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Summary of Skovgaard [18] double-saddlepoint approximations.8

These approximations start with the joint CGF for random variables 𝑅(𝑇) and𝑇 and compute9

approximations for the conditional survival function P{𝑅(𝑇) ≥ 𝑥 | 𝑇 = 𝑛} when 𝑇 represents10

discrete time with counting measure on N.11

Let K(r, s) = lnM(r, s) be the joint CGF of {𝑅(𝑇), 𝑇} defined on the open convex region12

(r, s) ∈ B ∩ C with (r, s) ! (𝑥, 𝑛). When 𝑅(𝑇) is absolutely continuous, Skovgaard [18, §3]13

developed an approximation P𝐶 for the conditional survival function such that14

P𝐶 {𝑅(𝑇) ≥ 𝑥 | 𝑇 = 𝑛} ' P{𝑅(𝑇) ≥ 𝑥 | 𝑇 = 𝑛} 𝑥 > 0. (53)

He used the Bleistein [22] method for inversion of transformM(r, s)/r which carefully deals15

with the fact that this integrand has a simple pole at r = 0.16

For the case in which 𝑅(𝑇) is integer-valued, [18, §4] provides two continuity corrections17

P𝐷1 and P𝐷2 for the conditional survival function as in (53). These approximations follow18

the approach used in Daniels [24, §6] for single-saddlepoint approximations of unconditional19

survival functions and also use the Bleistein [22] method. We summarise all three formulas20

below for completeness.21

Skovgaard [18] approximation P𝐶 for 𝑅(𝑇) continuous22

The Skovgaard double-saddlepoint P𝐶 approximation is23

P𝐶 {𝑅(𝑇) ≥ 𝑥 | 𝑇 = 𝑛} = 1 −Φ(𝑤̂) − 𝜙(𝑤̂)
(
1
𝑤̂
− 1
𝑢̂

)
𝑟 ≠ 0, (54)

where Φ and 𝜙 are the standard normal CDF and density functions. Here,

𝑤̂ = sgn(𝑟)
√︁
2 [{K(0, 𝑠0) − 𝑠0𝑛} − {K(𝑟, 𝑠) − 𝑟𝑥 − 𝑠𝑛}] (55)

𝑢̂ = 𝑟
√︁
|K′′(𝑟, 𝑠)| / |K′′ss(0, 𝑠0)|, (56)
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2 R. W. BUTLER

where K′′ is the 2 × 2 Hessian of K and K′′ss = 𝜕2K/𝜕s2. The saddlepoint (𝑟, 𝑠) is determined
as

𝑥 = K′r(𝑟, 𝑠) (𝑟, 𝑠) ∈ B ∩ C (57)
𝑛 = K′s(𝑟, 𝑠)

where K′r = 𝜕K/𝜕r. The other saddlepoint 𝑠0 solves 𝑛 = K′s(0, 𝑠0) for (0, 𝑠0) ∈ B ∩ C. The24

expression (54) is meaningful so long as 𝑛 > 0 and 𝑥 is in the interior of the convex hull of the25

support of 𝑅(𝑇).When (𝑟, 𝑠) ∈ B ∩ C and (0, 𝑠0) ∈ B ∩ C, then the arguments for the
√· in (55)26

and (56) are positive.27

Skovgaard [18] approximations P𝐷1 and P𝐷2 for 𝑅(𝑇) integer-valued28

If the support of 𝑅(𝑇) is the integer lattice, then the continuity corrections P𝐷1 and P𝐷2 for29

P{𝑅(𝑇) ≥ 𝑚 | 𝑇 = 𝑛} with 𝑚 a positive integer are given below as variations on the continuous30

formula above.31

Approximation P𝐷1 uses the saddlepoint pairs (𝑟, 𝑠) and (0, 𝑠0) from the continuous setting32

determined by solving (57) with 𝑥 = 𝑚. Then33

P𝐷1{𝑅(𝑇) ≥ 𝑚 | 𝑇 = 𝑛} = 1 −Φ (𝑤̂) − 𝜙 (𝑤̂)
(
1
𝑤̂
− 1
𝑢̃1

)
𝑟 ≠ 0 (58)

where 𝑤̂ is given in (55). The value of 𝑢̃1 which makes the continuity correction is34

𝑢̃1 = (1 − 𝑒−𝑟 )
√︁
|K′′(𝑟, 𝑠)| / |𝐾 ′′ss(0, 𝑠0)| . (59)

For the second continuity correction, the correction uses an offset value of𝑚 or𝑚− = 𝑚−1/2.
We define the offset saddlepoint (𝑟, 𝑠) as solving

𝑚− = K′r(𝑟, 𝑠) (𝑟, 𝑠) ∈ B ∩ C
𝑛 = K′s(𝑟, 𝑠).

The other saddlepoint 𝑠0 is the same and solves 𝑛 = K′s(0, 𝑠0) for (0, 𝑠0) ∈ B ∩ C. Then35

P𝐷2{𝑅(𝑇) ≥ 𝑚 | 𝑇 = 𝑛} = 1 −Φ (𝑤̃2) − 𝜙 (𝑤̃2)
(
1
𝑤̃2
− 1
𝑢̃2

)
𝑟 ≠ 0, (60)

where

𝑤̃2 = sgn(𝑟)
√︁
2 [{K(0, 𝑠0) − 𝑠0𝑛} − {K(𝑟, 𝑠) − 𝑟𝑚− − 𝑠𝑛}]

𝑢̃2 = 2 sinh(𝑟/2)
√︁
|K′′(𝑟, 𝑠)| / |K′′ss(0, 𝑠0)| .

36

Proof of Corollary 1. For fixed r, denote the convergence boundary edge solving 1−H(𝑒r, 𝑒s) =37

0 as 𝑠 = 𝑠(r). Using implicit differentiation,38

𝑑𝑠(r)
𝑑r

= −
H′y𝑒r

H′z𝑒𝑠
< 0,
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whereH′y = 𝜕H(y, z)/𝜕y|y=𝑒r ,z=𝑒𝑠̂ > 0, etc. Further implicit differentiation gives39

−H′z
𝑑2𝑠(r)
𝑑r2

= H′y𝑒r +H′z𝑒𝑠
{
𝑑𝑠(r)
𝑑r

}2
+
(
1
𝑑𝑠(r)
𝑑r

)
H′′

(
1
𝑑𝑠(r)
𝑑r

)𝑇

, (61)

whereH′′ is the Hessian matrix ofH(𝑒r, 𝑒s) in (r, s) or40

H′′ =
(

H′′
yy𝑒
r H′′

yz𝑒
r+𝑠

H′′
yz𝑒
r+𝑠 H′′

zz𝑒
𝑠

)
.

