Appendix F. Proofs for the LRR-Vol Model

The stochastic discount factor in equation (9) can be written as:

$$M_{t+1} = \exp\left\{a + b^m z_t^m - \frac{1}{2}\underline{x}_t' \lambda \Sigma_{\varepsilon,\varepsilon} \lambda' \underline{x}_t - \underline{x}_t' \lambda \underline{\varepsilon}_{t+1}\right\}$$

where $b^m = b/\delta^m$, $z_t^m = \delta^m z_t$, $\Sigma_{\varepsilon,\varepsilon}$ is the variance of $\underline{\varepsilon} \equiv \left[\varepsilon^d, \varepsilon^u, \varepsilon^z, \varepsilon^x, \varepsilon^w\right]'$, $\underline{x}_t \equiv [x_t, \sigma_t - \overline{\sigma}]'$, and $\lambda \equiv \frac{1}{\sigma_d} \begin{bmatrix} \bar{\sigma} & 0 & 0 & 0 & 0 \\ \bar{x} & 0 & 0 & 0 & 0 \end{bmatrix}$ in all our 4 models.

1. Price-Dividend Ratio

Equation (11) says that the price-dividend ratio of the strip with n quarters to maturity at time t can be expressed as:

$$\frac{P_{n,t}^m}{D_t^m} = \exp\left\{A(n) + B_{\underline{x}}(n)\underline{x}_t + B_z(n)z_t^m\right\}$$

where $B_{\underline{x}}(n) \equiv [B_x(n), B_{\sigma}(n)]$. Using the boundary condition that $P_{0,t}^m = D_t^m$, we see that this holds when n = 0, with $A(0) = B_z(0) = B_x(0) = B_\sigma(0) = 0$. We proceed by induction on n. We can write the price of the strip with n quarters to maturity as a function of the price of a strip with n - 1 quarters to maturity:

$$P_{n,t}^m = E_t[M_{t+1}P_{n-1,t+1}^m]$$

Dividing by the market dividend at time t:

$$\frac{P_{n,t}^{m}}{D_{t}^{m}} = E_{t} \left[M_{t+1} \left(\frac{D_{t+1}^{m}}{D_{t}^{m}} \right) \left(\frac{P_{n-1,t+1}^{m}}{D_{t+1}^{m}} \right) \right]$$

Plugging in the expressions for the stochastic discount factor and dividend growth:

$$\frac{P_{n,t}^m}{D_t^m} = E_t \left[\exp \left\{ \left(a + b^m z_t^m - \frac{1}{2} \underline{x}_t' \lambda \Sigma_{\varepsilon,\varepsilon} \lambda' \underline{x}_t - \underline{x}_t' \lambda \underline{\varepsilon}_{t+1} \right) + \left(g^m + z_t^m + \delta^m \varepsilon_{t+1}^d + \varepsilon_{t+1}^u \right) \right. \\
\left. + A \left(n - 1 \right) + B_{\underline{x}} \left(n - 1 \right) \underline{x}_{t+1} + B_z \left(n - 1 \right) z_{t+1}^m \right\} \right]$$

Here x evolves as a 2-dimensional VAR(1):

$$\underline{x}_{t+1} = (I - \Phi_x) \, \underline{x} + \Phi_x \underline{x}_t + \underline{\varepsilon}_{t+1}^{\underline{x}}$$

where $\underline{\bar{x}} = [\bar{x}, 0]'$, $\underline{\varepsilon}_t^{\underline{x}} \equiv [\varepsilon_t^x, \varepsilon_t^w]'$, and $\Phi_x = \begin{bmatrix} \phi_x & 0 \\ 0 & \phi_\sigma \end{bmatrix}$. Factoring out the time-t information, and expanding the \underline{x}_{t+1} and z_{t+1}^m processes:

