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2 S. BHULAI ET AL.

The following definitions are frequently used in the Supplementary Material:

TP\ = TP\ , (B1)
FP\ = �̂�\ − TP\ , (B2)
FN\ = 𝑃 − TP\ , (B3)
TN\ = 𝑁 − �̂�\ + TP\ . (B4)

𝑋\ (𝑎, 𝑏) := 𝑎 · TP\ + 𝑏 with 𝑎, 𝑏 ∈ R,
𝑓𝑋\

(𝑎, 𝑏) := probability distribution of 𝑋\ (𝑎, 𝑏).

E[𝑋\ (𝑎, 𝑏)] = 𝑎 · E[TP\ ] + 𝑏 = 𝑎 · ⌊𝑀 · \⌉
𝑀

· 𝑃 + 𝑏. (1)

D(TP\ ) := {𝑖 ∈ N0 : max{0, ⌊𝑀 · \⌉ − (𝑀 − 𝑃)} ≤ 𝑖 ≤ min{𝑃, ⌊𝑀 · \⌉}} ,
R (𝑋\ (𝑎, 𝑏)) := {𝑎 · 𝑖 + 𝑏}𝑖∈D(TP\ ) . (R)

An overview of the entire Supplementary Material can be viewed in Table 1.17

Table 1: Overview of the Supplementary Material: Each measure is discussed in the
corresponding section in the Supplementary Material

Measure TP TN FN FP TPR TNR FNR FPR PPV NPV FDR FOR

Section 1 2 3 4 5 6 7 8 9 10 11 12

Measure 𝐹𝛽 J MK Acc BAcc MCC ^ FM G(2) PT TS

Section 13 14 15 16 17 18 19 20 21 22 23

1. Number of True Positives18

The number of True Positives TP\ is one of the four base measures. This measure19

indicates how many of the predicted positive observations are actually positive. Under20

the DD methodology, each evaluation measure can be written in terms of TP\ .21

1.1. Definition and distribution22

Since we want to formulate each measure in terms of TP\ , we have for TP\ :

TP\
(𝐵1)
= 𝑋\ (1, 0) ∼ 𝑓𝑋\

(1, 0) .

The range of this base measure depends on \. Therefore, Eq. (R) yields the range of
this measure:

TP\ ∈ R (𝑋\ (1, 0)) .
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1.2. Expectation23

The expectation of TP\ using the DD is given by

E[TP\ ] = E[𝑋\ (1, 0)] (1)
=

⌊𝑀 · \⌉
𝑀

· 𝑃 = \∗ · 𝑃. (2)

1.3. Optimal baselines24

The optimal expectation gives the DD baseline. Eq. (2) shows that the expected value
depends on the parameter \. Therefore, either the minimum or maximum of the
expectation yields the baseline. They are given by

min
\∈[0,1]

(E[TP\ ]) = 𝑃 · min
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
= 0,

max
\∈[0,1]

(E[TP\ ]) = 𝑃 · max
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
= 𝑃.

The values of \ ∈ [0, 1] that minimize or maximize the expected value are \min and
\max, respectively, and are defined as

\min ∈ arg min
\∈[0,1]

(E[TP\ ]) = arg min
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
=

[
0,

1
2𝑀

)
,

\max ∈ arg max
\∈[0,1]

(E[TP\ ]) = arg max
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
=

[
1 − 1

2𝑀
, 1
]
.

Equivalently, the discrete optimizers \∗min ∈ Θ∗ and \∗max ∈ Θ∗ are determined by

\∗min ∈ arg min
\∗∈Θ∗

{E[TP\∗]} = arg min
\∗∈Θ∗

{\∗} = {0},

\∗max ∈ arg max
\∗∈Θ∗

{E[TP\∗]} = arg max
\∗∈Θ∗

{\∗} = {1}.