Since H(𝑒r, 𝑒s) is a bivariate MGF, it’s Hessian is positive definite by the Cauchy-Schwarz41

inequality. Thus, (61) shows that 𝑑2𝑠(r)/𝑑r2 < 0 along 𝜕B and the proof is complete. �
42

Proof of remainder of Theorem 2. We prove inequality (13). That non-strict inequality holds43

follows from the triangle inequality. With 𝑝 𝑗𝑘 = P{𝑅 = 𝑗 , 𝐹 = 𝑘} then44

|H(y, z𝑒𝑖 𝜃 )| =

������ ∞∑︁𝑗=0
∞∑︁
𝑘=0

𝑝 𝑗𝑘y 𝑗 (z𝑒𝑖 𝜃 )𝑘
������ ≤ ∞∑︁

𝑗=0

∞∑︁
𝑘=0

𝑝 𝑗𝑘

��y 𝑗 (z𝑒𝑖 𝜃 )𝑘 �� = H(y, z) (y, z) ∈ N .

Therefore, to show the inequality is strict we assume equality exists for some 0 ≠ 𝜃 ∈ (0, 2𝜋)
and show that this leads to a contradiction. If equality exists, there exists 𝛼 ∈ [0, 2𝜋) such that

0 + 0𝑖 = H(y, z𝑒𝑖 𝜃 ) −H(y, z)𝑒𝑖𝛼

=

∞∑︁
𝑗=0

∞∑︁
𝑘=0

𝑝 𝑗𝑘y 𝑗 (z𝑒𝑖 𝜃 )𝑘 −
∞∑︁
𝑗=0

∞∑︁
𝑘=0

𝑝 𝑗𝑘y 𝑗z𝑘𝑒𝑖𝛼

=

∞∑︁
𝑗=0

∞∑︁
𝑘=0

𝑝 𝑗𝑘y 𝑗z𝑘 [{cos(𝜃𝑘) − cos𝛼} + {sin(𝜃𝑘) − sin𝛼} 𝑖]

= 𝐴 + 𝐵𝑖.

Since 𝐴 = 0 = 𝐵,

0 = 𝐴 cos𝛼 + 𝐵 sin𝛼 =

∞∑︁
𝑗=0

∞∑︁
𝑘=0

𝑝 𝑗𝑘y 𝑗z𝑘 [cos(𝜃𝑘) cos𝛼 + sin(𝜃𝑘) sin𝛼 − 1]

=

∞∑︁
𝑗=0

∞∑︁
𝑘=0

𝑝 𝑗𝑘y 𝑗z𝑘 [cos(𝜃𝑘 − 𝛼) − 1] . (62)

For (62) to hold, cos(𝜃𝑘 − 𝛼) must be 1 for almost every (a.e.) 𝑘 or on P = {𝑘 ≥ 1 : 𝑝 𝑗𝑘 > 045

∃ 𝑗}, the support of 𝐹. Thus 𝜃P − 𝛼 := {𝜃𝑘 − 𝛼 : 𝑘 ∈ P} ⊆ 2𝜋N = {0, 2𝜋, 4𝜋, . . .} and46

P ⊆ 𝛼/𝜃 + (2𝜋/𝜃)N. However, Theorem 2 assumes that F(z) is aperiodic so that only the47

integer lattice can cover P . Thus the spacing 2𝜋/𝜃 = ±1 so that 𝜃 = ±2𝜋 and a contradiction is48

reached. �
49

Proof of Corollary 2. We derive expansions for the mean and variance of 𝑅(𝑛) as 𝑛 → ∞50

which are based on general residue expansions. To derive (18), we first note that the Laurent51
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expansion of the GF for E{𝑅(𝑛)} about the value z = 1 is52

H′y(1, z)
F𝑆(z)(1 − z)2

=
𝜉−2
(1 − z)2

+ 𝜉−1
1 − z +A(z), (63)

where A(z) is analytic in a neighbourhood of z = 1. Here,53

𝜉−2 =
H′y(1, 1)
F𝑆(1)

=
𝜌

𝜇

and54

𝜉−1 = −
𝑑

𝑑z
H′y(1, z)
F𝑆(z)

����
z=1

=
−E{𝐹𝑅}

𝜇
+ 𝜌

2𝜇2
[E{𝐹2} − 𝜇] .

Thus, we use the inversion formula,55

E{𝑅(𝑛)} = [z𝑛]
H′y(1, z)

F𝑆(z)(1 − z)2
=
1
2𝜋𝑖

∫
𝐶𝜀

H′y(1, z)
F𝑆(z)(1 − z)2

1
z𝑛+1

𝑑z,

where 𝐶𝜀 is a circle of small radius 𝜀 > 0 centered at 0. Deform the contour 𝐶𝜀 to the integral
over 𝐶1+𝜀 which jumps over the 2-pole at z = 1. Then, by Cauchy’s residue theorem as in
Theorem 1 of [5],

E{𝑅(𝑛)} = −Res
{ H′y(1, z)
F𝑆(z)(1 − z)2z𝑛+1

; 1
}
+ 𝑜{(1 + 𝜀)−𝑛}

= (𝑛 + 1)𝜉−2 + 𝜉−1 + 𝑜{(1 + 𝜀)−𝑛} 𝑛→∞,

where56

𝑜{(1 + 𝜀)−𝑛} = 1
2𝜋𝑖

∫
𝐶1+𝜀

H′y(1, z)
F𝑆(z)(1 − z)2

1
z𝑛+1

𝑑z.

To derive (19), we use the GF for the second factorial moment. From Theorem 1 we can
show that

E[𝑅(𝑛){𝑅(𝑛) − 1}] = [z𝑛] 𝜕
2

𝜕y2
F𝑆(z)

1 −H(y, z)

����
y=1

= [z𝑛]
{

H′′yy(1, z)
F𝑆(z)(1 − z)2

+
2{H′y(1, z)}2

F𝑆(z)2(1 − z)3

}
= [z𝑛]

{
𝜉−3
(1 − z)3

+ 𝜉−2
(1 − z)2

+ 𝜉−1
1 − z +𝑂(1)

}
. (64)

The first two coefficients in the Laurent expansion in (64) are57

𝜉−3 =
2𝜌2

𝜇2
and 𝜉−2 =

E{𝑅2} − 𝜌
𝜇

− 4𝜌
2

𝜇2

{
E{𝐹𝑅}
𝜌

− E{𝐹
2} − 𝜇
2𝜇

}
.

