied volatility

σt = σBS
t (πt, τ,K) solves the equation:

Ot = e−rtτ ·K ·N(−d2)− e−qtτ ·N(−d1),(23)
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d1,2 =
[
− ln (K) + τ

(
rt − qt ± σ2

t /2
)]
/
[
σt
√
τ
]
.

V. Sensitivity Analysis

This appendix presents additional results of alternative calibrations of GDA, DA, and EZ

specifications.

A. Equity Returns and Moment Risk Premiums

Figure A2 provides sensitivity results for the risk-free rate, the equity premium, the

price-dividend ratio, and the moment risk premiums for a broad range of parameter choices in the

three models. In particular, I change a key parameter in each of the three preference

specifications, while holding the remaining parameters at the values in the original calibration. In

the GDA model, I vary the disappointment threshold between 0.915 and 0.945. In the DA model,

I change the disappointment aversion parameter between 0.45 and 0.75. In the EZ model, the

results are provided for the coefficient of relative risk aversion ranging from 4.5 to 7.5. The panels

in Figure A2 present the model-based average statistics implied by the GDA, DA, and EZ

frameworks. The asset pricing moments are expressed as a function of a varying parameter, which

is indicated on the corresponding axis.

Figure A2 shows that the risk-free rate decreases with the disappointment threshold,

disappointment aversion, and relative risk aversion in the GDA, DA, and EZ models, respectively.

Further, the equity premium increases and equity prices decline in δ, θ, and 1− α. Intuitively,

when the agent faces more disappointing outcomes or becomes more averse to low consumption

growth rates, he demands larger premiums in expected returns for bearing the additional risk in
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consumption growth. The impact of δ and 1− α on the volatility of asset prices is similar across

the GDA and EZ models: a higher disappointment threshold or a higher risk aversion leads to a

more volatile risk-free rate, while the volatility of equity returns and the price-dividend ratio

exhibits a hump-shaped pattern with a maximum approximately in the middle of the parameter

intervals considered. In the DA model, raising disappointment aversion slightly increases the

volatility of the risk-free rate, equity returns, and prices. Overall, the magnitude of changes in the

risk-free rate, equity returns, and price-dividend ratio is quite comparable across the three models,

especially when looking at the GDA and EZ frameworks. These findings suggest that all three

preference specifications can reasonably explain the first and second moments of equity returns

by adjusting a key preference parameter. In contrast, the four bottom panels in Figure A2 indicate

the crucial importance of generalized disappointment aversion for generating significant risk

premiums in higher moments of equity returns.

[Insert Figure A2 here]

Figure A2 shows that, in the DA setting, changing the disappointment aversion for a wide

range of values does not improve the model’s performance, as the variance and skew risk

premium moments are not very sensitive to changes in θ. Moreover, no value of the

disappointment aversion parameter can support the negative skew premium. Figure A2 also shows

that Epstein-Zin preferences provide a better fit of the model with the data. In particular, when the

risk aversion increases from 4.5 to 6, the average variance premium increases from less than 2 to

around 5, while the skew premium declines from around -10% to -20%. However, the mean and

volatility of the variance premium actually start to decline at some point, and thus the higher risk

aversion will move the model away from the data. Finally, the comparative analysis with respect

to the disappointment threshold in the GDA model generates patterns in the variance and skew
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risk premiums similar to those predicted by different risk aversion parameters in the EZ economy.

However, with generalized disappointment aversion, the magnitude and time-variation of variance

and skew risk premiums are significantly amplified.

B. Implied Volatilities

Figures A3 and A4 further provide comparative statics of the implied volatility curves in

the three preference specifications. Several observations are noteworthy. First, in all economies,

the implied volatility curve for one-month options is not very sensitive to a further increase in

effective risk aversion. In all cases, an incremental increase is less than 1% for any particular

maturity and moneyness. Second, in the model with Epstein-Zin preferences, the slope of the

ATM and OTM volatilities stays the same for higher risk aversion. In the DA economy, even

though ATM volatilities for longer maturities seem to increase more in response to raising

disappointment aversion, the levels are significantly below the empirical curves. In the GDA

economy, changes in θ and δ have a larger impact on the term structure of ATM and OTM

volatilities. Specifically, Figure A3 suggests that a higher disappointment threshold increases the

prices of options with longer maturities, helping to explain a slightly upward-sloping shape in

ATM volatilities. Meanwhile, a higher disappointment aversion parameter seems to increase

prices of short-term OTM options more than those with longer maturities, helping to explain a

slightly downward-sloping pattern in OTM volatilities. Therefore, in the setting of my model,

simultaneously increasing θ and decreasing δ could allow one to keep the one-month implied

volatilities close to the empirical curves while even better matching the salient statistics of ATM

and OTM volatilities. Finally, a lower degree of effective risk aversion implies that the implied
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volatility curves become flatter and shift down in all models, especially in the economies with

GDA and Epstein-Zin preferences.

[Insert Figure A3 here]

[Insert Figure A4 here]
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TABLE A1

Euler Errors: GDA, DA, and EZ

The table reports the RMSE for different models. For each specification, it shows the results for
two different degrees of Chebyshev polynomials n and two different numbers of Gauss-Hermite
quadrature points NGH . The Euler errors are computed using Equation (17) with 10,000 points
equally spaced on the interval [πmin, πmax].