2. Number of True Negatives25

The number of True Negatives TN\ is also one of the four base measures. This26

base measure counts the number of negative predicted instances that are actually27

negative.28

2.1. Definition and distribution29

Since we want to formulate each measure in terms of TP\ , we have for TN\ :

TN\ = 𝑀 − 𝑃 − ⌊𝑀 · \⌉ + TP\ ,

which corresponds to Eq. (B4). Furthermore,

TN\
(𝐵4)
= 𝑋\ (1, 𝑀 − 𝑃 − ⌊𝑀 · \⌉) ∼ 𝑓𝑋\

(1, 𝑀 − 𝑃 − ⌊𝑀 · \⌉) ,

and for its range

TN\

(𝑅)
∈ R (𝑋\ (1, 𝑀 − 𝑃 − ⌊𝑀 · \⌉)) .
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2.2. Expectation30

TN\ is linear in TP\ with slope 𝑎 = 1 and intercept 𝑏 = 𝑀 − 𝑃 − ⌊𝑀 · \⌉, so its
expectation is given by

E[TN\ ] = E[𝑋\ (1, 𝑀 − 𝑃 − ⌊𝑀 · \⌉)] (1)
= 1 · E[TP\ ] + 𝑀 − 𝑃 − ⌊𝑀 · \⌉

=

(
1 − ⌊𝑀 · \⌉

𝑀

)
(𝑀 − 𝑃) = (1 − \∗) (𝑀 − 𝑃) .

2.3. Optimal baselines31

To determine the range of the expectation of TN\ and obtain baselines, its extreme
values are calculated:

min
\∈[0,1]

(E[TN\ ]) = (𝑀 − 𝑃) min
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
= 0,

max
\∈[0,1]

(E[TN\ ]) = (𝑀 − 𝑃) max
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
= 𝑀 − 𝑃.

The associated optimization values \min ∈ [0, 1] and \max ∈ [0, 1] are

\min ∈ arg min
\∈[0,1]

(E[TN\ ]) = arg min
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
=

[
1 − 1

2𝑀
, 1
]
,

\max ∈ arg max
\∈[0,1]

(E[TN\ ]) = arg max
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
=

[
0,

1
2𝑀

)
.

The discrete equivalents \∗min ∈ Θ∗ and \∗max ∈ Θ∗ are then determined by

\∗min ∈ arg min
\∗∈Θ∗

{E[TN\∗]} = arg min
\∗∈Θ∗

{1 − \∗} = {1},

\∗max ∈ arg max
\∗∈Θ∗

{E[TN\∗]} = arg max
\∗∈Θ∗

{1 − \∗} = {0}.

3. Number of False Negatives32

The number of False Negative FN\ is one of the four base measures. This base measure33

counts the number of mistakes made by predicting instances negative while the actual34

labels are positive.35

3.1. Definition and distribution36

Eq. (B3) shows that FN\ can be expressed in terms of TP\ :

FN\
(𝐵3)
= 𝑃 − TP\ = 𝑋\ (−1, 𝑃) ∼ 𝑓𝑋\

(−1, 𝑃) ,

and for its range:

FN\

(𝑅)
∈ R (𝑋\ (−1, 𝑃)) .
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3.2. Expectation37

As Eq. (B3) shows, FN\ is linear in TP\ with slope 𝑎 = −1 and intercept 𝑏 = 𝑃.
Hence, the expectation of FN\ is given by

E[FN\ ] = E[𝑋\ (−1, 𝑃)] (1)
= −1 · E[TP\ ] + 𝑃 =

(
1 − ⌊𝑀 · \⌉

𝑀

)
· 𝑃 =

(
1 − \∗

)
· 𝑃.

3.3. Optimal baselines38

The range of the expectation of FN\ determines the baselines. The extreme values are
given by

min
\∈[0,1]

(E[FN\ ]) = 𝑃 · min
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
= 0,

max
\∈[0,1]

(E[FN\ ]) = 𝑃 · max
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
= 𝑃.