By the same argument using Cauchy’s deformation theorem to determine the expansion of58

E{𝑅(𝑛)}, we get59

E[𝑅(𝑛){𝑅(𝑛) − 1}] = (𝑛 + 2)(𝑛 + 1)
2

𝜉−3 + (𝑛 + 1)𝜉−2 +𝑂(1). (65)
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Using (65),60

V{𝑅(𝑛)} ∼ (𝑛 + 2)(𝑛 + 1)
2

𝜉−3 + (𝑛 + 1)𝜉−2 + E{𝑅(𝑛)} − [E{𝑅(𝑛)}]2 (66)

to order 𝑂(1). Now replace E{𝑅(𝑛)} in (66) with its full expansion to order 𝑂(1) in (18) to61

derive the variance expansion in (19). �
62

Proof of Corollary 3. In the derivation of residue approximation R̂𝑛(y) for R𝑛(y) using63

Cauchy’s residue theorem, the error is64

R𝑛(y) − R̂𝑛(y) =
1
2𝜋𝑖

∫
𝐶1+𝜂(y)

F𝑆(z)
1 −H(y, z)

1
z𝑛+1

𝑑z (67)

on circle𝐶1+𝜂(y) for some small 𝜂(y) > 0.Weshowhere that this error is uniformly𝑂{(1+𝜂0)−𝑛}65

as 𝑛 → ∞ for some 𝜂0 > 0. As y ranges over a compact set D0, define 𝜂0 = infy∈D0 𝜂(y) > 0.66

Compute the error integral (67) over 𝐶1+𝜂0 for each y ∈ D0. Over the contour of the integral67

max
z∈𝐶1+𝜂0

|F𝑆(z)| < 𝐵1 < ∞.

Since 𝜂0 was chosen so that 1 − H(y, z) has no zeros on 𝐶1+𝜂0 , then over the contour of the68

error integral and the compact range of z,69

0 < min
y∈D0 ,z∈𝐶1+𝜂0

|1 −H(y, z)| = 𝐵2 < ∞.

Hence, using the triangle inequality,70

|R𝑛(y) − R̂𝑛(y)| <
1

2𝜋(1 + 𝜂0)𝑛+1

∫
𝐶1+𝜂0

|F𝑆(z)|
|1 −H(y, z)| 𝑑z <

1
(1 + 𝜂0)𝑛

𝐵1
𝐵2
,

for y ∈ D0. Thus,71

max
y∈D0
|R𝑛(y) − R̂𝑛(y)| = 𝑂{(1 + 𝜂0)−𝑛} 𝑛→∞. (68)

To convert this into uniformity for the CGF over s ∈ D, a neighbourhood of 0, take72

D0 = {𝑒s : s ∈ D}. Then the uniform rate of convergence in (22) follows from (68) through the73

mappingR𝑛(y)→ lnR𝑛(𝑒s) = K𝑛(s) for y ∈ D0. �74

Proof of Corollary 4. The proof makes use of the following weak convergence theorem for75

MGFs due to Curtiss [23].76

Proposition 1 (Continuity theorem for MGFs). Let {𝑍𝑛 : 𝑛 ≥ 1} be a sequence of random77

variables which has the corresponding sequence of MGFs {M𝑛(s)} all of which are convergent78

on |s| < 𝜀 for some 𝜀 > 0. Suppose there exists function M(s) finite on |s| < 𝜀 for which79

lim𝑛→∞M𝑛(s) = M(s) for all |s| < 𝜀. Then M is the moment generating function for some80

variable 𝑍 such that 𝑍𝑛 → 𝑍 in distribution as 𝑛→∞.81

A comparable continuity theorem for sequences of characteristic functions (CFs) is much82

better known and is given in Feller [25, §XV.3 theorem 2]. The advantage of Proposition 1 is83

that it only requires local convergence of {M𝑛(s)} in an arbitrarily small real neighbourhood84
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of 0 whereas the same theorem for sequences of CFs requires convergence for all real argument85

values of the CF sequence.86

The uniformity of the residue expansion as expressed in Corollary 3 allows us to replace the87

true CGF of 𝑅(𝑛) with its residue approximation which we denote as88

K̂𝑅(𝑛)(r) = −(𝑛 + 1) ln 𝑧(𝑒r) + lnD(r) with D(r) = F𝑆{𝑧(𝑒r)}
H′z{𝑒r, 𝑧(𝑒r)}

.

Adapting this approximation for the standardised value of 𝑅(𝑛) or 𝑍𝑛 = {𝑅(𝑛) − 𝑛𝜌/𝜇}/𝜎𝑛89

with 𝜎𝑛 =
√
𝑛𝜎𝑅.𝐹 , then90

K̂𝑍𝑛
(r) = −(𝑛 + 1) ln 𝑧(𝑒r/𝜎𝑛 ) − r 𝑛𝜌

𝜇𝜎𝑛

+ lnD(r/𝜎𝑛). (69)

The last term in (69) vanishes as 𝑛→∞ and 𝜎𝑛 →∞ since91

lim
r→0

D(r) = lim
y→1

F𝑆{𝑧(y)}
H′z{y, 𝑧(y)}

=
𝜇

𝜇
= 1.

Taylor expansion of 𝑧(𝑒r) about r = 0 in the first term in (69) gives

𝑧(𝑒r) = 1 + r 𝑑𝑧(𝑒
r)

𝑑r

����
r=0
+ r
2

2
𝑑2𝑧(𝑒r)
𝑑r2

����
s=0
+𝑂(r3)

= 1 − r 𝜌
𝜇
− r
2

2

(
𝜎2𝑅.𝐹 −

𝜌2

𝜇2

)
+𝑂(r3)

where the derivatives of 𝑧(𝑒r) have been determined using implicit differentiation of the92

expression 0 = 1 −H{𝑒r, 𝑧(𝑒r)}. Thus,93

𝑧(𝑒r/𝜎𝑛 ) = 1 −
{

r𝜌
√
𝑛𝜇𝜎𝑅.𝐹

+ r2

2𝑛𝜎2
𝑅.𝐹

(
𝜎2𝑅.𝐹 −

𝜌2

𝜇2

)}
+𝑂(𝑛−3/2).