$$\begin{split} \frac{P_{n,t}^m}{D_t^m} &= \exp\left\{a + b^m z_t^m - \frac{1}{2}\underline{x}_t'\lambda\Sigma_{\varepsilon,\varepsilon}\lambda'\underline{x}_t + g^m + z_t^m + A\left(n-1\right)\right\} \\ &\times E_t\left[\exp\left\{-\underline{x}_t'\lambda\underline{\varepsilon}_{t+1} + \delta^m\varepsilon_{t+1}^d + \varepsilon_{t+1}^u + B_{\underline{x}}\left(n-1\right)\left[\left(I-\Phi_x\right)\underline{x}_t + \Phi_x\underline{x}_t + \underline{\varepsilon}_{t+1}^x\right]\right\}\right] \\ &= \exp\left\{a + b^m z_t^m - \frac{1}{2}\underline{x}_t'\lambda\Sigma_{\varepsilon,\varepsilon}\lambda'\underline{x}_t + g^m + z_t^m + A\left(n-1\right) \right. \\ &\left. + B_{\underline{x}}\left(n-1\right)\left[\left(I-\Phi_x\right)\underline{x}_t + \Phi_x\underline{x}_t\right] + \phi_zB_z\left(n-1\right)z_t^m\right\} \\ &\times E_t\left[\exp\left\{\left(\left[\begin{array}{ccc}\delta^m, & 1, & B_z\left(n-1\right), & B_{\underline{x}}\left(n-1\right) \\ -\underline{x}_t'\lambda\right)\underline{\varepsilon}_{t+1}\right\}\right] \right. \\ &= \exp\left\{a + b^m z_t^m - \frac{1}{2}\underline{x}_t'\lambda\Sigma_{\varepsilon,\varepsilon}\lambda'\underline{x}_t + g^m + z_t^m + A\left(n-1\right) \right. \\ &\left. + B_{\underline{x}}\left(n-1\right)\left[\left(I-\Phi_x\right)\underline{x}_t + \Phi_x\underline{x}_t\right] + \phi_zB_z\left(n-1\right)z_t^m\right\} \\ &\times \exp\left\{\frac{1}{2}\underline{x}_t'\lambda\Sigma_{\varepsilon,\varepsilon}\lambda'\underline{x}_t + \frac{1}{2}C_{n-1}^m\Sigma_{\varepsilon,\varepsilon}\left(C_{n-1}^m\right)' - C_{n-1}^m\Sigma_{\varepsilon,\varepsilon}\lambda'\underline{x}_t\right\} \end{split}$$

where $C_{n-1}^{m} \equiv [\delta^{m}, 1, B_{z}(n-1), B_{\underline{x}}(n-1)]$. Collecting constant, z_{t}^{m} and \underline{x}_{t} terms:

$$\frac{P_{n,t}^{m}}{D_{t}^{m}} = \exp \left\{ \underbrace{A\left(n-1\right) + a + g^{m} + B_{\underline{x}}\left(n-1\right)\left(I - \Phi_{x}\right)\underline{x} + \frac{1}{2}C_{n-1}^{m}\Sigma_{\varepsilon,\varepsilon}\left(C_{n-1}^{m}\right)'}_{A(n)} + \underbrace{\left[1 + b^{m} + \phi_{z}B_{z}\left(n-1\right)\right]z_{t}^{m}\right\} + \left[B_{\underline{x}}\left(n-1\right)\Phi_{x} - C_{n-1}^{m}\Sigma_{\varepsilon,\varepsilon}\lambda'\right]\underline{x}_{t}}_{B_{\underline{x}}(n)} \right\}$$