The associated optimization values \min ∈ [0, 1] and \max ∈ [0, 1] are then

\min ∈ arg min
\∈[0,1]

(E[FN\ ]) = arg min
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
=

[
1 − 1

2𝑀
, 1
]
,

\max ∈ arg max
\∈[0,1]

(E[FN\ ]) = arg max
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
=

[
0,

1
2𝑀

)
,

respectively. The discrete versions \∗min ∈ Θ∗ and \∗max ∈ Θ∗ of the optimizers are as
follows:

\∗min ∈ arg min
\∗∈Θ∗

{E[FN\∗]} = arg min
\∗∈Θ∗

{1 − \∗} = {1},

\∗max ∈ arg max
\∗∈Θ∗

{E[FN\∗]} = arg max
\∗∈Θ∗

{1 − \∗} = {0}.

4. Number of False Positives39

The number of False Positives FP\ is one of the four base measures. This base measure40

counts the number of mistakes made by predicting instances as positive while the actual41

labels are negative.42

4.1. Definition and distribution43

Each base measure can be expressed in terms of TP\ , thus we have for FP\ :

FP\
(𝐵2)
= ⌊𝑀 · \⌉ − TP\ = 𝑋\ (−1, ⌊𝑀 · \⌉) ∼ 𝑓𝑋\

(−1, ⌊𝑀 · \⌉) ,

and for its range:

FP\

(𝑅)
∈ R (𝑋\ (−1, ⌊𝑀 · \⌉)) .
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4.2. Expectation44

As Eq. (B2) shows, FP\ is linear in TP\ with slope 𝑎 = −1 and intercept 𝑏 = ⌊𝑀 · \⌉,
thus the expectation of FP\ is defined as

E[FP\ ] = E[𝑋\ (−1, ⌊𝑀 · \⌉)] (1)
= −1 · E[TP\ ] + ⌊𝑀 · \⌉ = ⌊𝑀 · \⌉

𝑀
· (𝑀 − 𝑃)

= \∗ · (𝑀 − 𝑃) .

4.3. Optimal baselines45

The extreme values of its expectation give the baselines of FP\ . Hence:

min
\∈[0,1]

(E[FP\ ]) = (𝑀 − 𝑃) min
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
= 0,

max
\∈[0,1]

(E[FP\ ]) = (𝑀 − 𝑃) max
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
= 𝑀 − 𝑃.

The corresponding optimization values \min ∈ [0, 1] and \max ∈ [0, 1] are

\min ∈ arg min
\∈[0,1]

(E[FP\ ]) = arg min
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
=

[
0,

1
2𝑀

)
,

\max ∈ arg max
\∈[0,1]

(E[FP\ ]) = arg max
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
=

[
1 − 1

2𝑀
, 1
]
.

The discrete versions \∗min ∈ Θ∗ and \∗max ∈ Θ∗ of the optimization values are
determined by

\∗min ∈ arg min
\∗∈Θ∗

{E[FP\∗]} = arg min
\∗∈Θ∗

{\∗} = {0},

\∗max ∈ arg max
\∗∈Θ∗

{E[FP\∗]} = arg max
\∗∈Θ∗

{\∗} = {1}.

5. True Positive Rate46

The True Positive Rate TPR\ , Recall, or Sensitivity is the performance measure that47

presents the fraction of positive observations that are correctly predicted. This makes48

it a fundamental performance measure in binary classification.49

5.1. Definition and distribution50

The True Positive Rate is commonly defined as51

TPR\ =
TP\

𝑃
. (3)

Hence, 𝑃 > 0 should hold, otherwise, the denominator is zero. Now, TPR\ is linear52

in TP\ and can therefore be written as53

TPR\ = 𝑋\

(
1
𝑃
, 0
)

∼ 𝑓𝑋\

(
1
𝑃
, 0
)
, (4)
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and for its range:

TPR\

(𝑅)
∈ R

(
𝑋\

(
1
𝑃
, 0
))

.

5.2. Expectation54

Since TPR\ is linear in TP\ with slope 𝑎 = 1/𝑃 and intercept 𝑏 = 0, its expectation
is

E[TPR\ ] = E
[
𝑋\

(
1
𝑃
, 0
)]

(1)
=

1
𝑃
· E[TP\ ] + 0 =

⌊𝑀 · \⌉
𝑀

= \∗.