Substituting this into (69) and Taylor expanding ln(1 − 𝑦) ≈ −𝑦 − 𝑦2/2 −𝑂(𝑦3), then

K̂𝑍𝑛
(r) ∼ −𝑛

{
− r𝜌
√
𝑛𝜇𝜎𝑅.𝐹

− r2

2𝑛𝜎2
𝑅.𝐹

(
𝜎2𝑅.𝐹 −

𝜌2

𝜇2

)
− 1
2

(
r𝜌

√
𝑛𝜇𝜎𝑅.𝐹

)2}
− r
√
𝑛𝜌

𝜇𝜎𝑅.𝐹

=
r2

2
.

From Proposition 1, 𝑍𝑛 converges weakly to a standard normal distribution. �94

Proof of Corollary 6. Following the same argument as used in Corollary 3, the residue95

approximation for J𝑛(x, y), given as Ĵ𝑛(x, y) in (24), has uniform error which is 𝑜{(1 + 𝜀)−𝑛}96

as 𝑛 → ∞ for (x, y) in compact neighbourhoods of (1, 1). Thus K̂𝑛(r, s) = ln Ĵ𝑛(𝑒r, 𝑒s) can be97

used in place of the joint CGF K𝑛(r, s) = lnJ𝑛(𝑒r, 𝑒s) for proving the central limit result. The98

residue term is negligible as 𝑛→∞ so that if 𝑄𝑛 =
(
𝑄(𝑛) − 𝑛𝜌𝑄/𝜇

)
/
√
𝑛 etc.,99

K𝑄𝑛 ,𝑅𝑛
(r, s) ∼ −𝑛 ln

[
𝑧

{
𝑒r/(
√
𝑛𝜎𝑄.𝐹 ), 𝑒s/(

√
𝑛𝜎𝑅.𝐹 )

}]
−
√
𝑛

(
r𝜌𝑄
𝜇𝜎𝑄.𝐹

+ s𝜌𝑅
𝜇𝜎𝑅.𝐹

)
. (70)
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The bivariate quadratic expansion

𝑧(𝑒r, 𝑒s) ≈ 1 − r
𝜌𝑄

𝜇
− s 𝜌𝑅

𝜇
− r
2

2

(
𝜎2𝑄.𝐹 −

𝜌2
𝑄

𝜇2

)

− s
2

2

(
𝜎2𝑅.𝐹 −

𝜌2
𝑅

𝜇2

)
− rs

(
𝜎2𝑄𝑅.𝐹 −

𝜌𝑄𝜌𝑅

𝜇2

)
captures all the asymptotic terms for an expansion of the first term in (70). Following the proof100

of Corollary 4,101

K𝑄𝑛 ,𝑅𝑛
(r, s)→ 1

2
(r2 + s2) + rs𝜌 with 𝜌 =

𝜎2
𝑄𝑅.𝐹

𝜎𝑄.𝐹𝜎𝑅.𝐹

,

as 𝑛→∞ in a small neighbourhood N of (r, s) = (0, 0).102

This alone does not prove the bivariate normal limit based on Proposition 1 which only103

applies to univariate distributions. To extend Proposition 1 to a bivariate distribution, we use104

the Cramér-Wold theorem as given in Billingsley [21, theorem 29.4]. This device which says105

that the bivariate limit holds if and only if 𝐿𝑛 = 𝑐1𝑄𝑛 + 𝑐2𝑅𝑛 converges to a Normal (0, 𝑣2) for106

every vector (𝑐1, 𝑐2) , where107

𝑣2 = (𝑐1, 𝑐2)
(
1 𝜌

𝜌 1

)(
𝑐1
𝑐2

)
= 𝑐21 + 2𝑐1𝑐2𝜌 + 𝑐

2
2.

For any such vector, the CGF of 𝐿𝑛 is approximately108

K𝐿𝑛
(r) = K𝑄𝑛 ,𝑅𝑛

(𝑐1r, 𝑐2r)→
1
2
(𝑐21r

2 + 𝑐22r
2) + r2𝜌𝑐1𝑐2 =

1
2
𝑣2r2

which is the CGF for a Normal (0, 𝑣2). This convergence occurs in a neighbourhood of r = 0109

consisting of those r-values such that (𝑐1r, 𝑐2r) ∈ N . By Proposition 1, 𝐿𝑛 = 𝑐1𝑄𝑛 + 𝑐2𝑅𝑛110

converges to a Normal (0, 𝑣2) for every (𝑐1, 𝑐2) so the weak limit is a bivariate normal using111

the Cramér-Wold device. �
112

Proof of Corollary 7. To get an expansion for the mean E{𝑃𝑚} as 𝑚 → ∞, take a Laurent113

expansion of its GF about y = 1 so that114

𝜇

(1 − y)2ES (y)
=

𝜉−2
(y − 1)2

+ 𝜉−1
y − 1 +A(y),

where A(y) is analytic at y = 1 and115

𝜉−2 =
𝜇

𝜌
and 𝜉−1 = −

𝜇

2𝜌2
{
E{𝑅2} − 𝜌

}
.

We take the y𝑚−1 coefficient to give the 𝑜(1) expansion for E{𝑃𝑚} as given in Corollary 7.116

To derive an expansion for the variance, we first need to confirm that the second factorial117

moment of 𝑃𝑚 is118

E{𝑃𝑚(𝑃𝑚 − 1)} = 2
∞∑︁
𝑛=1

𝑛P{𝑃𝑚 > 𝑛}. (71)
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The terms that are summed in (71) have a GF such that119

2𝑛P{𝑃𝑚 > 𝑛} = [z𝑛]
{
2z
𝑑

𝑑z
1 − P𝑚(z)
1 − z

}
.

Now replace P𝑚(z) with [y𝑚]P(y, z) from (28) so that

2𝑛P{𝑃𝑚 > 𝑛} = [z𝑛]
[
2z
𝑑

𝑑z
[y𝑚]

{
1

(1 − y)(1 − z) −
P(y, z)
(1 − z)

}]
= [y𝑚z𝑛]

[
2z
𝑑

𝑑z

{
yFS (z)

(1 − y){1 −H(y, z)}

}]
= [y𝑚−1z𝑛]

[
2z
𝑑

𝑑z

{
FS (z)

(1 − y){1 −H(y, z)}

}]
.

