Comparison of nonlinear functions to describe lactation curves for cumulative milk yield in buffalo

Hassan Darmani Kuhi, Secundino López, Navid Ghavi Hossein-Zadeh and James France

SUPPLEMENTARY FILE

		Data source					
		Sharma <i>et al.</i> (2017)					
Trait ^[1]	Sahoo <i>et al.</i> (2014)	1991-1995	1996-2000	2001-2005	2006-2010		
<i>m</i> _{y5} (kg/d)	3.93	2.52	3.32	2.62	2.89		
<i>m</i> _{y305} (kg/d)	2.35	4.42	4.43	3.93	4.63		
m_{y}^{+} (kg/d)	7.92	5.51	6.36	5.97	6.26		
t^{+} (d)	50	125	125	125	125		
y ₃₀₅ (kg)	1891	1347	1655	1422	1541		

Table S1. Milk yield traits characterising the buffalo lactation curves used in the study.

^[1] Daily milk yield at 5 or 305 days in milk (m_{y5} and m_{y305} , respectively), maximum daily milk yield (m_{y^+}) and days in milk when m_{y^+} was recorded (t^+) and cumulative milk production at 305 d lactation (y_{305})

Function	Functional form ^[1]	Time at inflexion point	Vield at inflexion point	
Linear	$y = y_0 + kt$	Not applicable	Not applicable	
Gompertz	$y = y_0 \times \exp\left[\ln\left(\frac{y_f}{y_0}\right) \times (1 - e^{-ct})\right]$	$\frac{1}{c}\ln\left[\ln\left(\frac{y_f}{y_0}\right)\right]$	$\frac{y_f}{e}$	
Schumacher	$y = y_f \times \exp\left(\frac{-Kt_0t_0}{t+t_0}\right)$	$t_0\left(\frac{Kt_0}{2}-1\right)$	$\frac{y_f}{e^2}$	
Richards	$y = \frac{y_f}{\left[1 + n \times \exp\left(-c(t - t^*)\right)\right]^{\frac{1}{n}}}$	$\frac{1}{c}\ln\left(\frac{y_{f-}^n y_0^n}{n y_0^n}\right)$	$\frac{y_f}{(n+1)^{\frac{1}{n}}}$	
Sinusoidal	$y = y^* + a \times \sin\left(\frac{2\pi t}{b} + \theta\right)$	$\frac{b}{2\pi}(2\pi- heta)$	y*	

Table S2. Mathematical functions fit to buffalo cumulative milk production curves.

^[1] y = cumulative milk yield, $y_0 =$ initial yield, $y_f =$ asymptotic yield, t = days in milk; k is the slope; c, K and n are parameters that define the position, scale and shape of the cumulative lactation curve. For the sinusoidal, a is the amplitude, y^* is the vertical shift and θ is the phase shift. This sinusoidal equation is periodic with period b

Table S3. Statistics used to assess goodness-of-fit for model comparison.

Statistic	Calculation
Adjusted coefficient of determination ($R_{\rm adj}^2$)	$R_{\rm adj}^2 = 1 - \left[\frac{(n-1)}{(n-p)}\right] \left(\frac{\rm RSS}{\rm TSS}\right)$
Root mean square error (RMSE)	$RMSE = \sqrt{\frac{RSS}{n-p-1}}$
Akaike's information criterion (AIC)	$AIC = n \times \ln\left(\frac{RSS}{n}\right) + 2p$
Bayesian information criterion (BIC)	$BIC = n \times \ln\left(\frac{RSS}{n}\right) + p\ln(n)$

n is the number of observations (data points), *p* is the number of parameters in the equation, RSS is residual sum of squares and TSS is total sum of squares.

	Data source						
			Sharma <i>et al.</i> (2017)				
Function	Parameter ^[1]	Sahoo <i>et</i> <i>al.</i> (2014)		1991-1995	1996-2000	2001-2005	2006-2010
Linear	K	6.491		4.727	5.712	5.305	5.536
	<i>y</i> 0	102.49		-20.59	2.35	-6.23	2.57
Gompertz	С	0.0103		0.0089	0.0092	0.0095	0.0092
	<i>y</i> 0	111.9		57.8	76.1	62.9	74.5
	Уf	2169		1712	2015	1833	1953
Schumacher	K	0.0728		0.0671	0.0681	0.0782	0.0684
	to	59.5		73.8	70.1	63.9	69.8
	Уf	3957		3625	4094	3681	3953
Richards	С	0.0059		0.0018	0.0027	0.0035	0.0025
	п	-0.5890		-0.8869	-0.8170	-0.7499	-0.8414
	<i>t</i> *	73.0		75.1	75.3	83.7	70.6
	Уf	2552		3815	3407	2746	3445
Sinusoidal	а	1439		1296	1452	1158	1575
	b	1164		1641	1477	1251	1656
	θ	5.901		5.829	5.871	5.727	5.972
	<i>y</i> *	549.3		544.0	559.7	588.0	457.0
	Уf	1989		1804	2036	1746	2032

Table S4. Parameters for different data profiles estimated using the different functions.

^[1] y_0 = initial yield, y_f = asymptotic yield, t = days in milk; k is the slope; c, K, t_0 , t^* and n are parameters that define the position of the inflexion point, the scale and the shape of the cumulative lactation curve. For the sinusoidal, a is the amplitude, y^* is the vertical shift and θ is the phase shift. y_f for the sinusoidal is not an estimated parameter. It was calculated from the fitted equations as: $y_f = y^* + a$

Figure S1. Plots of cumulative milk production (kg) against days in milk showing the fit of different functions to the data of Sharma *et al.* (2017) during the period 2006-2010 (dots are the observed values and the solid line is the fitted curve for each function)