5.3. Optimal baselines55

The range of the expectation of TPR\ directly determines the baselines. The extreme
values are given by

min
\∈[0,1]

(E[TPR\ ]) = min
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
= 0,

max
\∈[0,1]

(E[TPR\ ]) = max
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
= 1.

Furthermore, the corresponding optimization values \min ∈ [0, 1] and \max ∈ [0, 1]
are given by

\min ∈ arg min
\∈[0,1]

(E[TPR\ ]) = arg min
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
=

[
0,

1
2𝑀

)
,

\max ∈ arg max
\∈[0,1]

(E[TPR\ ]) = arg max
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
=

[
1 − 1

2𝑀
, 1
]
.

The discrete versions \∗min ∈ Θ∗ and \∗max ∈ Θ∗ of the optimizers are then

\∗min ∈ arg min
\∗∈Θ∗

{E[TPR\∗]} = arg min
\∗∈Θ∗

{\∗} = {0},

\∗max ∈ arg max
\∗∈Θ∗

{E[TPR\∗]} = arg max
\∗∈Θ∗

{\∗} = {1},

respectively.56

6. True Negative Rate57

The True Negative Rate TNR\ , Specificity, or Selectivity is the measure that shows58

how relatively well the negative observations are correctly predicted. Hence, this59

performance measure is a fundamental measure in binary classification.60
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6.1. Definition and distribution61

The True Negative Rate is commonly defined as

TNR\ =
TN\

𝑁
.

Hence, 𝑁 := 𝑀 − 𝑃 > 0 should hold, otherwise, the denominator is zero. By using
Eq. (B4), TNR\ can be rewritten as

TNR\ =
𝑀 − 𝑃 − ⌊𝑀 · \⌉ + TP\

𝑀 − 𝑃
= 1 − ⌊𝑀 · \⌉ − TP\

𝑀 − 𝑃
.

Hence, it is linear in TP\ and can therefore be written as62

TNR\ = 𝑋\

(
1

𝑀 − 𝑃
, 1 − ⌊𝑀 · \⌉

𝑀 − 𝑃

)
∼ 𝑓𝑋\

(
1

𝑀 − 𝑃
, 1 − ⌊𝑀 · \⌉

𝑀 − 𝑃

)
, (5)

and for its range:

TNR\

(𝑅)
∈ R

(
𝑋\

(
1

𝑀 − 𝑃
, 1 − ⌊𝑀 · \⌉

𝑀 − 𝑃

))
.

6.2. Expectation63

Since TNR\ is linear in TP\ in terms of 𝑋\ (𝑎, 𝑏) with slope 𝑎 = 1/(𝑀 − 𝑃) and
intercept 𝑏 = 1 − ⌊𝑀 · \⌉/(𝑀 − 𝑃), its expectation is

E[TNR\ ] = E
[
𝑋\

(
1

𝑀 − 𝑃
, 1 − ⌊𝑀 · \⌉

𝑀 − 𝑃

)]
(1)
=

1
𝑀 − 𝑃

· E[TP\ ] + 1 − ⌊𝑀 · \⌉
𝑀 − 𝑃

= 1 − ⌊𝑀 · \⌉
𝑀

= 1 − \∗.

6.3. Optimal baselines64

The extreme values of the expectation of TNR\ determine the baselines. The range is
given by

min
\∈[0,1]

(E[TNR\ ]) = min
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
= 0,

max
\∈[0,1]

(E[TNR\ ]) = max
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
= 1.

Moreover, the optimization values \min ∈ [0, 1] and \max ∈ [0, 1] corresponding to
the extreme values are defined as

\min ∈ arg min
\∈[0,1]

(E[TNR\ ]) = arg min
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
=

[
1 − 1

2𝑀
, 1
]
,

\max ∈ arg max
\∈[0,1]

(E[TNR\ ]) = arg max
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
=

[
0,

1
2𝑀

)
,
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respectively. The discrete versions \∗min ∈ Θ∗ and \∗max ∈ Θ∗ of the optimizers are
given by

\∗min ∈ arg min
\∗∈Θ∗

{E[TNR\∗]} = arg min
\∗∈Θ∗

{1 − \∗} = {1},

\∗max ∈ arg max
\∗∈Θ∗

{E[TNR\∗]} = arg max
\∗∈Θ∗

{1 − \∗} = {0}.