The second line follows by substituting the expression forP(y, z) in (28). Evaluating the double120

generating function in the square brackets at z = 1 and taking the coefficient of y𝑚−1 gives the121

factorial moment as122

∞∑︁
𝑛=1
2𝑛P{𝑃𝑚 > 𝑛} = [y𝑚−1] 𝑑

𝑑z

{
2FS (z)

(1 − y){1 −H(y, z)}

}����
z=1

.

Hence, taking the derivative in z with 𝑓2 = F ′S (1) = [E{𝐹2} − 𝜇]/2 and 𝑟2 = E ′S (1) =
[E{𝑅2} − 𝜌]/2, then

E{𝑃𝑚(𝑃𝑚 − 1)} = [y𝑚−1]
{
2𝜇H′z(y, 1)
(1 − y)3ES (y)2

+ 2 𝑓2
(1 − y)2ES (y)

}
= [y𝑚−1]

{
2𝜇2

(1 − y)3𝜌2
+ 𝐵

(1 − y)2
+𝑂

(
1
1 − y

)}
as y→ 1, where123

𝐵 =
2
𝜌
𝑓2 − 2

𝜇

𝜌2
E{𝑅𝐹} + 4𝜇

2

𝜌3
𝑟2.

Applying a residue expansion as in Theorem 1 of [5] shows that as 𝑚 →∞,124

E{𝑃𝑚(𝑃𝑚 − 1)} =
(𝑚 + 1)𝑚
2

2𝜇2

𝜌2
+ 𝑚𝐵 +𝑂(1).

Now substituting the expansion of E{𝑃𝑚} in Corollary 7 to order 𝑜(1) in the expression125

V{𝑃𝑚} = E{𝑃𝑚(𝑃𝑚 − 1)} + E{𝑃𝑚} − [E{𝑃𝑚}]2, (72)

we get the expansion for V{𝑃𝑚} in (32) of Corollary 7. �
126

Proof of Corollary 8. From the normal limits for rewards in Corollary 4, we let 𝑚 → ∞ and127

𝑛→∞ in such a manner that (𝑚 − 𝑛𝜌/𝜇)/(
√
𝑛𝜎𝑅.𝐹 )→ 𝑧. Then,128

P{𝑅(𝑛) < 𝑚} = P
{
𝑅(𝑛) − 𝑛𝜌/𝜇
√
𝑛𝜎𝑅.𝐹

<
𝑚 − 𝑛𝜌/𝜇
√
𝑛𝜎𝑅.𝐹

}
→ Φ(𝑧) 𝑛→∞.
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Write the tail probability for 𝑃𝑚 in terms of 𝑅(𝑛) and standardise 𝑃𝑚 to 𝑍𝑚 = (𝑃𝑚 −129

𝑚𝜇/𝜌)/
√︁
V{𝑃𝑚} where V{𝑃𝑚} is the expression in (32). This gives130

Φ(𝑧)← P{𝑅(𝑛) < 𝑚} = P{𝑃𝑚 > 𝑛} = P
{
𝑍𝑚 >

𝑛 − 𝑚𝜇/𝜌
√
𝑚(𝜇/𝜌)3/2𝜎𝑅.𝐹

}
. (73)

As 𝑛, 𝑚 →∞, then
√︁
𝑚𝜇/𝜌 ∼

√
𝑛 so that131

𝑛 − 𝑚𝜇/𝜌
√
𝑚(𝜇/𝜌)3/2𝜎𝑅.𝐹

∼ 𝑛𝜌/𝜇 − 𝑚√
𝑛𝜎𝑅.𝐹

→ −𝑧.

Thus as 𝑚 → ∞, the right tail probability in (73) has the same limit as P {𝑍𝑚 > −𝑧} which132

converges to Φ(𝑧) = 1 −Φ(−𝑧) and the normal limit holds. �
133

Example 11 continuation (Reward as an interarrival random walk). We prove that134

lim
z↓0

P̂𝑚(z) = 0 = P𝑚(0) for 𝑚 ≥ 1.

The limit hinges on the behaviour of zG ′0{𝑦̂(z)} in the denominator. First consider the case in135

which 𝔯0 < ∞. As z ↓ 0, 𝑦̂(z) ↑ 𝔯0 but z = 1/G0{𝑦̂(z)} so that136

lim
z↓0
zG ′0{𝑦̂(z)} = limz↓0

G ′0{𝑦̂(z)}
G0{𝑦̂(z)}

= lim
y↑𝔯0

G ′0(y)
G0(y)

. (74)

If 𝔯0 < ∞, the support of the mass function of PGF G0(y) extends up to 𝑀𝑈 = ∞, so that137

G ′0(y)y
G0(y)

∼ 𝑀𝑈 = ∞ y ↑ 𝔯0

is the upper reach for solution of the saddlepoint equation. Thus the limit in (74) is ∞ so that138

P̂𝑚(z)→ 0.139

Now consider the case 𝔯0 = ∞ and let 𝑀𝑈 ≤ ∞ be the supremum of the support for 𝑅. For140

any 𝑀0 < 𝑀𝑈 ,141

zG ′0{𝑦̂(z)}𝑦̂(z) =
G ′0{𝑦̂(z)}
G0{𝑦̂(z)}

𝑦̂(z) > 𝑀0,

for 𝑦̂(z) sufficiently large, as this reflects the right edge for the solvability of the saddlepoint142

equation. Thus143

1
zG ′0{𝑦̂(z)}

<
𝑦̂(z)
𝑀0

and144

P̂𝑚(z) =
1

𝑦̂(z)𝑚
1 − F(z)

{𝑦̂(z) − 1}𝜇zG ′0{𝑦̂(z)}
<

𝑀1
𝑦̂(z)𝑚

(75)

for some 𝑀1 sufficiently large. As z ↓ 0, then 𝑦̂(z) → ∞ and the upper bound in (75) goes to145

0. �
146

Proof of Theorem 4. Start with the identity147

P{𝑃𝑥 > 𝑛} = P{𝑅(𝑛) < 𝑥}. (76)
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We take the GF in 𝑛! z on the left hand side and the LT in 𝑥! r on the right to get148

[z𝑛] 1 − P𝑥(z)
1 − z = [𝑒−𝑥r]R𝑛(−r)

r
,

where R𝑛(r) is the MGF for the mixed distribution of 𝑅(𝑛). Taking the LT of the right-hand149

side of (76) requires some care when considering that the distribution of 𝑅(𝑛) has a point mass150

at 0. Let 𝑔𝑛(𝑢)𝑑𝑢 = P{𝑅(𝑛) ∈ (𝑢, 𝑢 + 𝑑𝑢 | 𝑅(𝑛) > 0} be the conditional density portion of 𝑅(𝑛)151

and denote 𝑐𝑛 = P{𝐹1 ≤ 𝑛}. Then,152

P{𝑅(𝑛) < 𝑥} = 1 − 𝑐𝑛 + 𝑐𝑛
∫ 𝑥

0
𝑔𝑛(𝑢)𝑑𝑢

has LT in r! 𝑥 as153

1 − 𝑐𝑛
r
+ 𝑐𝑛
r

∫ ∞

0
𝑒−r𝑢𝑔𝑛(𝑢)𝑑𝑢 =

1
r
E{𝑒r𝑅(𝑛)} = R𝑛(−r)

r
.