Matching coefficients, and plugging in for λ :

$$A(n) = A(n-1) + a + g^{m} + (1 - \phi_{x}) \bar{x} B_{x} (n-1) + \frac{1}{2} C_{n-1}^{m} \Sigma_{\varepsilon, \varepsilon} (C_{n-1}^{m})'$$

$$B_{z}(n) = 1 + b^{m} + \phi_{z} B_{z} (n-1)$$

$$= \frac{(1 + b^{m}) (1 - \phi_{z}^{n})}{1 - \phi_{z}}$$

$$B_{x}(n) = \phi_{x} B_{x} (n-1) - \frac{\bar{\sigma}}{\sigma_{d}} \Sigma_{d, \varepsilon} (C_{n-1}^{m})'$$

$$B_{\sigma}(n) = \phi_{\sigma} B_{\sigma} (n-1) - \frac{\bar{x}}{\sigma_{d}} \Sigma_{d, \varepsilon} (C_{n-1}^{m})'$$

where $\Sigma_{d,\varepsilon} \equiv E[\varepsilon^d \underline{\varepsilon}']$.

2. Mean and Variance of the Log Return on Market-Dividend Strips

The return from time t to t+1 of the strip with a maturity at time t+n is given by:

$$\begin{split} r_{n,t+1}^{m} & \equiv & \log \left(R_{n,t+1}^{m} \right) \\ & = & \log \left(\frac{P_{n-1,t+1}^{m}}{P_{n,t}^{m}} \right) \\ & = & \log \left[\left(\frac{P_{n-1,t+1}^{m}/D_{t+1}^{m}}{P_{n,t}^{m}/D_{t}^{m}} \right) \left(\frac{D_{t+1}^{m}}{D_{t}^{m}} \right) \right] \\ & = & \log \left(\frac{P_{n-1,t+1}^{m}}{D_{t+1}^{m}} \right) - \log \left(\frac{P_{n,t}^{m}}{D_{t}^{m}} \right) + \log \left(\frac{D_{t+1}^{m}}{D_{t}^{m}} \right) \\ & = & A\left(n - 1 \right) + B_{\underline{x}}\left(n - 1 \right) \underline{x}_{t+1} + B_{z}\left(n - 1 \right) z_{t+1}^{m} - A\left(n \right) - B_{\underline{x}}\left(n \right) \underline{x}_{t} \\ & - B_{z}\left(n \right) z_{t}^{m} + \Delta d_{t+1}^{m} \\ & = & A\left(n - 1 \right) + B_{\underline{x}}\left(n - 1 \right) \left[\underline{\underline{x}}\left(I - \Phi_{x} \right) + \Phi_{x}\underline{x}_{t} \right] + B_{z}\left(n - 1 \right) \phi_{z}z_{t}^{m} - A\left(n \right) - B_{\underline{x}}\left(n \right) \underline{x}_{t} \\ & - B_{z}\left(n \right) z_{t}^{m} + g^{m} + z_{t}^{m} + B_{\underline{x}}\left(n - 1 \right) \underline{\varepsilon}_{t+1}^{x} + B_{z}\left(n - 1 \right) \varepsilon_{t+1}^{z} + \delta^{m}\varepsilon_{t+1}^{d} + \varepsilon_{t+1}^{u} \\ & = & E_{t}[r_{n,t+1}^{m}] + C_{n-1}^{m}\underline{\varepsilon}_{t+1} \end{split}$$

The time-t conditional variance of the return from time t to t+1 of the strip with a maturity of n periods is therefore given by:

$$\sigma_t^2[r_{n,t+1}^m] = \sigma_t^2 \left[E_t[r_{n,t+1}^m] + C_{n-1}^m \underline{\varepsilon}_{t+1} \right]$$
$$= C_{n-1}^m \Sigma_{\varepsilon,\varepsilon} (C_{n-1}^m)'$$

3. Riskfree Rate

The riskfree rate is given by:

$$R_{t+1}^{f} = \frac{1}{E_{t}[M_{t+1}]}$$

$$= \exp\{-a - bz_{t}\} = \exp\{-a - b^{m}z_{t}^{m}\}$$

from the conditional log-nomality of M_{t+1} .