7. False Negative Rate65

The False Negative Rate FNR\ or Miss Rate is the performance measure that indicates66

the relative number of incorrectly predicted positive observations. Therefore, it can67

be seen as the counterpart to the True Positive Rate discussed in Sec. 5.68

7.1. Definition and distribution69

The False Negative Rate is commonly defined as

FNR\ =
FN\

𝑃
.

Hence, 𝑃 > 0 should hold, otherwise, the denominator is zero. With the aid of
Eq. (B3), FNR\ can be reformulated to

FNR\ =
𝑃 − TP\

𝑃
= 1 − TP\

𝑃
.

Thus, it is linear in TP\ and can therefore be written as

FNR\ = 𝑋\

(
− 1
𝑃
, 1
)

∼ 𝑓𝑋\

(
− 1
𝑃
, 1
)
,

and for its range:

FNR\

(𝑅)
∈ R

(
𝑋\

(
− 1
𝑃
, 1
))

.

7.2. Expectation70

Because FNR\ is linear in TP\ with slope 𝑎 = −1/𝑃 and intercept 𝑏 = 1, its expectation
is

E[FNR\ ] = E
[
𝑋\

(
− 1
𝑃
, 1
)]

(1)
= − 1

𝑃
· E[TP\ ] + 1 = 1 − ⌊𝑀 · \⌉

𝑀
= 1 − \∗.

7.3. Optimal baselines71

The range of the expectation of FNR\ determines the baselines. The extreme values
are given by:

min
\∈[0,1]

(E[FNR\ ]) = min
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
= 0,

max
\∈[0,1]

(E[FNR\ ]) = max
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
= 1.
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Furthermore, the optimizers \min ∈ [0, 1] and \max ∈ [0, 1] for the extreme values are
as follows:

\min ∈ arg min
\∈[0,1]

(E[FNR\ ]) = arg min
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
=

[
1 − 1

2𝑀
, 1
]
,

\max ∈ arg max
\∈[0,1]

(E[FNR\ ]) = arg max
\∈[0,1]

(
1 − ⌊𝑀 · \⌉

𝑀

)
=

[
0,

1
2𝑀

)
,

respectively. The discrete versions \∗min ∈ Θ∗ and \∗max ∈ Θ∗ of the optimization values
are then:

\∗min ∈ arg min
\∗∈Θ∗

{E[FNR\∗]} = arg min
\∗∈Θ∗

{1 − \∗} = {1},

\∗max ∈ arg max
\∗∈Θ∗

{E[FNR\∗]} = arg max
\∗∈Θ∗

{1 − \∗} = {0}.

8. False Positive Rate72

The False Positive Rate FPR\ or Fall-out is the performance measure that shows the73

fraction of incorrectly predicted negative observations. Hence, it can be seen as the74

counterpart to the True Negative Rate that is introduced in Sec. 6.75

8.1. Definition and distribution76

The False Positive Rate is commonly defined as

FPR\ =
FP\

𝑁
.

Hence, 𝑁 := 𝑀 − 𝑃 should hold, otherwise, the denominator is zero. By using
Eq. (B2), FPR\ can be restated as

FPR\ =
⌊𝑀 · \⌉ − TP\

𝑀 − 𝑃
. (6)

Note that it is linear in TP\ and can therefore be written as

FPR\ = 𝑋\

(
− 1
𝑀 − 𝑃

,
⌊𝑀 · \⌉
𝑀 − 𝑃

)
∼ 𝑓𝑋\

(
− 1
𝑀 − 𝑃

,
⌊𝑀 · \⌉
𝑀 − 𝑃

)
,

with range:

FPR\

(𝑅)
∈ R

(
𝑋\

(
− 1
𝑀 − 𝑃

,
⌊𝑀 · \⌉
𝑀 − 𝑃

))
.