Now, taking the LT in 𝑥! r on the left side and the GF in 𝑛! z on the right side leads to154

[𝑒−𝑥rz𝑛]
{

1
r(1 − z) −

P𝑐(r, z)
1 − z

}
= [z𝑛𝑒−𝑥r]

{
R𝑐(−r, z)
r

}
. (77)

Substituting in (77) for155

R𝑐(−r, z) =
F𝑆(z)

1 −H𝑐(−r, z)
,

equating the resulting two expressions in curly braces, and solving for P𝑐(r, z) gives (41).156

To derive (42),

P{𝑃𝑥 ≥ 𝑛} = [z𝑛]
1 − zP𝑥(z)
1 − z = [z𝑛] 1 − z[𝑒

−𝑥r]P𝑐(r, z)
1 − z

= [z𝑛𝑒−𝑥r]
{

1
r(1 − z) −

zP𝑐(r, z)
1 − z

}
.

Substituting for P𝑐(r, z) and some reduction gives

P{𝑃𝑥 ≥ 𝑛} = [z𝑛𝑒−𝑥r]
[
1
r

{
1 + zF𝑆(z)
1 −H𝑐(−r, z)

}]
, (78)

the result in (42). Since157

E{𝑃𝑥} =
∞∑︁
𝑛=1
P{𝑃𝑥 ≥ 𝑛},

this is computed from the inverse LT of the double transform in (78) evaluated at z = 1. Thus,

E{𝑃𝑥} =
∞∑︁
𝑛=0
P{𝑃𝑥 ≥ 𝑛} − 1 = [𝑒−𝑥r]

[
1
𝑟

{
1 + F𝑆(1)
1 −H𝑐(−r, 1)

}]
− 1 (79)

= [𝑒−𝑥r] F𝑆(1)
1 −H𝑐(−r, 1)

= [𝑒−𝑥r] 𝜇

r2E𝑆(r)
. �
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Proof of Corollary 9. To derive the moment expansions, we use the residue expansions in158

[2, theorem 1 and lemma 1] that involve poles of order greater than 1. The inversion of (79)159

involves a 2-pole and its inversion leads to the expansion for E{𝑃𝑥} in (44).160

Derivation of the expansion forV{𝑃𝑥} in (45) follows the same approach as used inCorollary161

7wherein the LT for the factorial momentE{𝑃𝑥(𝑃𝑥−1)} is first derived. After some derivation,162

we get163

E{𝑃𝑥(𝑃𝑥 − 1)} = [𝑒−𝑥r]
{
2𝜇H′𝑐z(−r, 1)
r3E𝑆(r)2

+ 2 𝑓2
r2E𝑆(r)

+𝑂(1/r)
}
,

as r→ 0, where 𝑓2 = F ′
𝑆
(1) = [E{𝐹2} − 𝜇]/2. Residue expansion as 𝑥 → ∞ of this LT leads164

to165

E{𝑃𝑥(𝑃𝑥 − 1)} =
𝑥2

2
2𝜇2

𝜌2
+ 𝑥
(
2
𝜌
𝑓2 − 2

𝜇

𝜌2
E{𝑅𝐹} + 2𝜇

2

𝜌3
E{𝑅2}

)
+𝑂(1),

as 𝑥 →∞.Using (72), we add the expansion for E{𝑃𝑥} and subtract the square of the expansion166

for E{𝑃𝑥} to get the expansion for V{𝑃𝑥} in (45). �167

Proof of Theorem 5. The justification of the residue approximation is based on [6, lemma 4].168

As such, the approximation is 𝑒𝑟 (z)𝑥𝜉−1(z), where 𝜉−1(z) is the residue for the simple pole that169

P𝑐(r, z) has at 𝑟(z) and is computed as170

𝜉−1(z) = lim
r→𝑟 (z)

[{r − 𝑟(z)}P𝑐(r, z)] =
1 − F(z)

−𝑟(z)H′𝑐r{−𝑟(z), z}
.

We now justify the conditions of Lemma 4 in [6]. For any z < 𝔯, a value 𝑟(z) exists for the171

following reason. Since172

H𝑐(r, z) = E{𝑒r𝑅z𝐹 },

H𝑐(0, z) < ∞ and values forH𝑐(r, z) range from 0 at r = −∞ to∞ as r increases monotonically173

and approaches the boundary of the open convergence region for H𝑐 . Thus, 𝑟(z) exists and is174

uniquely defined so that (𝑟(z), z) lies in the convergence region of H𝑐 . Since H𝑐 is analytic at175

(𝑟(z), z), 0 < H′𝑐r{−𝑟(z), z} < ∞ so that all factors of 𝜉−1(z) and hence P̂𝑥(z) are well-defined.176

Condition X in Lemma 4 of [6] requires that their exist a 𝜂 > 0 such that over the closed177

interval 𝑉 = [𝑟(z) − 𝜂, 𝑟(z)]178

max
𝑣 ∈𝑉
|P𝑐(𝑣 + 𝑖𝑤, z)| → 0 |𝑤 | → ∞, (80)

for each z < 𝔯. Since (𝑟(z), z) is in the open convergence domain of H𝑐 , the factor of P𝑐 in179

curly braces in (41) remains bounded with this limit; the other factor 1/r = 1/(𝑣 + 𝑖𝑤) ensures180

that (80) holds.181

To satisfy condition Z in Lemma 4 of [6], we show that the modulus derivative |P ′𝑐r{𝑟(z) −182

𝜂 + 𝑖𝑤, z}| is integrable in 𝑤. From (41),183

P ′𝑐r(r, z) = −
1
r2

{
1 − 1 − F(z)
1 −H𝑐(−r, z)

}
+ 1
r

1 − F(z)
{1 −H𝑐(−r, z)}2

H′𝑐r(−r, z). (81)

