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Abstract

We give here the proofs of Lemmas 3.1 and 4.1 in the paper. An extra lemma

relating to the covariance matrix Q. is in the Appendix.
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1. Proofs of Lemmas

For convenience, we restate the lemmas with the numbering as in the paper. Equa-

tion references in the format “Eq. ( )” herein refer to the numbering in the paper.

Lemma 1 With the substitutions k = |zn®|, m; = |q¢; +y;/n*/?|k, k' =k —m_, we

have the following limiting behaviours as n — oo:

L(r+k)(1 = gpn(An)) W (Ina)rfJ/Qfle_%yTQzly

n /\ ~ ;
UL, m! U A1) (2m)7det(Q)) =)

ak n
nh—>r20 é')\(zzz)(z_l Fe()\n))k _ e_g;(xavl)/r(l—a); (25)
1 (26)
L(r ) ( nyr " T Ow)yeTr (1 —a)’

nl;n;OnP< Z X (n) =n =miy ) = fron(D): (27)
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Proof of Lemma 1: To prove (24), consider the first factor, in which we let y;,, =

yj/n‘”‘/z, hjn = ¢ + yjn and hqp = Z'j]:l hjn; then replace m; by hj,k, recall k' =

k—my = (1 — hyn)k, and calculate

L(r+k) 2r(r + k — 1) (r + k — 1)7+h—1le=(r+k=1)
KATT myt /200 = )k (1= hyp ) k) Ok (=R

1
X )
IT7—) /27 Rk (hjk)omkehonk

using Stirling’s formula for the factorials. Some calculations show this is asymptotic

(1.1)

to
kr—J/Q—l 1

o (1.2)

(271')‘]/2\/(1 — hyn) H}]:1 Rijn (1 — hp)A—hen)k H Lkl

Recall the ¢j, and ¢4, defined in Eq. (19). They depend on A, but this was

suppressed in the notation there. We have reinserted the factor An in (24) and in what

follows, for emphasis. Throughout this proof, A > 0 is held fixed, so the convergence

is pointwise in A as n — oo. That this is enough to get the required convergence in

Theorem 3.1 is shown in the argument from Eq. (29) — Eq. (30) in the paper, which

avoids the need for checking a dominated convergence condition to take the limit as

n — oo through the integral with respect to A.
Continuing, we multiply the expression in (1.2) by the g-terms in (24) to get
I(r+k)
k'l H —1my!

kr—J/Q—l

= Gan(An)y (et 2 in(ATV hjnk
¢< sy

J
(1 — Q4n H gjn(An))
j=1

<.
Il
—_

where, recall, ¢;n(An) = Z;’Zl gjn(An). Note from Eq. (3.12) that, as n — oo, for
1<j<J,
Fj(An) Fi(oo) TG —a)/]! al'(j —a)

an()‘n) - ?:1 Fé()\n) - Z;il F@(OO) a Eéoil F(é a a)/f' - j!F(l - a) i q(j17 4)

and 1 — g4, (An) = 1 —q4, where g4 = Z'jjzl g;j. Also hjn, = ¢; +yjn — g;. Now write

<1Iq+;:(/\n )(1 hin)k y H (q]n (An) )hjnk‘
— hin
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Z;Ll(yjn +qj — an(An)))<1fzj:1<qj+ym>>k
J
1- Zj:l(qj + Yjn)

ﬁ (1 _ Yjn +q; — an()\n))(q]--&-ym)k
q; + Yjn

= (1+

X
Jj=1

J J
_ > i=1(Win + a5 — @jn(An))
—exp[(1 ; 4j +ypn) K Tog (1+ I )

J

Yin + Q5 _Q‘n()\n)
+ (g + yjn)k log (1 2 P )] (1.5)

j=1

Since yj, — 0 we can expand the RHS of (1.5) using log(1 + 2) = z — 2%/2 — -
and log(1 — z) = —z — 2%2/2 — - - for small 2. The first order terms cancel and in the

exponent we're left with

J J 4 g’
ﬁ(z(yjng gjn(An))? +(Zj:1(yﬂn+qﬂ 4in(An))) ) (1.6)