Model n = 200 n = 200 n = 400 n = 400
NGH = 100 NGH = 150 NGH = 100 NGH = 150

GDA 4.71e-07 4.18e-07 1.83e-07 1.47e-07

GDAδl 3.40e-07 2.83e-07 1.25e-07 1.16e-07

GDAδh 5.01e-07 4.40e-07 1.83e-07 1.75e-07

GDAθl 4.28e-07 4.12e-07 1.61e-07 1.53e-07

GDAθh 5.42e-07 4.76e-07 1.86e-07 1.84e-07

DA 1.28e-08 9.48e-09 3.97e-09 3.47e-09

DAθl 8.82e-09 7.95e-09 3.16e-09 2.52e-09

DAθh 1.30e-08 1.17e-08 4.63e-09 3.53e-09

EZ 7.59e-14 7.37e-14 9.15e-14 9.32e-14

EZ(1−α)l 5.57e-14 4.95e-14 6.85e-14 6.58e-14

EZ(1−α)h 9.94e-14 9.86e-14 1.34e-13 1.26e-13
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FIGURE A1

Accuracy of the Projection Method

The figure plots annualized Sharpe ratios and average prices for variance forwards for the original
GDA calibration, which is solved and simulated with different precisions. ”GDA” denotes the
results of the original solution. ”GDA2” shows the results of the original calibration, which is
solved with a twice larger order of Chebyshev polynomials.
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FIGURE A3

Sensitivity of Implied Volatilities: GDA

The figure plots the 1-month implied volatility curve (top) as a function of moneyness, and implied
volatility curves for ATM (middle) and OTM (bottom) options as functions of the time to maturity
(in months) for different model calibrations with generalized disappointment aversion preferences.
GDA corresponds to the original GDA model. In GDAθl and GDAθh , the disappointment aversion
parameters are θl = 6.41 and θh = 10.41, respectively. In GDAδl and GDAδh , the disappointment
threshold parameters are δl = 0.920 and δh = 0.940, respectively. If not stated otherwise, the
remaining parameters in all specifications are set at the original values in the GDA model. For
each model, I simulate 10,000 economies at a monthly frequency with a sample size equal to its
empirical counterpart and report medians of sample statistics based on these series. The model-
implied results are based on the simulations without consumption disasters, consistent with the
historical data.
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FIGURE A4

Sensitivity of Implied Volatilities: DA and EZ

The figure plots the 1-month implied volatility curve (top) as a function of moneyness, implied
volatility curves for ATM (middle) and OTM (bottom) options as functions of the time to ma-
turity (in months) for different model calibrations with disappointment aversion and Epstein-Zin
preferences. DA and EZ correspond to the original DA and EZ models. In DAθl and DAθh , the dis-
appointment aversion parameters are θl = 0.5 and θh = 0.7, respectively. In EZ(1−α)l and EZ(1−α)h ,
the risk aversion parameters are (1 − α)l = 5 and (1 − α)h = 7, respectively. If not stated other-
wise, the remaining parameters in all specifications are set at the original values in the DA and EZ
models. For each model, I simulate 10,000 economies at a monthly frequency with a sample size
equal to its empirical counterpart and report medians of sample statistics based on these series. The
model-implied results are based on the simulations without consumption disasters, consistent with
the historical data.

■

■
■ ■ ■

● ● ● ●
▲ ▲ ▲ ▲

■ ����

��

● ��θ�

▲ ��θ�

0.9 0.95 1 1.05

12

16

20

24

28

32

Moneyness

A
nn
ua
lV
ol
.%

1-Month Implied Volatilities

■

■
■ ■ ■○

○
○ ○

△
△

△
△

■ ����

��

○ ��(�-α)�

△ ��(�-α)�

0.9 0.95 1 1.05

12

16

20

24

28

32

Moneyness

A
nn
ua
lV
ol
.%

1-Month Implied Volatilities

■ ■ ■

● ● ●
▲ ▲

▲

1 3 6

16

20

24

Months to Expiration

A
nn
ua
lV
ol
.%

ATM Implied Volatilities

■ ■ ■

○ ○ ○

△ △
△

1 3 6

16

20

24

Months to Expiration

A
nn
ua
lV
ol
.%

ATM Implied Volatilities

■

■
■

● ● ●▲ ▲
▲

1 3 6

16

20

24

28

Months to Expiration

A
nn
ua
lV
ol
.%

OTM Implied Volatilities

■

■
■

○ ○ ○

△ △
△

1 3 6

16

20

24

28

Months to Expiration

A
nn
ua
lV
ol
.%

OTM Implied Volatilities

32


	Data
	Consumption, Dividends, and Market Returns 
	Variance Premium Data
	Options Data for the Skew Premium and Implied Volatility Skew

	Representative Agent's Maximization Problem
	Numerical Solution
	Projection Method
	Implementation in Matlab
	Accuracy of Numerical Solution

	Asset Prices
	Prices and Returns of Variance Claims
	Variance and Skew Risk Premiums
	Option Prices and Implied Volatilities

	Sensitivity Analysis
	Equity Returns and Moment Risk Premiums
	Implied Volatilities


