Novel sequence types and low levels of antimicrobial resistance associated with clinical mastitis in sheep flocks across Scotland

Keith T. Ballingall, Riccardo Tassi, Jane Gordon, Carol Currie, Kath Dun Nigel Miller and Nuno Silva

Supplementary File

Supplementary Table S1. Details of the survey questionnaire

Sample Profile	Flock profile
Sample date	Name
Farm Identity	Flock 1
Hogg, Yes/No	Flock 2
Gimmer, Yes/No	Area
Ewe (age)	Type, Hill, Lowland
Condition Score	Туре
Signs	Ewe no
Udder condition	Breed 1
Stiff/lame, Yes/No	Breed 2
Dull, Yes/No	Breed 3
Recumbent, Yes/No	Tup a
Lamb x1	Tup b
Lamb x2	Scan 17/18
Lamb x3	Lambing start date
Sample Yes/No	Lambing system
Treat Yes/No	Feed supplement pre
	Feed supplement
Antimicrobial type	post
Dose/days	Triplet
Intra-mammary tube	
Yes/No	
Treatment other	
Outcome	
Recover, Yes/No	
Part recovered, Yes/No	
Died, Yes/No	
Mastitis record - lambing	
period	
Quarantined Yes/No	
Days post lambing	

Supplementary Information. Hogg, defined as a female sheep between weaning and first shearing. Gimmer, defined as a female yearling.

Supplementary Table S2. Origin of each sample, corresponding isolate number with species

identification.

Farm code*	Milk Sample	Isolate	Bacterial identification
01	9	MRI-SI-010	Mannheimia haemolytica
01	23	MRI-SI-024	Staphylococcus aureus
01	23	MRI-SI-025	Mannheimia haemolytica
02	29	MRI-SI-030	Staphylococcus aureus
02	29	MRI-SI-033	Mannheimia haemolytica
02	30	MRI-SI-035	Staphylococcus simulans
02	31	MRI-SI-034 ²	Staphylococcus aureus
03	7	MRI-SI-008	Staphylococcus aureus
04	21	MRI-SI-022 ²	Staphylococcus aureus
04	22	MRI-SI-023	Staphylococcus aureus
04	26	MRI-SI-029	Staphylococcus aureus
07	24	MRI-SI-027	Bacillus spp.
08	8	MRI-SI-009	Mannheimia haemolytica
08	12	MRI-SI-013	Mannheimia haemolytica
09	4	MRI-SI-004 ²	Stock contaminated
09	5	MRI-SI-005	Staphylococcus aureus
09	6	MRI-SI-006	Mannheimia haemolytica
09	6	MRI-SI-007	Streptococcus spp.
10	11	MRI-SI-012	Mannheimia haemolytica
11	10	MRI-SI-011	Mannheimia haemolytica
11	19	MRI-SI-020 ³	Staphylococcus aureus
11	28	MRI-SI-032	Staphylococcus aureus
12	3	MRI-SI-003	Staphylococcus aureus
13	1	MRI-SI-001	Mannheimia haemolytica
13	2	MRI-SI-002	Staphylococcus warneri
14	14	MRI-SI-015	Staphylococcus aureus
14	15	MRI-SI-016	Staphylococcus aureus
14	16	MRI-SI-017	Staphylococcus aureus
15	13	MRI-SI-014	Staphylococcus aureus
15	32	MRI-SI-037	Staphylococcus aureus
15	33	MRI-SI-036	Staphylococcus aureus

16	17	MRI-SI-018 ¹	Staphylococcus simulans
16	27	MRI-SI-031	Staphylococcus aureus
17	18	MRI-SI-019	Histophilus somni
17	25	MRI-SI-028 ²	Staphylococcus aureus
18 ¹	20	MRI-SI-021	Staphylococcus aureus
19	38	MRI-T1-020	Staphylococcus aureus
19	39	MRI-T1-026	Staphylococcus aureus
19	40	MRI-T1-204	Staphylococcus aureus

¹. Isolate MRI-S1-018 was resistant to oxytetracycline and positive for the *tetK* resistance gene. ². *S. aureus* isolates MRI-SI-004; MRI-SI-22; MRI-SI-028; and MRI-S1-034 were intermediate in resistance to Oxytetrocycline.

³. S. aureus isolate MRI-SI-020 was intermediate in resistance to both Oxytetrocycline and

Kanamycin

Supplementary Information

Sampling instructions

Ewe sampling method

The method described here is for milk sampling from an ewe with evidence of mastitis

Each sampling kit is designed for a single sample. If sampling more than one animal use a different kit and change gloves each time to avoid cross contamination of the sample or passing an infection from one animal to another.