7
2 = QJ + yjn 1-— ijl(qj + y]n)
To proceed we want to estimate the ¢; — ¢;n(An) term, and for this, noting (1.4),

we need to estimate F;(An) and >_,_; Fy(An). For the first, just note that

Fj(0c0) — Fj(An) = a' / 2 T dy = g'o(n_o‘), as n — oo. (1.7)
J- J-

For the second, recall Eq. (2.7) and write

= T -« N
ZFK(An) = O‘Z% faZ/A ik lem2dz. (1.8)
=1 =1 e=17An
The first term on the RHS of (1.8) is
a(z Z)/ Zrmom e de
l=1 I>n
— - 1 — 1 —
_a/o (1—e"%)27%" dz—a/ ;Z‘ e *dz (1.9)

Integrating by parts, we see that the first term on the RHS of (1.9) equals I'(1 — ).

The second term equals

s Poi 1
/ Z e dz=n" a/ P(folsson(nz) > f)az*afldz,
K' 0 nz z
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with “Poisson(-)” denoting a Poisson rv with the indicated mean. Noting that, by
Markov’s inequality, P(Poisson(nz) > n) < nz/n = z, we can apply dominated

convergence and the weak law of large numbers to see that

1 .
lim P(P(”Ln(”z> > 1)ow“)‘—lclz —0, (1.10)
and similarly
lim P(M > f)az_a_ldz = / az % tdz =1.
n—oo [y nz z 1
It follows that
F(f — O() —a —«
QZT:n +o(n™%), (1.11)
>n
and consequently
= F(é — O[) —« —a
QZT:F(l—a)—n +o(n™?). (1.12)
£=1

Returning to (1.8), we next estimate

az . ﬁ g7l _Zdz—a(z Z)/ Zmomlem2dy

=1 >n AN
e 1 [*°_ /Poi 1
-4 (1—e ™)z tdy — —/ P(iOISSOH(TLZ) > f)azfo‘fldz.
ne Jy ne Jy nz z

The first term on the RHS here equals A™*n~%—o(n~%). In the second term, whenever
A < 1 the component of the integral over [A, 1] is o(n~%) by (1.10), and the component
over [1,00] is 1 + o(1), and when A > 1, the integral equals A= + o(1). Thus this
second term is A™*n " %1513 +n”%1ia<iy +o(n”®). Subtracting this from the first
term we obtain

n oo ¥
2 a1l —2 —a, —a —a —a
a;/}\ T Ye7?dz = A" *1p<qy —n %Ly +o(n”?),

and subtracting this from the RHS of (1.8), keeping in mind (1.12), we conclude
Z Fe(An) = T(1—-a)=n""=X""n""1p<y +n 1<y +o(n™)

R e R (13

(1.7), (1.12) and (1.13) show that Fj(o0) — Fj(An) and >, Fy(An) — > 2, Fy(c0)
= > Fe(An) = T(1 — a)/a are O(n™®) as n — oo, and then, referring to (1.4),
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we can prove that g; — gjn,(An) = O(n~%). Using this, and recalling k = |zn®] and

Yin = y;/n%/?, we see that (1.6) simplifies to

J J )2 r ; J_ ; 2
—lxn“(;zzj—l-fg(jl_lyqf))—l—o(l):—(Zy+w>+o(l). (1.14)

Let @1 =1, and when J > 2, set Q; = (1—2;]:1 itj 0i) H;I:“;ﬁj qi, 2 <j<J. Let

Q= H}']:1 g, and let Qy be the J x J matrix whose inverse is

Q Q - Q
1 Q Q2 -+ Q

Q= (1.15)
O S S T S
Q Q - Qy

Then the RHS of (1.14) can be written in the form —zy”Q7'y/2, so the limit of the
LHS of (1.5) is exp(—zy?Q;'y/2), and thus (1.3) is asymptotic to
krfJ/Qfl

5y sy pr—J/2-1,-5y"Q;"y

e - S ) VEeQ)

In the Appendix to this Supplement, Lemma 2.1 verifies that Q;, the inverse of the

(1.16)

matrix Q;l in (1.15), is indeed the J x J matrix with diagonal elements ¢;(1 — ¢;) and
off-diagonal elements —g;q;, 1 < i # j < J appearing in Eq. (3.2), and calculates its
determinant. So (24) is proved.