8.2. Expectation77

Since FPR\ is linear in TP\ with slope 𝑎 = −1/(𝑀 − 𝑃) and intercept 𝑏 = ⌊𝑀 ·
\⌉/(𝑀 − 𝑃), its expectation is given by

E[FPR\ ] = E
[
𝑋\

(
− 1
𝑀 − 𝑃

,
⌊𝑀 · \⌉
𝑀 − 𝑃

)]
(1)
= − 1

𝑀 − 𝑃
· E[TP\ ] +

⌊𝑀 · \⌉
𝑀 − 𝑃

=
⌊𝑀 · \⌉

𝑀
= \∗.
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8.3. Optimal baselines78

The extreme values of the expectation of FPR\ determine the baselines. The range is
given by

min
\∈[0,1]

(E[FPR\ ]) = min
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
= 0,

max
\∈[0,1]

(E[FPR\ ]) = max
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
= 1.

Moreover, the optimizers \min ∈ [0, 1] and \max ∈ [0, 1] for the extreme values are
determined by

\min ∈ arg min
\∈[0,1]

(E[FPR\ ]) = arg min
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
=

[
0,

1
2𝑀

)
,

\max ∈ arg max
\∈[0,1]

(E[FPR\ ]) = arg max
\∈[0,1]

(
⌊𝑀 · \⌉

𝑀

)
=

[
1 − 1

2𝑀
, 1
]
,

respectively. The discrete forms \∗min ∈ Θ∗ and \∗max ∈ Θ∗ of these are then

\∗min ∈ arg min
\∗∈Θ∗

{E[FNR\∗]} = arg min
\∗∈Θ∗

{\∗} = {0},

\∗max ∈ arg max
\∗∈Θ∗

{E[FNR\∗]} = arg max
\∗∈Θ∗

{\∗} = {1}.

9. Positive Predictive Value79

The Positive Predictive Value PPV\ or Precision is the performance measure that80

considers the fraction of all positively predicted observations that are, in fact, positive.81

Therefore, it provides an indication of how cautious the model is in assigning positive82

predictions. A large value means the model is cautious in predicting observations as83

positive, while a small value means the opposite.84

9.1. Definition and distribution85

The Positive Predictive Value is commonly defined as86

PPV\ =
TP\

TP\ + FP\

. (7)

By using Eq. (B1) and (B2), this definition can be reformulated to

PPV\ =
TP\

⌊𝑀 · \⌉ .

Note that this performance measure is only defined whenever ⌊𝑀 · \⌉ > 0, otherwise87

the denominator is zero. Therefore, we assume specifically for PPV\ that \ ≥ 1
2𝑀 .88

The definition of PPV\ is linear in TP\ and can thus be formulated as89

PPV\ = 𝑋\

(
1

⌊𝑀 · \⌉ , 0
)

∼ 𝑓𝑋\

(
1

⌊𝑀 · \⌉ , 0
)
, (8)
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with range:

PPV\

(𝑅)
∈ R

(
𝑋\

(
1

⌊𝑀 · \⌉ , 0
))

.

9.2. Expectation90

Because PPV\ is linear in TP\ with slope 𝑎 = 1/⌊𝑀 · \⌉ and intercept 𝑏 = 0, its
expectation is

E[PPV\ ] = E
[
𝑋\

(
1

⌊𝑀 · \⌉ , 0
)]

(1)
=

1
⌊𝑀 · \⌉ · E[TP\ ] + 0 =

𝑃

𝑀
.

9.3. Optimal baselines91

The baselines are determined by the extreme values of the expectation of PPV\ :

min
\∈[1/(2𝑀),1]

(E[PPV\ ]) =
𝑃

𝑀
,

max
\∈[1/(2𝑀),1]

(E[PPV\ ]) =
𝑃

𝑀
,

because the expectation does not depend on \. Hence, the optimization values \min
and \max are simply all allowed values for \:

\min = \max ∈
[

1
2𝑀

, 1
]
.

