1 Effects of calcium chloride substitution on the physicochemical properties of Minas Frescal

2 Cheese

3

4	Fernanda Lopes da Silva ¹ , Andressa Fusieger ^{1, 2} , Maria Tereza Cratiú Moreira ¹ , Isabelle				
5	Carolina Oliveira ³ , Ítalo Tuler Perrone ⁴ , Naaman Francisco Nogueira Silva ³ , Rodrigo				
6	Stephani ⁵ , Antônio Fernandes de Carvalho ¹ *				
7					
8	¹ Food Technology Department, Federal University of Viçosa, 36570-900 Viçosa – MG,				
9	Brazil.				
10	² Di3A - Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania,				
11	Catania, Italy.				
12	³ Center for Natural Science, Federal University of São Carlos (UFSCar), 18245 000 Buri				
13	– SP, Brazil.				
14	⁴ Pharmacy School, Federal University of Juiz de Fora, 36036-330 Juiz de Fora – MG,				
15	Brazil.				
16	5 Chemistry Department, Federal University of Juiz de Fora, 36036-330 Juiz de Fora –				
17	MG, Brazil.				
18					
19	Short title: Effects of calcium chloride substitution of Minas Frescal cheese				
20					
21	* Mailing address: Antônio Fernandes de Carvalho				
22	Food Technology Department				
23	Federal University of				
24	Viçosa – UFV				
25	Campus Universitário,				
26	Av. PH Rolfs, s/n				
27	Campus Universitário, Viçosa				
28	MG, 36570-900				
29	Phone +55-31-3612-6807				
30	E-mail: <u>antoniofernandes@ufv.br</u>				

31	Supplementary file
32	
33	Material and Methods
34	
35	Methods
36	Preparation of the gels by enzymatic coagulation
37	The study of gels was carried out with 50 mL of raw milk, pasteurized at 65 ± 1 °C for 30
38	minutes and cooled to 38 ± 1 °C. For step I, the previous evaluation of the best
39	concentrations of total or partial replacement of CaCl2, twelve treatments were carried
40	out: (T1) 0.12 gL ⁻¹ CaCl ₂ ; (T2) 0.24 gL ⁻¹ CaCl ₂ ; (T3) 0.25 gL ⁻¹ MCP; (T4) 0.50 gL ⁻¹
41	MCP; (T5) 0.25 gL ⁻¹ Blend 1; (T6) 0.50 gL ⁻¹ Blend; (T7) 0.25 gL ⁻¹ Blend 2; (T8) 0.50
42	gL^{-1} Blend 2; (T9) 0.25 gL^{-1} Blend 1 + 0.12 gL^{-1} CaCl ₂ ; (T10) 0.25 gL^{-1} Blend 2 + 0.12
43	gL^{-1} CaCl ₂ ; (T11) 0.25 gL^{-1} MCP + 0.12 gL^{-1} CaCl ₂ ; and (T12) only with raw milk. After
44	adding the agents according to the concentration of each treatment, the milk was stirred
45	for 3 minutes to homogenize and 0.16 mLL ⁻¹ diluted lactic acid (10% v/v) was added,
46	followed by stirring for another 2 minute and then the rennet (0.05 mLL ⁻¹) was added
47	according to the manufacturer's recommendations, with stirring for an additional 1
48	minute. After the initial preparation of the cheeses model, they were immediately used
49	for rheological analysis at 38 ± 1 °C.
50	
51	Rheological analysis of the gels
52	Small-amplitude oscillatory measurements were made to monitored the formation of the
E 2	gals at 28 °C using a rhoomator MCP 301 (Anton Paar Cormony) againpad with

gels at 38 °C using a rheometer MCR 301 (Anton Paar, Germany), equipped with thermostatic bath and a stainless steel double gap geometry. The oscillatory mode was employed at a frequency of 1 Hz and 0.1% strain, and the final G' refers to G' values attained after 40 minutes of oscillatory measurements. The deformation properties of gels were determined by applying a single constant shear rate (0.01 s⁻¹) up to the yielding of the gel. Yield stress (σ yield) was defined as the point when shear stress started to decrease. Yield strain (γ strain) was the strain value at the yield point.