4. Log Risk Premium of Market-Dividend Strips

By definition, the log risk premium of a strip is given by:

$$\log \left(E_t \left[\frac{R_{n,t+1}^m}{R_t^f} \right] \right) = \log \left(E_t \left[\exp \left\{ r_{n,t+1}^m - r_t^f \right\} \right] \right)$$
$$= E_t [r_{n,t+1}^m - r_t^f] + \frac{1}{2} \sigma_t^2 [r_{n,t+1}^m]$$

since $r_{n,t+1}^m$ is normally distributed. This expression can be obtained from the Euler equation:

$$1 = E_t[M_{t+1}R_{n,t+1}^m]$$

$$= E_t[\exp\{\log(M_{t+1}) + r_{n,t+1}^m\}]$$

$$= E_t\left[\exp\left\{-r_t^f - \frac{1}{2}\underline{x}_t'\lambda\Sigma_{\varepsilon,\varepsilon}\lambda'\underline{x}_t - \underline{x}_t'\lambda\underline{\varepsilon}_{t+1} + E_t[r_{n,t+1}^m] + C_{n-1}^m\underline{\varepsilon}_{t+1}\right\}\right]$$

Taking logs:

$$0 = \log \left(E_t \left[\exp \left\{ -r_t^f - \frac{1}{2} \underline{x}_t' \lambda \Sigma_{\varepsilon, \varepsilon} \lambda' \underline{x}_t - \underline{x}_t' \lambda \underline{\varepsilon}_{t+1} + E_t[r_{n,t+1}^m] + C_{n-1}^m \underline{\varepsilon}_{t+1} \right\} \right] \right)$$

$$= E_t[r_{n,t+1}^m - r_t^f] - \frac{1}{2} \underline{x}_t' \lambda \Sigma_{\varepsilon, \varepsilon} \lambda' \underline{x}_t + \frac{1}{2} \left(\underline{x}_t \lambda \Sigma_{\varepsilon, \varepsilon} \lambda' \underline{x}_t + \sigma_t^2[r_{n,t+1}^m] - 2C_{n-1}^m \Sigma_{\varepsilon, \varepsilon} \lambda' \underline{x}_t \right)$$

Rearranging, the log risk premium is given by equation (12):

$$E_{t}[r_{n,t+1}^{m} - r_{t}^{f}] + \frac{1}{2}\sigma_{t}^{2}[r_{n,t+1}^{m}]$$

$$= \left(C_{n-1}^{m}\Sigma_{\varepsilon,\varepsilon}\lambda'\right)\underline{x}_{t}$$

$$= \left(\delta^{m}\sigma_{d}^{2} + \sigma_{d,u} + B_{x}\left(n-1\right)\sigma_{d,x} + B_{\sigma}\left(n-1\right)\sigma_{d,w} + B_{z}\left(n-1\right)\sigma_{d,z}\right)$$

$$\times \left(\frac{\bar{\sigma}}{\sigma_{d}}x_{t} + \frac{\bar{x}}{\sigma_{d}}(\sigma_{t} - \bar{\sigma})\right)$$

Appendix G. Proofs for the CC Model

The representative agent has external habit preferences as in equation (16) and we specify the law of motion for s_t as in equation (17):

$$s_{t+1} = (1 - \phi_s)\bar{s} + \phi_s s_t + \lambda(\bar{s})z_t + \lambda(s_t)\sigma_t \varepsilon_{t+1}^d$$

where $\lambda(.)$ is as defined by CC and in footnote 3:

$$\lambda(s_t) = \begin{cases} \frac{1}{\bar{S}}\sqrt{1 - 2(s_t - \bar{s})} - 1 & s_t \le s_{\text{max}} \\ 0 & s_t \ge s_{\text{max}} \end{cases}$$

with $\bar{s} \equiv \log(\bar{S})$ and $s_{\text{max}} = \bar{s} + \frac{1}{2}(1 - (\bar{S})^2)$. We set $\bar{S} \equiv \bar{\sigma}\sigma_d\sqrt{\frac{\gamma}{1 - \phi_s}}$.