Consequently, the discrete versions \∗min and \∗max of these optimizers are in the set of
all allowed discrete values:

\∗min = \∗max ∈ Θ∗ \ {0}.

10. Negative Predictive Value92

The Negative Predictive Value NPV\ is the performance measure that indicates the93

fraction of all negatively predicted observations that are, in fact, negative. Hence,94

it shows how cautious the model is in assigning negative predictions. A large value95

means the model is cautious in predicting observations negatively, while a small value96

means the opposite.97

10.1. Definition and distribution98

The Negative Predictive Value is commonly defined as

NPV\ =
TN\

TN\ + FN\

.

With the help of Eq. (B3) and (B4), this definition can be rewritten as

NPV\ = 1 − 𝑃 − TP\

𝑀 − ⌊𝑀 · \⌉ .
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Note that this performance measure is only defined whenever ⌊𝑀 · \⌉ < 𝑀 , otherwise
the denominator is zero. Therefore, we assume specifically for NPV\ that \ < 1− 1

2𝑀 .
The definition of NPV\ is linear in TP\ and can thus be formulated as

NPV\ = 𝑋\

(
1

𝑀 − ⌊𝑀 · \⌉ , 1 − 𝑃

𝑀 − ⌊𝑀 · \⌉

)
∼ 𝑓𝑋\

(
1

𝑀 − ⌊𝑀 · \⌉ , 1 − 𝑃

𝑀 − ⌊𝑀 · \⌉

)
,

(9)

with range:

NPV\

(𝑅)
∈ R

(
𝑋\

(
1

𝑀 − ⌊𝑀 · \⌉ , 1 − 𝑃

𝑀 − ⌊𝑀 · \⌉

))
.

10.2. Expectation99

Since NPV\ is linear in TP\ with slope 𝑎 = 1/(𝑀 − ⌊𝑀 · \⌉) and intercept 𝑏 =

1 − 𝑃/(𝑀 − ⌊𝑀 · \⌉), its expectation is given by

E[NPV\ ] = E
[
𝑋\

(
1

𝑀 − ⌊𝑀 · \⌉ , 1 − 𝑃

𝑀 − ⌊𝑀 · \⌉

)]
(1)
=

1
𝑀 − ⌊𝑀 · \⌉ · E[TP\ ] + 1 − 𝑃

𝑀 − ⌊𝑀 · \⌉ = 1 − 𝑃

𝑀
.

10.3. Optimal baselines100

The extreme values of the expectation of NPV\ determine the baselines. They are
given by

min
\∈[0,1−1/(2𝑀))

(E[NPV\ ]) = 1 − 𝑃

𝑀
,

max
\∈[0,1−1/(2𝑀))

(E[NPV\ ]) = 1 − 𝑃

𝑀
,

because the expectation does not depend on \. Consequently, the optimization values
\min and \max are all allowed values for \:

\min = \max ∈
[
0, 1 − 1

2𝑀

)
.

This also means the discrete forms \∗min and \∗max of the optimizers are in the set of all
allowed discrete values:

\∗min = \∗max ∈ Θ∗ \ {1}.

11. False Discovery Rate101

The False Discovery Rate FDR\ is the performance measure that looks at the fraction102

of positively predicted observations that are actually negative. Therefore, it can be103

seen as the counterpart to the Positive Predictive Value that we discuss in Sec. 9.104

Consequently, a small value means the model is cautious in predicting observations as105

positive, while a large value means the opposite.106
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11.1. Definition and distribution107

The False Discovery Rate is commonly defined as

FDR\ =
FP\

TP\ + FP\

= 1 − PPV\ .

With the help of Eq. (8), this definition can be rewritten as

FDR\ = 1 − TP\

⌊𝑀 · \⌉ .