To prove (25): from (6) and [;°(1 — e *)az"*"'dz =T'(1 — «) we see that

An
U(An) =1+ ()\n)"‘/o (1—e az"*"1dz

— 14 ()T — a) — (/\n)o‘/ (1 e Haz—o"1dz, (1.17)
An
in which, integrating by parts,
(An)“ / (1—e?)az *tdz=1—-e"+ (An)® / e F2 %z =14 0(e ).
An n

So U(An) = (An)°T(1 — a) + o(n™ ), and consequently

(An)* 1 —a
Wowm) - T —a) +o(n™9). (1.18)

Combining (1.13) with (1.18) and recalling k& = [zn®], we obtain

(An)* & B (A" Vv1)/T(1—a) IRNE
(\I/()\n) Z;Fe(/\n» = (1 - o +o(n )) ., (1.19)
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and this tends to e=*(A " "VD/T(1=) a5 1 5 00. So we have proved (25).
To prove (26), just use (1.18) to get

1 N 1
L(r)Y ()" L) (An)* T (1l —a)

(1.20)

This leaves just the fourth factor to deal with. To prove (27) we modify the local
limit result obtained in [1], Prop. 3.1, where we dealt with a sequence (Xj;,) only
slightly different to (Xl-(;f)); namely, there we had P(X1,(\) = j) = pjn(A), 1 <j <n,
and p,(A) = (pjn(A))1<j<n, rather than the expressions in the paper, and with the
relevant summation being over 1 < £ < n rather than J + 1 < ¢ < n. We indicate just
the main modifications needed.

First, we claim Prop. 3.1 of [1] remains true if X;,(An) therein is replaced by
X7 (An), the denominator T'(1—«) in Eq. (3.10) of [1] is replaced by T'(1—a)(1—gq4),
and corresponding modifications are made in Eq. (3.11) and Eq. (3.12) of [1]. To check
this, note that p;, () in the proof of Prop. 3.1 of [1] is replaced by pgi)()\)7 so in Eq.
(3.10) of [1], once hn > 3, we need only replace the denominator by

> FOn) =3 F(n) =3 F;(n)
j=J+1 Jj=1 J=1
J
= T(l-a)=> T(-a)/j'+o(l) =T(1-a)(l—q4)+o(1).
j=1

Here, note that lim_, Fj(An) = ol'(j — @)/j! = I'(1 — a)g; by Eq. (7) and Eq.
(10), apply (1.13) and recall that ¢y = Z'jjzl g;. The rest of the proof of Part (a) of
Prop. 3.1 of [1] remains the same so the only modification necessary is to replace the
denominator T'(1 — «) by I'(1 — a)(1 — ¢q4). Likewise the proofs of Part (b) and (c¢) of
the proposition remain valid after corresponding modifications.

We used these results in the proof of Prop. 3.2 of [1] to show that the limiting
distribution of n=1 ZZLQLQJ Xin(An) is an infinitely divisible distribution with charac-
teristic exponent 7y (dy) given by Eq. (2.7) of [1]. For the present situation, m(dy) is
modified to ﬂg\J)(dy) just by replacing the denominator I'(1 — ) in Eq. (2.7) of [1] with
I'(1 —a)(1 — gy). Thus, letting qbg\'i)(y) = Eexp (iVX:E,{)()\n)), v € R, and recalling
that ¥ = k —my ~ |an®(1 — ¢4)], we have

lzn®(1-q4)]

. ! . 1w
nhﬁngo( E\‘Q(V/n'))k = nILH;oEeXp (? Z X;{)()\n))

i=1
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ivy ()
e_r(l_‘ﬂ-) fR\{O} (ewy_l)nx (dy)

— " fR\{O}(Ei"y_l)HA(dy) — E(eiqu()\)).

Note that the factor of (1 — g4) cancels and (27) follows as in [1]. This completes the
proof of Lemma 3.1. g
Lemma 2 With the substitutions k = |zn®|, m; = [q; +y;/n%/? |k, k' =k —m, we
have the following limiting behaviour as n — oco:

T TH—1
)7J/2716—§y Q;y

(k 1 1 — Q—i-n
WITIL, m)! H U Br7dei(Qy) -2y
. . N Lzn®) — —a
i (F(la— a) ; ( a a)) = e/ (1.22)
LF(n)L(0/a+ kIO +1) 2k —1)!IT(O+ 1) (1.23)
ak'T'(0/a+ 1)T(n + 0) ak''T(0/a+1) '

o
nlgrolo ”P(ZXi(v{) = ”/> = fr.(1): (1.24)

i=1

Proof of Lemma 2: As in the proof of Lemma 1 we let y;,, = yj/na/z, hjn = @ +Yjn,
replace m; by hj,k, and in (1.21) consider first the factor
(k-1 (k—1)!
FITTZ myt (= han) R ()t
E—J/2-1 1