1. Riskfree Rate

Using the law of motion for Δc_{t+1} and subtracting s_t from the law of motion for s_{t+1} , the stochastic discount factor in CC is:

$$M_{t+1} = \exp\{\log(\delta) - \gamma(\Delta c_{t+1} + \Delta s_{t+1})\}$$

$$= \exp\{\log(\delta) - \gamma(g + z_t + \sigma_t \varepsilon_{t+1}^d + (1 - \phi_s)\bar{s} + \phi_s s_t + \lambda(\bar{s})z_t + \lambda(s_t)\sigma_t \varepsilon_{t+1}^d - s_t)\}$$

$$= \exp\{\log(\delta) - \gamma g - \gamma(1 + \lambda(\bar{s}))z_t + \gamma(1 - \phi_s)(s_t - \bar{s}) - \gamma(1 + \lambda(s_t))\sigma_t \varepsilon_{t+1}^d\}$$

The log riskfree rate is then:

$$\begin{split} r_{t+1}^f &\equiv \log(R_{t+1}^f) \\ &= -\log(E_t[M_{t+1}]) \\ &= -\log(\delta) + \gamma g + \gamma (1 + \lambda(\bar{s})) z_t - \gamma (1 - \phi_s) (s_t - \bar{s}) - \frac{\gamma^2}{2} \underbrace{(1 + \lambda(s_t))^2}_{=\frac{(1 - \phi_s)(1 - 2(s_t - \bar{s}))}{\gamma \mathscr{A}_d \bar{\sigma}^2}} \mathscr{A}_d^{\mathcal{Z}} \sigma_t^2 \\ &= -\log(\delta) + \gamma g + \gamma (1 + \lambda(\bar{s})) z_t - \frac{\gamma}{2} (1 - \phi_s) \frac{\sigma_t^2}{\bar{\sigma}^2} + \gamma (1 - \phi_s) (s_t - \bar{s}) \left(\frac{\sigma_t^2}{\bar{\sigma}^2} - 1\right) \end{split}$$

2. Properties of the Assumed Habit Process

As in CC, we require habit to be pre-determined at, and near, the steady state for the consumption surplus, $s_t = \bar{s}$:

$$\left[\frac{\partial h_{t+1}}{\partial d_{t+1}}\right]_{s_t=\bar{s}} = 0$$

(29) and
$$\left[\frac{\partial}{\partial s} \left(\frac{\partial h_{t+1}}{\partial d_{t+1}}\right)\right]_{s_t=\bar{s}} = 0$$

We first calculate $\frac{\partial h_{t+1}}{\partial d_{t+1}}$ using an expression for h_{t+1} from the definition of s_{t+1} :

$$s_{t+1} \equiv \log \left(\frac{D_{t+1} - H_{t+1}}{D_{t+1}} \right)$$

= $\log \left(1 - e^{h_{t+1} - d_{t+1}} \right)$
 $\Rightarrow h_{t+1} = d_{t+1} + \log \left(1 - e^{s_{t+1}} \right)$

Differentiating:

$$\frac{\partial h_{t+1}}{\partial d_{t+1}} = 1 + \frac{\partial s_{t+1}}{\partial d_{t+1}} \frac{\partial}{\partial s_{t+1}} \left[\log \left(1 - e^{s_{t+1}} \right) \right]$$

$$= 1 - \lambda (s_t) \frac{e^{s_{t+1}}}{1 - e^{s_{t+1}}}$$

$$= 1 - \frac{\lambda (s_t)}{e^{-s_{t+1}} - 1}$$

$$\approx 1 - \frac{\lambda (s_t)}{e^{-s_t} - 1}$$

with the approximation since $s_{t+1} \approx s_t$ for small time intervals.

Habit is pre-determined at the steady state $s_t = \bar{s}$:

The first condition, equation (28), is equivalent to:

$$\left[\frac{\partial h_{t+1}}{\partial d_{t+1}}\right]_{s_t=\bar{s}} = 0 \quad \Leftrightarrow \quad 1 - \frac{\lambda(\bar{s})}{e^{-\bar{s}} - 1} = 0$$
$$\Leftrightarrow \quad \lambda(\bar{s}) = e^{-\bar{s}} - 1$$

which holds from the definition of $\lambda(.)$.