- 60
- 61 **Results and Discussion**
- 62

63 Step I: previous evaluation of the total or partial replacement of CaCl₂ in model cheese

In our first step, twelve treatments were performed in order to evaluate the total or partial 64 replacement of CaCl₂, and Table S1 shows the rheological parameters of the value of the 65 elastic modulus (G') and yield stress (σ stress) obtained during the enzymatic milk 66 coagulation process. Differences were observed in all parameters analyzed among the 67 different treatments (p<0.05). Higher values of G' and yield stress were found in 68 treatments with twice the concentrations of each agent, being the case of T1 and T2, T3 69 and T4, T5 and T6, T7 and T8. In relation to the treatments with the same concentration 70 of CaCl₂, but with the addition of Blend 1 (T9), or Blend 2 (T10), or MCP (T11), the 71 highest G' value was T10 with 0.25 gL⁻¹ of Blend 2 + 0.12 gL⁻¹ of CaCl₂; and when we 72 compared these treatments with treatments only with Blend 1, Blend 2 or MCP, a lower 73 74 G' value was reported. Although treatments without CaCl₂ showed lower values, the incorporation of Blend 1 (T9), Blend 2 (T10) and MCP (T11) with CaCl₂ demonstrated 75 76 the potential in increase the G' in the gel formation when we compare to T1 with the same 77 CaCl₂ concentration. Regarding yield stress, that is a known physical and rheological 78 property defined as the minimum shear stress applied to initiate the flow process, or as 79 the force per unit area required to break the structure (Sun & Gunasekaran, 2009) (Table 80 1), the same value profile was found. The values found for the G' were considered as a means of evaluating the gel strength, since G' is the easiest and most direct way to 81 82 characterize the gel formation during the coagulation process, the increase of the storage modulus on the clotting time implicates in the formation of the gel network (Hussain et 83 al. 2013; Leite Júnior et al. 2014). Thus, the treatments that presented the highest G' and 84 σ stress values were chosen to produce Minas Frescal cheese, being the following: T2 85 86 (control), T4, T9, T10 and T11.

87

Calcium has been added to milk as different salts such as calcium carbonate, tricalcium 88 phosphate, calcium chloride, calcium gluconate, and calcium lactate (Vavrusova & 89 90 Skibsted, 2014). However, for the production of Minas Frescal cheese, the industry has 91 been using $CaCl_2$ in almost 100% of cases, since the easily dissolved in milk and it causes a notable decrease in pH and an increase in free calcium ion (Ca^{2+}) concentration. Which 92 93 helps in both stages of milk clotting, since the first step requires lowering the pH for the hydrolysis of κ -casein and the second phase requires free calcium for the formation of 94 95 aggregation to occur (Ong et al. 2013; Wang et al. 2020). However, it is important to evaluate other sources of calcium to replace calcium chloride in the production of Minas 96 97 Frescal cheese, since several studies show that the type of calcium salt added influences

- the salt balance of milk and partition of salts between casein micelles and the serum
 (Wang *et al.* 2020; Gaucheron, 2015; On-Nom *et al.* 2010), and consequently, can
 influence the final properties of cheese.

References

103	Gaucheron F 2005 The minerals of milk Reprod. Nutr. Dev. 45 473-483.
104	Hussain I, Bell AE & Grandison AS 2013 Mozzarella-type curd made from buffalo,
105	cows', and ultrafiltered cows' milk 1 Rheology and microstructure Food and
106	Bioprocesse Technology 6 1729-1740
107	Leite Júnior BRC, Tribst AAL & Critianini M 2014 Proteolytic and milk clotting activities
108	of calf rennet processed by high pressure homogenization and the influence
109	on the rheological behavior of the milk coagulation process Innovative
110	Food Science and Emerging Technology 21 44-49
111	On-Nom N, Grandison AS & Lewis MJ 2010 Measurement of ionic calcium, pH, and
112	soluble divalent cations in milk at high temperature Journal of Dairy
113	<i>Science</i> 93 515-523.
114	Ong L, Dagastine RR, Kentish SE & Gras SL 2013 The effect of calcium chloride addition
115	on the microstructure and composition of Cheedar cheese International
116	Dairy Journal 33 135-141
117	Sun A & Gunasekaran S 2009 Yield stress in foods: measurements and applications
118	International Journal of Food Properties 12(1) 70-101
119	Vavrusova M & Skibsted LH 2014 Calcium nutrition. Bioavailability and fortification
120	LWI - Food Science and Technology 59 1198-1204.
121	wang Q, Holt C, Nylander I & Ma Y 2020 Salt partition, ion equilibria, and the structure,
122	composition, and solubility of micellar calcium phosphate in bovine milk
123	with added calcium saits <i>Journal of Dairy Science</i> 103 9893-9905
124	
125	
126	
127	
128	
129	
130	
131	
132	
133	
134	
135	
136	
137	
138	

139	Figures legends:
140	
141	Figure S1: Protocol employed for the manufacture of Minas Frescal cheeses T2, T4, T9,
142	T10 and T11.
143	Blend 1 is a mixture of MCP with polyphosphate and Blend 2 is a mixture of MCP
144	with MKP.
145	
146	
147	
148	
149	
150	
151	
152	
153	
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	

```
Raw cow milk (50 L)
                Pasteurization (65 \pm 1 \text{ °C/30 min})
                    Cooling (up to 38 ± 1 °C)
        Addition of calcium sources and mixing (2 min)
                                     T10: 0.25 g L-1 Blend 2
       T2: 0.24 g L-1 CaCl<sub>2</sub>
                                     + 0.12 g L-1 CaCl<sub>2</sub>
       T4: 0.5 g L-1 MCP
                                     T11: 0.25 g L-1 MCP
       T9: 0.25 g L-1 Blend 1
                                     + 0.12 g L-1 CaCl<sub>2</sub>
       + 0.12 g L-1 CaCl2
Addition of lactic acid (10% v/v) and rennet and mixing (2 min)
            Coagulation step at 38 ± 2 °C for 40 min
           Curt cutting and mixing slowly for 20 min
                    Partial draining of whey
               Addition of salt and mixing (2 min)
                  Whey removing and molding
                 Packing and storage (5 \pm 2 \ ^{\circ}C)
```