~

X o
Vom0 o) T e (1 o) R T B

(see (1.1)). Multiply this by the ¢g-terms in (1.21) (again we reinsert the An argument)

to get
J
(k—1)!
7(1 — q4+n(An)) H QJn )\n
k! H 1 m] ale
~ B (1 - q+n(An)))<1*h+">’“ f[ (an(M))hj"k.
V@D (= by [Ty by 2 e S\ By

Very similar working as in (1.5)—(1.16) then gives the asymptotic in (1.21) for this, and
similar working as in (1.12) and (1.19) proves (1.22).
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For (1.23) just note that
T(n)T@/a+k)TO+1) n %%k -1D)ITO+1) 2%k —-1)T0O+1)
ak'I'(0/a+ 1)T'(n +0) ak''T'(0/a + 1) ak''T'(0/a+ 1)

Finally in (1.24) is the factor involving the X;,. Using Fourier inversion as in Eq.

(5.13)

( X‘])—n) = /M e~ () (v/n')) " dv, (1.25)

2
where ¢£LJ)( ) = E( exp(wX( ))), v € R. For this we have
Yy €M — a) /5!
Yi—sp T —a)/t!
g €T — a) /3 = o, €T — )/t

- ST =)0 =S T — ) /0! . (1.26)

(For notational simplicity, in (1.26) and what follows, we replace n’ by n, which is

¢ (v/n) =

irrelevant asymptotically.) In the numerator of (1.26) we can replace the exponentials
in the second summation by 1+ O(1/n), so that (1.26) becomes
Y €T — @)/ = YL TG —a)/at
n J
2 Pl =)/l =320 Tl — o) /!
We will next show that

N Givi/np( (1 — Lo -
> : ‘(|J @) _T-qa) + n_a/ (€ — 1)z 1z — " — f o(n™). (1.28)
ji=1 J: @ 0 :

¢ (v/n) = O(1/n). (1.27)

To prove (1.28), first consider

I

Jj=1

:/ (e —1)e 727" 1dz+/ (ezew/n—ez)e*zz*afldz
0 0

11/]/77, j
Rz 70( 1

dz —/ (ezeiy/n — 1)efzz70‘71dz
0

— /OO (1 _ G_Z)Z_a_ldz + n=% /OO (eRZ(eiv/”_l) _ 1)Z_a_1d2’
0 0

=T'l-a)/a+n"“ /Ooo(eil’z — 1)z tdz + o(n™). (1.29)

(We integrated by parts to get the first term on the RHS of (1.29).) Next, towards
(1.28), we show

iuj/nr : —o .
>o- U “)zna +n® / (€"* = 1)z~ *dz + o(n ") (1.30)
1

|
ji>n J



Supplement to: Asymptotics of the Allele Frequency Spectrum 9
Write the LHS of (1.30) as

F(] —Oé) ivj/n F(]—G{)
ZT+Z(e )= (1.31)
ji>n i>n
The first term in (1.31) equals n=%*/a + o(n™%), by (1.11). To deal with the second
term, define rvs Y,, with

I'(j—a)
B s T =)/

and note that Y,, > n w.p.1. Take u > 1 and calculate

P(Y, =j) = j>n, (1.32)

P(Y,/n <u)= P, <nu)=Pn <Y, <nu)

I'j—«a I'(j—« N T(i—«
:ng;w (Jj! )/; (Jj! ) _ o (HO(D)K;M(JJ!)’ (1.33)

where we used (1.11) to estimate the denominator. Then note that

I'j—«a > nzj —nz —a—1
anaz(],):a/o Z (,)e z dz

| |
n<j<nu J: J:

= a/ P(n < Poisson(nz) < nu)z~* 'dz. (1.34)
0

This expression equals

/0 P(n(\l/%;) - Poissoil/(%) —nz < n(f/%:))az_a_ldz,

and when 0 < z < 1, P(Poisson(nz) > n) < z, so we can apply dominated convergence

to see that the last expression converges to
/ P(—00 < N(0,1) < o0)l{jcocypaz ® Mdz =1 —u (1.35)
0