Habit is pre-determined near the steady state $s_t = \bar{s}$:

The second condition, equation (29), is equivalent to:

$$0 = \left[\frac{\partial}{\partial s} \left(\frac{\partial h_{t+1}}{\partial d_{t+1}}\right)\right]_{s_t = \bar{s}}$$

$$= \left[\frac{\partial}{\partial s} \left(1 - \frac{\lambda(s_t)}{e^{-s_t} - 1}\right)\right]_{s_t = \bar{s}}$$

$$= \left[-\frac{(e^{-s_t} - 1)\lambda_s(s_t) + e^{-s_t}\lambda(s_t)}{(e^{-s_t} - 1)^2}\right]_{s_t = \bar{s}}$$

$$\Leftrightarrow 0 = (e^{-\bar{s}} - 1)\lambda_s(\bar{s}) + e^{-\bar{s}}\lambda(\bar{s})$$

Rearranging, this is equivalent to:

$$\lambda_s(\bar{s}) = \frac{\frac{1}{\bar{S}}\lambda(\bar{s})}{1 - \frac{1}{\bar{S}}}$$
$$= -\frac{1}{\bar{S}}$$

Differentiating the sensitivity function, we verify that this holds:

$$\lambda(s_t) = \frac{1}{\bar{S}}\sqrt{1 - 2(s_t - \bar{s})} - 1$$

$$\Rightarrow \lambda_s(s_t) = -\frac{1}{\bar{S}\sqrt{1 - 2(s_t - \bar{s})}}$$

$$\Rightarrow \lambda_s(\bar{s}) = -\frac{1}{\bar{S}}$$

So the second condition, equation (29), holds.

3. Relation between External Habit and Past Consumption

From the definition of s_t , we have shown that a first-order log-linear approximation is given by:

$$s_{t} = \log \left(1 - e^{h_{t} - d_{t}}\right)$$

$$\approx \underbrace{\log \left(1 - e^{\overline{h} - \overline{d}}\right)}_{=\overline{a}} + \left[\left(h_{t} - d_{t}\right) - \left(\overline{h} - \overline{d}\right)\right] \left(\frac{-e^{\overline{h} - \overline{d}}}{1 - e^{\overline{h} - \overline{d}}}\right)$$

Substituting the log-linear approximations for s_{t+1} and s_t into the law of motion for the s process:

$$\vec{s} + \left[(h_{t+1} - d_{t+1}) - \left(\overline{h - d} \right) \right] \left(\frac{-e^{\overline{h - d}}}{1 - e^{\overline{h - d}}} \right)$$

$$\approx \underbrace{\left(1 - \phi_s \right) \vec{s}} + \phi_s \left(\vec{s} + \left[(h_t - d_t) - \left(\overline{h - d} \right) \right] \left(\frac{-e^{\overline{h - d}}}{1 - e^{\overline{h - d}}} \right) \right) + \lambda(\bar{s}) \left(d_{t+1} - d_t - g \right)$$

When $s_t \leq s_{\text{max}}$ the sensitivity function is:

$$\lambda(s_t) = \frac{1}{\bar{S}}\sqrt{1 - 2(s_t - \bar{s})} - 1$$

$$(30) \qquad \Rightarrow \lambda(\bar{s}) = \frac{1}{\bar{S}} - 1 = \frac{1}{e^{\bar{s}}} - 1 = \frac{1}{1 - e^{\bar{h} - \bar{d}}} - 1 = \frac{e^{\bar{h} - \bar{d}}}{1 - e^{\bar{h} - \bar{d}}}$$

$$\Rightarrow (h_{t+1} - d_{t+1}) - (\overline{h-d}) \approx \phi_s \left((h_t - d_t) - (\overline{h-d}) \right) - (d_{t+1} - d_t - g)$$

which yields:

$$(31) h_{t+1} \approx (1-\phi_s)(\overline{h-d}) + \phi_s h_t + (1-\phi_s)d_t + g$$