The first term is absolutely integrable since the modulus of the term in curly braces remains184

bounded over the integration range and the modulus of the leading factor is 𝑂(|𝑤 |−2). For the185

second term, by assumption |H′𝑐r(−𝑟(z)− 𝜂 + 𝑖𝑤, z)| = 𝑜(|𝑤 |−𝜀) as |𝑤 | → ∞. Thus, the second186

term overall is 𝑜(|𝑤 |−(1+𝜀)) and is therefore absolutely integrable. Thus, |P ′𝑐r(𝑟(z) − 𝜂 + 𝑖𝑤, z)|187

is integrable in 𝑤 and condition Z in Lemma 4 of [6] holds. �
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188

Example 14 continuation (Reward as an interarrival random walk). We first show that189

condition Z of Theorem 5 pertaining to H𝑐(r, z) in (50) holds for this example. With H𝑐(r, z)190

given in (50), then191

H𝑐(r, z) = 𝑂(𝑒2−2
√
1−2r) and H′𝑐r(r, z) = 𝑂(𝑒2−2

√
1−2r/
√
1 − 2r) |r| → ∞

so that192

H′𝑐r(−𝑎 + 𝑖𝑦, z) = 𝑜(𝑒−2
√
1−2(−𝑎+𝑖𝑦)) |𝑦 | → ∞. (82)

Holding 𝑎 > −1/2 fixed, then
√︁
1 − 2(−𝑎 + 𝑖𝑦) =

√
𝑟𝑒𝑖 𝜃/2 with193

𝑟 =

√︃
(1 + 2𝑎)2 + 4𝑦2 > max(2|𝑦 |, 1 + 2𝑎) and 𝜃 = tan−1

−2𝑦
1 + 2𝑎 ∈

(
−𝜋
2
,
𝜋

2

)
.

Then,194 ���𝑒−2√1−2(−𝑎+𝑖𝑦)��� = 𝑒−2√𝑟 cos(𝜃/2) < 𝑒−√2max(√2 |𝑦 |,√1+2𝑎), (83)

since cos(𝜃/2) > cos(𝜋/4) = 1/
√
2. For fixed 𝑎, the expression in (83) is 𝑂(𝑒−2

√
|𝑦 |) as195

|𝑦 | → ∞. �
196

Example 14 continuation (Infinite residue expansion is exact).Wenow prove that the infinite197

residue expansion using all the poles in (52) is pointwise convergent and leads to the exact PGF198

P𝑥(z). The proof uses [2, §2.7, corollary 2.2 ] converted so that it inverts a LT rather a MGF.199

According to Corollary 2.2, it suffices that a sequence {𝑎𝑚} ⊂ R exists with 𝑎𝑚 →∞ such that200

𝑅𝑚(𝑥) =
1
2𝜋𝑖

∫ −𝑎𝑚+𝑖∞

−𝑎𝑚−𝑖∞
P𝑐(r, z)𝑒𝑥r𝑑r→ 0 𝑚 →∞.

We show this holds for any sequence {𝑎𝑚} such that 𝑎𝑚 →∞ and the values of −𝑎𝑚 avoid the201

real portions of the poles in (52). We write202

𝑅𝑚(𝑥) =
1
2𝜋
𝑒−𝑎𝑚𝑥

∫ ∞

−∞
P𝑐(−𝑎𝑚 + 𝑖𝑦, z)𝑒𝑖𝑥𝑦𝑑𝑦.

Using integration by parts with 𝑢(𝑦) = P𝑐(−𝑎𝑚 + 𝑖𝑦, z) and 𝑑𝑤(𝑦) = 𝑒𝑖𝑥𝑦𝑑𝑦 leads to 𝑤(𝑦) =203

𝑒𝑖𝑥𝑦/(𝑖𝑥) and204

2𝜋𝑒𝑎𝑚𝑥𝑅𝑚(𝑥) = P𝑐(−𝑎𝑚 + 𝑖𝑦, z)
𝑒𝑖𝑥𝑦

𝑖𝑥

����𝑦=∞
𝑦=−∞

− 1
𝑥

∫ ∞

−∞
P ′𝑐r(−𝑎𝑚 + 𝑖𝑦, z)𝑒𝑖𝑥𝑦𝑑𝑦.

In the first term |P𝑐(−𝑎𝑚 + 𝑖𝑦, z)| → 0 as |𝑦 | → ∞ so it is 0 and only the second term needs205

consideration. We show that |P ′𝑐r(−𝑎𝑚 + 𝑖𝑦, z)| is integrable in 𝑦 uniformly for large 𝑚. Using206

the product rule,207

P ′𝑐r(r, z) = −
1
r2

{
1 − 1 − F(z)
1 −H𝑐(−r, z)

}
+ 1
r

{
1 − F(z)

[1 −H𝑐(−r, z)]2

}
H′𝑐r(−r, z).

Since |H𝑐(𝑎𝑚 − 𝑖𝑦, z)| → 0 as 𝑚 → ∞ or |𝑦 | → ∞, the moduli of the factors in curly braces208

are all uniformly bounded in 𝑦 = Im(−r) ∈ R and in sufficiently large 𝑚. The first term with209
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factor 1/r2 is 𝑂(|𝑦 |−2) along the line of integration r = −𝑎𝑚 + 𝑖𝑦 and integrable uniformly in210

𝑚. Using arguments that lead to (82) and (83), then211 ���𝑒−2√1−2(𝑎𝑚−𝑖𝑦)��� < 𝑒−√2max(√2 |𝑦 |,√2𝑎𝑚−1)
so that212

|H′𝑐r(𝑎𝑚 − 𝑖𝑦, z)| < 𝑐𝑒−
√
2max(
√
2 |𝑦 |,

√
2𝑎𝑚−1)},

for some 𝑐 > 0. Thus,∫ ∞

−∞
|H′𝑐r(𝑎𝑚 − 𝑖𝑦, z)|𝑑𝑦 < 𝑐

∫ ∞

−∞
𝑒−
√
2max(
√
2 |𝑦 |,

√
2𝑎𝑚−1)𝑑𝑦

= 2𝑐(𝑎𝑚 − 1/2)𝑒−
√
4𝑎𝑚−2 + 2𝑐

∫ ∞

𝑎𝑚−1/2
𝑒−2
√
𝑦𝑑𝑦

= 𝑐𝑒−
√
(4𝑎𝑚−2)

(
2𝑎𝑚 +

√︁
4𝑎𝑚 − 2

)
.