Consequently Y, /n N Y, where P(Y <wu) = (1 —u"%)1f,>1y and so
E(ei”Y"/” -1) - / eou T tdu — 1 = / (e¥* —1)au"*'du. (1.36)
1 1

Hence we have for the second term in (1.31)

—x

ivj/n I‘(j—a)_n ivY, /n —a
j;l(e /—1)7—7(1+E(e /—1))+0(n )
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n—Ot

= + n_a/ (e"* —1)z7*'dz + o(n™%), (1.37)
1

(0%

proving (1.30). Subtracting (1.30) from (1.29) gives gives (1.28).

Taking account of (1.29) we can write (1.27) as

o5 (v/n) o

_T-a)at+n Jo (e — 1)z tdz —n=%/a — YL T(j — a) /4! to(n=?)
r(1—a)/a—n=/a—-3_ Tl —a)/l
—a 1/ vz _ Zfafl 2

=14+ " Jyle ) d +o(n™%), (1.38)

I(1—a)/a—n—/a—37_ T{-a)/
where we obtained the denominator by putting ¥ = 0 in (1.27). The denominator in

(1.38) is

J
Nli—a)/a—n"%/a-— ZF(K —a)/ll+o(n™%)
=1
— D(1 - a)(1 - g /e — n® Ja+ o{n~®), (1.39)

and so we obtain

D) = 1.4 (€7 = Dz~ Mde/T(1 — a)
¢n (/ ) 1+ na(l_qu)_l/F(l—a)

Raised to power k' = k —my ~ zn®(1 — g4 ), this converges to

+o(n™%). (1.40)

x/l(ei” —Daz" " 1dz/T(1 - a).
0

Note that again the factor 1 — g4 cancels, and it follows as in [1] that

k/
HILHQO”P(ZX%) :n’> = fr. (D). (1.41)
=1
This completes the proof of Lemma 4.1. O

2. Appendix: Inverse of Qs

Lemma 2.1. The matriz Qs defined as the inverse of the matrix Q}l in (1.15)
has diagonal elements ¢;(1 — q;), off-diagonal elements —q;q;, 1 < i # j < J, and

determinant

(1- ;qj) .1;[1%‘
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Proof of Lemma 2.1: For the inverse, we refer to [2]. Take the matrix P in their
notation to be our matrix Q (so their vector p is our (¢1,...,4qs)). Leta = 1—23.]:1 q;

and recall Q = Hj:l qj. Then by Eq. (21) of [2] (note J < n, so Q' exists)

1 1 1 1 1y 1
Q' =diag(—,...,— ) + ——— 117 =diag(—,...,— ) + -11T,
o) Ty w e/

where 1 is a J-vector of 1s. The diagonal elements of the matrix on the RHS are

1 + 1 _atgq _ (1- Z;I:l,i;éj i) H{:l,i;ﬁj g _ &
g a gja a® a@
The off-diagonal elements of the matrix are 1/a = @/(aQ). This verifies that the
matrix in (1.15) is indeed the inverse of the matrix Q  in Theorem 3.1.
The determinant can be obtained by modifying the calculations in [2], or directly as
follows. Denote by A the J x J matrix in (1.15) (without the premultiplying factor),
let D = diag(Q1 — Q,...,Qs — Q) and let adj(D) be the adjugate matrix of D. Then

A =D + Q117 and by the Sherman-Morrison formula

J

J
det(A) = det(D) + Q1Tadj(D)1 = [[(Q; - Q) + Q>_[[(@ - Q).
=1 i=1 j#Ai
Note that
Qi=(1- Z 4;) H 4 = (ot %)@ tﬁi)Q,
ISG<Tg#i 1K< T !
s0 Q; — Q = aQ/q;. Hence

J J J J
di
[T-o+eyle-a=[l@-a(+eX5)
j=1 i=1 j#i j=1 i=1
J J
1—a 1 a aJQJ J—1~J—1
= . — 1 = — —_—— = - - .
I Q(1+eg) AL =" =
j= j=
Taking into account the premultiplying factor in (1.15) gives a~'Q~! for the determi-
nant of the matrix in (1.15), hence a@ = (1 — Z;’Zl qj) H}']:1 g; as the determinant of
Q. O
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