Iterating this recursion back to the start of time gives equation (18):

$$h_{t+1} \approx \overline{h-d} + (1-\phi_s) \sum_{j=0}^{\infty} (\phi_s)^j d_{t-j} + \frac{g}{1-\phi_s}$$

since the transversality condition $\lim_{j\to\infty} [\phi_s^j h_{t-j-1}] = 0$ holds. Note that subtracting h_t from both sides of equation (31) gives:

$$h_{t+1} - h_t \approx g + (1 - \phi_s) \left[(d_t - h_t) - \overline{d - h} \right]$$

Appendix H. z_t^m is a Proxy for the Consumption-Market Dividend Ratio

Lettau and Ludvigson (2005) show that:

$$d_t - \nu d_t^m - (1 - \nu)y_t \approx E_t \sum_{i=1}^{\infty} \rho_w^i \left(\nu \Delta d_{t+i}^m + (1 - \nu)\Delta y_{t+i} - \Delta d_{t+i}\right)$$

where y_t is log labor income at time t, ν is the average share of aggregate wealth from financial assets (as opposed to human capital), and ρ_w is a constant. If there is no labor income, as in our model, then $\nu = 1$ and this gives an expression for the log consumption-market dividend ratio:

$$\log\left(\frac{D_t}{D_t^m}\right) = d_t - d_t^m \approx E_t \sum_{i=1}^{\infty} \rho_w^i \left(\Delta d_{t+i}^m - \Delta d_{t+i}\right)$$
$$= \sum_{i=1}^{\infty} \rho_w^i \left(E_t[\Delta d_{t+i}^m] - E_t[\Delta d_{t+i}]\right)$$

We now show that $E_t[\Delta d_{t+i}^m]$ and $E_t[\Delta d_{t+i}]$ are each affine in z_t^m :

$$E_t[\Delta d_{t+i}^m] = E_t[\delta^m g + z_{t+i-1}^m + \delta^m \varepsilon_{t+i}^d + \varepsilon_{t+i}^u]$$

$$= \delta^m g + E_t[z_{t+i-1}^m]$$

$$= \delta^m g + \phi_z^{i-1} z_t^m$$

$$E_{t}[\Delta d_{t+i}] = E_{t}[g + z_{t+i-1} + \sigma_{t+i-1}\varepsilon_{t+i}^{d}]$$

$$= g + \frac{1}{\delta^{m}}E_{t}[z_{t+i-1}^{m}]$$

$$= g + \frac{\phi_{z}^{i-1}z_{t}^{m}}{\delta^{m}}$$

since
$$E_t[\sigma_{t+i-1}\varepsilon_{t+i}^d] = E_t[E_{t+i-1}[\sigma_{t+i-1}\varepsilon_{t+i}^d]] = E_t[\sigma_{t+i-1}E_{t+i-1}[\varepsilon_{t+i}^d]] = 0.$$

Putting this together:

$$\log\left(\frac{D_t}{D_t^m}\right) = d_t - d_t^m \approx \sum_{i=1}^{\infty} \rho_w^i \left(E_t[\Delta d_{t+i}^m] - E_t[\Delta d_{t+i}]\right)$$

$$= \sum_{i=1}^{\infty} \rho_w^i \left(\left(\delta^m g + \phi^{i-1} z_t^m\right) - \left(g + \frac{\phi_z^{i-1} z_t^m}{\delta^m}\right)\right)$$

$$= \left(\delta^m - 1\right) g \sum_{i=1}^{\infty} \rho_w^i + \frac{\delta^m - 1}{\delta^m} \left(\sum_{i=1}^{\infty} \rho_w^i \phi_z^{i-1}\right) z_t^m$$

which is affine in z_t^m . So z_t^m is a proxy for the log consumption-market dividend ratio.