Appendix F. Proofs for the LRR-Vol Model

The stochastic discount factor in equation (9) can be written as:
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1. Price-Dividend Ratio

Equation (11) says that the price-dividend ratio of the strip with n quarters to ma-

turity at time ¢ can be expressed as:
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where B,(n) = [B.(n), B,(n)]. Using the boundary condition that Fj; = Dj", we see that
this holds when n = 0, with A(0) = B.(0) = B,(0) = B,(0) = 0. We proceed by induction
on n. We can write the price of the strip with n quarters to maturity as a function of the

price of a strip with n — 1 quarters to maturity:
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Dividing by the market dividend at time t:
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Plugging in the expressions for the stochastic discount factor and dividend growth:
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Here z evolves as a 2-dimensional VAR(1):
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where Z = [7,0], g = [eF,e], and @, = . Factoring out the time-t information,
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and expanding the z, , and z}}; processes:
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where C}"y =[ ¢, 1, B, (n—1), By(n—1) ]. Collecting constant, z;* and x, terms:
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Matching coefficients, and plugging in for \:

1
An) = An—-1)+a+g¢g"+(1—¢,)ZB, (n—1)+ 5021_12575(021_1)'

B.(n) = 14+0"+¢.B,(n—1)
(14b™) (1—g¢m)
1 - ¢z B
B,(n) = ¢,B,(n—1)— Uidzd,e<0$_1>'

B, (n) = ¢aBa<n—1>—§dzd,e<cx_l>’

where ;. = E[ele’].



2. Mean and Variance of the Log Return on Market-Dividend
Strips

The return from time t to ¢ + 1 of the strip with a maturity at time ¢+ n is given by:
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The time-t conditional variance of the return from time ¢ to ¢t + 1 of the strip with a

maturity of n periods is therefore given by:
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3. Riskfree Rate

The riskfree rate is given by:
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from the conditional log-nomality of M.

4. Log Risk Premium of Market-Dividend Strips

By definition, the log risk premium of a strip is given by:
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since r,";, ; is normally distributed. This expression can be obtained from the Euler equation:
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Taking logs:
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Rearranging, the log risk premium is given by equation (12):
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Appendix G. Proofs for the CC Model

The representative agent has external habit preferences as in equation (16) and we

specify the law of motion for s; as in equation (17):
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where A(.) is as defined by CC and in footnote 3:

%\/1 —2(st—5) —1 8 < Smax

0 St 2 Smax

A(sy) =
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1. Riskfree Rate

Using the law of motion for Ac;y1 and subtracting s; from the law of motion for s;,1,

the stochastic discount factor in CC is:
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The log riskfree rate is then:
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2. Properties of the Assumed Habit Process

As in CC, we require habit to be pre-determined at, and near, the steady state for

the consumption surplus, s; = s:
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We first Calculate i using an expression for h;yq from the definition of s;,1:
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Differentiating:
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with the approximation since s, ~ s; for small time intervals.

Habit is pre-determined at the steady state s; = s:

The first condition, equation (28), is equivalent to:

which holds from the definition of A(.).

Habit is pre-determined near the steady state s, = s:

The second condition, equation (29), is equivalent to:
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Rearranging, this is equivalent to:
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Differentiating the sensitivity function, we verify that this holds:

1
> Alse) = = V1= 2(s; — 5)

So the second condition, equation (29), holds.

3. Relation between External Habit and Past Consumption

From the definition of s;, we have shown that a first-order log-linear approximation

is given by:
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Substituting the log-linear approximations for s;y; and s; into the law of motion for

the s process:
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When s; < spax the sensitivity function is:
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Iterating this recursion back to the start of time gives equation (18):
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since the transversality condition lim;_, [qbght,j,l] = 0 holds. Note that subtracting h; from

both sides of equation (31) gives:
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Appendix H. 2" is a Proxy for the Consumption-Market
Dividend Ratio

Lettau and Ludvigson (2005) show that:
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where y; is log labor income at time ¢, v is the average share of aggregate wealth from financial
assets (as opposed to human capital), and p,, is a constant. If there is no labor income, as in
our model, then v = 1 and this gives an expression for the log consumption-market dividend

ratio:
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Putting this together:
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which is affine in z{". So 2} is a proxy for the log consumption-market dividend ratio.
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