This converges to 0 as 𝑚 →∞. Thus 𝑅𝑚(𝑥) = 𝑜(𝑒−𝑎𝑚𝑥)→ 0 as 𝑚 →∞. �213
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-1.8 -1.4 -1 -0.8 -0.4 0 0.2         r214

Figure 9. A plot of 1032 × |Ê1(𝑒r)|/P̂𝑥(𝑒r) vs. r showing the relative size and the 𝑂(10−32)215

order of the second-order pair of residue terms |Ê1(𝑒r)| as compares to the leading term P̂𝑥(𝑒r).216

Example 15 (Reward as an interarrival random walk). Suppose 𝑅 |𝐹 = 𝑛 ∼ Gamma (𝛼𝑛, 𝛽)217

with mean 𝛼𝑛/𝛽 and 𝐹 ∼ Geometric (𝑝) with mean 1/𝑝. Then G0(r) = (1 − r/𝛽)−𝛼 and218

F(z) = 𝑝z/(1 − 𝑞z) and219

H𝑐(r, z) =
𝑝z(1 − r/𝛽)−𝛼
1 − 𝑞z(1 − r/𝛽)−𝛼 .

We take𝛼 = 2, 𝛽 = 1, and 𝑝 = 1/3 so thatE{𝑅} = 6 andV{𝑅} = 30.The residue approximation220

for the MGF of the reward at time 𝑛 has 𝑧(r) = (1 − r)2 as the root of 1 −H𝑐(r, z) = 0 so that221

R̂𝑐𝑛(r) = (1 − r)−2𝑛
1

3 − 2(1 − r)2
− 0.224 < r < 1.
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With 𝛼 = 2, the expression forR𝑐(r, z) in (16) is rational in z and given by222

R𝑐(r, z) =
(1 − r)2 − 2z/3

(1 − 2z/3){(1 − r)2 − z}
(84)

The value 𝑧(r) = (1 − r)2 accounts for the smallest dominant pole while the other pole occurs223

at z = 3/2. Using the method of partial fractions, the exact MGF is224

E{𝑒r𝑅(𝑛)} = R̂𝑐𝑛(r) +
(
2
3

)𝑛 (1 − r)2 − 1
(1 − r)2 − 3/2

r < 1. (85)

The point mass at 0 has probability (2/3)𝑛 and so the conditional MGF of 𝑅(𝑛) given 𝑅(𝑛) > 0225

is226

R𝑛+(r) =
E{𝑒r𝑅(𝑛)} − (2/3)𝑛

1 − (2/3)𝑛 =
R̂𝑐𝑛(r) + (2/3)𝑛 1/2

(1−r)2−3/2
1 − (2/3)𝑛 . (86)

This is the MGF of a continuous distribution and its survival function when scaled by the factor227

𝑐𝑛 = 1 − (2/3)𝑛 gives us the exact value for P{𝑅(𝑛) > 𝑥}.228

In determining the survival function of 𝑅(10), we compare two saddlepoint approximations229

in the left panel of Figure 10. The solid line shows a single-saddlepoint approximation based230

on R10+(r) in (86) and scaled by factor 1 − (2/3)10 . This represents the best we can do using231

saddlepoint approximations since it is using the exact MGF with the point mass removed.232

This transform is seldom computable in other applications. The dashed red line shows a233

single-saddlepoint approximation based on residue approximation R̂𝑐,10(r). The dotted line is234

a Normal (16, 22) approximation based on the moment approximations of Corollary 2. The235

right panel plots the percentage relative error of the approximation using R̂𝑐,10(r) taking the236

approximation based on R10+(r) as the standard. What this plot shows is that little is lost in237

using the residue approximation over the approximation based on knowingR10+(r).238
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Figure 10. (Left panel) Approximations for the survival function of 𝑅(10) using single-241

saddlepoint inversion of R10+(r) (solid black line), single-saddlepoint inversion of R̂𝑐,10(r)242

(dashed red line), and a Normal (16, 22) approximation (dotted line). (Right panel) Plot of243

percentage relative errors respecting the tails for inversion using R̂𝑐,10(r) as compares with244

inversion usingR10+(r).245

Example 16 (Reward as an interarrival random walk). Difficulties arise in Example 15246

when using the residue approximation for the PGF of first-passage to reward 𝑥. There are two247

solutions to G0(−r) = (1+ r)−2 = 1/z which occur at 𝑟(z) = −1±
√
z with the plus solution used248

to compute the residue approximation as249

P̂𝑥(z) = 𝑒−(1−
√
z)𝑥
(
1 +
√
z
)√
z

6(1 − 2z/3) z < 3/2.

The problem with this expression is that it is not analytic at z = 0 and so it cannot serve as
a PGF surrogate since there is no Taylor expansion in z about 0 for this approximation. It is
analytic in

√
z so a Taylor expansion in

√
z can be found but the weights are far from what they

should be. An exact expression for P𝑥(z) may be computed using partial fractions since the
expression for R𝑐(r, z) in (84) is rational with the second pole at −1 −

√
z. This leads to an

exact expression for P𝑥(z) using partial fractions as

P𝑥(z) = 𝑒−(1−
√
z)𝑥
(
1 +
√
z
)√
z

6(1 − 2z/3) − 𝑒
−(1+
√
z)𝑥
(
1 −
√
z
)√
z

6(1 − 2z/3) (87)

= 𝑒−𝑥
1

6(1 − 2z/3)
{
2
√
z sinh(𝑥

√
z) + 2z cosh(𝑥

√
z)
}
. (88)

The two individual terms in (87) are not analytic in z but rather expand in powers of
√
z.When250

combined, the half-powers in z for the two terms cancel and result in a PGF that is analytic in z251

as expressed in (88) where both terms in the curly braces are analytic in z at z = 0. Expression252

(88) shows that P𝑥(z) has a simple dominant pole at z = 3/2 and an essential singularity at z253

= ∞. The use of P̂𝑥(z) as a surrogate for P𝑥(z) fails because both poles −1 ±
√
z need to be254

included in a residue expansion for it to be an adequate approximation of the PGF. �255

If in Example 16 we assume 𝛼 is a general integer 𝛼 ∈ N, then P̂𝑥(z) fails to adequately256

approximateP𝑥(z) except when 𝛼 = 1. For 𝛼 ≥ 2 there are 𝛼 roots equally spaced on a circle in257

C and residue expansion terms using all 𝛼 roots are required to adequately approximate P𝑥(z).258
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