It is important that the sample is not contaminated with bacteria from your hands or from the skin on the outside of the teat.

1. Hold the ewe in a corner of a pen or within a crush. It's easier to sample with the ewe on its feet rather than on its back.

2. Open the sampling box and put on the gloves.

3. Remove the yellow toped tube containing cotton soaked in alcohol from the Zip locked bag and remove one piece of cotton. Wipe your gloves with the cotton making sure to completely cover between the fingers. 4. Remove a second piece of alcohol-soaked cotton and thoroughly wipe the end of the teat until no dirt can be seen on the cotton or the teat end, making sure it is well soaked and rubbed with the alcohol.

5. Hand milk the teat avoiding touching the teat end. Discard the first two lots of milk.

6. Open the red toped tube making sure that the lid is kept clean and place the third milk sample into the red topped sample tube making sure **not to touch the inside of the tube with**

the end of the teat.

7. We only require a few mls /drops for bacteriology so don't more than half fill the tube. Quickly close the lid.

8. Write the farm name, date and animal id on the sample tube label and replace the tube in the zip locked bag with the absorbent towel.

9. Return the sample in the sample box and post as quickly as possible to the address provided. If you can't return immediately, keep the sample box cool in a fridge.

10. Remove your gloves and place in the other ziplocked bag for disposal. Wash your hands with plenty of soap and water.

Note, some ewes with clinical mastitis may be dry and you will not be able to obtain a sample. Other samples will be heavily clotted, watery, or flecked with blood. These types of samples are useful.

Supplementary Methods

1. Antimicrobial susceptibility testing

Each bacterial isolate was tested for antimicrobial susceptibility using the Kirby- Bauer disk diffusion method and minimum inhibitory concentration (MIC), according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST 2018) and Clinical and Laboratory Standards Institute (CLSI 2018a, CLSI 2018b). Individual colonies were suspended in 3 ml of saline solution and inoculated onto *Mueller-Hinton* agar (EO LABS, Burnhouse, UK). Antimicrobials in impregnated paper disks (Abtek Biologicals Limited, UK) were added and the plates, incubated at 37°C for 18 to 20 h before measuring inhibition zone diameters (IZD). For MIC, broth micro dilution testing was performed using cation-adjusted Mueller-Hinton broth (CAMHB, Sigma-Aldrich, UK). For *Mannheimia* isolates, in microtiter plates,

tetracycline and penicillin G were prepared in serial 2-fold dilutions ranging from 0.0625 to 32.0 mg/L respectively and 0.008 to 2.0 mg/L respectively in CAMHB supplemented with 5% lysed horse blood and 20 mg/L of β -nicotinamide adenine dinucleotide (Sigma-Aldrich, UK). The final test concentration of bacteria was approximately 5×10⁵ colony-forming units/ml, using the McFarland standard and MICs were read after 18±2 h incubation at 37°C. The *M haemolytica* American Type Culture Collection (ATCC) 33396, *E coli* ATCC 25922 and *S aureus* ATCC 29213 were used as internal controls.

For staphylococcus isolates, breakpoints were taken from EUCAST standards when available (EUCAST, 2020), or from Clinical and Laboratory Standards Institute, (CLSI) standards if EUCAST guidelines did not exist (CLSI 2018a, CLSI 2018b). The antimicrobial panel included benzylpenicillin (1 U), cloxacillin (5 μ g), ampicillin (10 μ g), amoxicillin-clavulanic acid (20-10 μ g), oxacillin (1 μ g), ceftiofur (30 μ g), cefquinome (30 μ g), cefoxitin (30 μ g), erythromycin (15 μ g), kanamycin (30 μ g), oxytetracycline (30 μ g), sulfamethoxazole-trimethoprim (23.75-1.25 μ g), enrofloxacin (5 μ g), and ciprofloxacin (5 μ g). The breakpoint interpretation for tetracycline was applied to oxytetracycline. For *Mannheimia* isolates, breakpoints were taken from CLSI guidelines (CLSI 2018b) and the antimicrobial panel included ceftiofur (30 μ g), spectinomycin (100 μ g), enrofloxacin (5 μ g), tilmicosin (15 μ g), florfenicol (30 μ g) and MIC to tetracycline (Alfa Aesar, UK) and penicillin G (Sigma-Aldrich, UK). The reference strains *S aureus* ATCC® 29213 and *S aureus* ATCC® 25923 were used as internal controls.