183

174 175

176

177

178

179

180

181

182

184	Table legends:
185	Table S1: Evaluation of the rheological parameters obtained during the enzymatic milk
186	coagulation process $(n = 2)$.
187	Table S2: The effect of CaCl ₂ substitution on the texture of Minas Frescal cheese (n=3).
188	
189	
190	
191	
192	
193	
194	
195	
196	
197	
198	
199	
200	
201	
202	
203	
204	
205	
206	
207	
208	
209	
210	
211	
212	
213	
214	

215 Table S1 :

	Treatment	Concentration (g L ⁻¹)	G' (Pa)	Yield stress (σ yield) (Pa)
	T1	0.12 CaCl_2	86.492 ± 1.527 ^{c,d}	36.968 ± 1.389 ^{b,c}
T2		0.24 CaCl_2	$98.423 \pm 2.994 \ ^{e}$	42.244 ± 3.523 ^{b,c}
Т3		0.25 MCP	$80.808 \pm 1.736 \ ^{\text{b,c}}$	$33.672 \pm 1.150^{\text{ b,c}}$
	T4	0.50 MCP	93.874 ± 3.717 ^{d,e}	$39.496 \pm 1.114 \ ^{b}$
	T5	0.25 Blend 1	74.643 ± 1.184 ^b	33.167 ± 1.163 ^{b,c}
	T6	0.50 Blend 1	87.813 ± 0.134 ^{c,d}	36.801 ± 0.343 ^{b,c}
	T7	0.25 Blend 2	$81.848 \pm 0.216^{\ b,c}$	$34.448 \pm 0.410^{\ b,c}$
	T8	0.50 Blend 2	93.098 ± 0.823 ^{d,e}	$37.347 \pm 0.532 \ ^{b,c}$
	T9	$0.25 \ Blend \ 1 + 0.12 \ CaCl_2$	$93.608 \pm 2.379^{\text{ d,e}}$	$39.416 \pm 0.680^{\ b,c}$
	T10	$0.25 \text{ Blend } 2 + 0.12 \text{ CaCl}_2$	96.927 ± 3.292 ^e	$40.935 \pm 1.187 \ ^{c}$
	T11	$0.25 \ MCP + 0.12 \ CaCl_2$	$93.876 \pm 1.729^{\ d,e}$	$39.582 \pm 1.160^{\ b,c}$
	T12	Raw milk	$62.383 \pm 0.000 \ ^{a}$	$25.130 \pm 0.000 \; ^{a}$
216				
217				
218				
219				
220				
221				
222				
223				
224				
225				
226				
227				
228				
229				
230				
231				
232				
233				

234 **Table S2:**

	Treatment				
	T2	T4	Т9	T10	T11
Gumminess	$5.859\pm0.299^{\text{c}}$	4.629 ± 0.377^{b}	$5.023 \pm 0.354^{b,c}$	$5.513 \pm 0.423^{b,c}$	3.503 ± 0.005^a
Chewiness	70.305 ± 3.592^{b}	$55.556 \pm 4.519^{a,b}$	60.283 ± 4.254^{b}	66.155 ± 5.079^{b}	44.038 ± 2.773^a
Springiness	5.299 ± 0.321^a	4.552 ± 0.598^a	5.370 ± 0.625^a	5.637 ± 0.249^a	4.363 ± 0.050^a
Cohesiveness	0.914 ± 0.006^a	0.923 ± 0.006^a	0.914 ± 0.014^a	0.913 ± 0.004^a	0.919 ± 0.014^a

^{a-b} Within a line, different superscript lowercase letters denote significant differences (P<0.05) among the samples.

236 Treatments: (T2) control with addition of 0.24 gL⁻¹ CaCl₂; (T4) 0.5 gL⁻¹ MCP; (T9) 0.25 gL⁻¹ Blend 1 + 0.12 gL⁻¹ CaCl₂; (T10) 0.25 gL⁻¹ Blend 2

 $+ 0.12 \text{ gL}^{-1} \text{ CaCl}_2$; and (T11) $0.25 \text{ gL}^{-1} \text{ MCP} + 0.12 \text{ gL}^{-1} \text{ CaCl}_2$. Blend 1 is a mixture of MCP with polyphosphate and Blend 2 is a mixture of MCP with polyphosphate and Blend

238 MCP with MKP.

239