Note that this performance measure is only defined whenever ⌊𝑀 · \⌉ > 0, otherwise
the denominator is zero. Therefore, we assume specifically for FDR\ that \ > 1

2𝑀 .
The definition of FDR\ is linear in TP\ and can thus be formulated as

FDR\ = 𝑋\

(
− 1
⌊𝑀 · \⌉ , 1

)
∼ 𝑓𝑋\

(
− 1
⌊𝑀 · \⌉ , 1

)
,

with range:

FDR\

(𝑅)
∈ R

(
𝑋\

(
− 1
⌊𝑀 · \⌉ , 1

))
.

11.2. Expectation108

Since FDR\ is linear in TP\ with slope 𝑎 = −1/⌊𝑀 · \⌉ and intercept 𝑏 = 1, its
expectation is given by

E[FDR\ ] = E
[
𝑋\

(
− 1
⌊𝑀 · \⌉ , 1

)]
(1)
= − 1

⌊𝑀 · \⌉ · E[TP\ ] + 1 = 1 − 𝑃

𝑀
.

11.3. Optimal baselines109

The extreme values of the expectation of FDR\ determine the baselines. Its range is
given by

min
\∈(1/(2𝑀),1]

(E[FDR\ ]) = 1 − 𝑃

𝑀
,

max
\∈(1/(2𝑀),1]

(E[FDR\ ]) = 1 − 𝑃

𝑀
,

because the expectation does not depend on \. Consequently, the optimization values
\min and \max are all allowed values for \:

\min = \max ∈
(

1
2𝑀

, 1
]
.

This also means the discrete forms \∗min and \∗max of the optimizers are in the set of all
allowed discrete values:

\∗min = \∗max ∈ Θ∗ \ {0}.
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12. False Omission Rate110

The False Omission Rate FOR\ is the performance measure that considers the fraction111

of observations that are predicted negative but are in fact positive. Hence, it can112

be seen as the counterpart to the Negative Predictive Value introduced in Sec. 10.113

Consequently, a small value means the model is cautious in negatively predicting114

observations, while a large value means the opposite.115

12.1. Definition and distribution116

The False Omission Rate is commonly defined as

FOR\ =
FN\

TN\ + FN\

.

With the aid of Eq. (B3), this can be reformulated to

FOR\ =
𝑃 − TP\

𝑀 − ⌊𝑀 · \⌉ .

Note that this performance measure is only defined whenever ⌊𝑀 · \⌉ < 𝑀 , otherwise
the denominator is zero. Therefore, we assume specifically for FOR\ that \ < 1− 1

2𝑀 .
Now, FOR\ is linear in TP\ and can therefore be written as

FOR\ = 𝑋\

(
− 1
𝑀 − ⌊𝑀 · \⌉ ,

𝑃

𝑀 − ⌊𝑀 · \⌉

)
∼ 𝑓𝑋\

(
− 1
𝑀 − ⌊𝑀 · \⌉ ,

𝑃

𝑀 − ⌊𝑀 · \⌉

)
,

with range:

FOR\

(𝑅)
∈ R

(
𝑋\

(
− 1
𝑀 − ⌊𝑀 · \⌉ ,

𝑃

𝑀 − ⌊𝑀 · \⌉

))
.

12.2. Expectation117

Because FOR\ is linear in TP\ with slope 𝑎 = −1/(𝑀 − ⌊𝑀 · \⌉) and intercept
𝑏 = 𝑃/(𝑀 − ⌊𝑀 · \⌉), its expectation is

E[FOR\ ] = E
[
𝑋\

(
− 1
𝑀 − ⌊𝑀 · \⌉ ,

𝑃

𝑀 − ⌊𝑀 · \⌉

)]
(1)
= − 1

𝑀 − ⌊𝑀 · \⌉ · E[TP\ ] +
𝑃

𝑀 − ⌊𝑀 · \⌉ =
𝑃

𝑀
.

12.3. Optimal baselines118

The range of the expectation of FOR\ determines the baselines. The extreme values
are defined as

min
\∈[0,1−1/(2𝑀))

(E[FOR\ ]) =
𝑃

𝑀
,

max
\∈[0,1−1/(2𝑀))

(E[FOR\ ]) =
𝑃

𝑀
,
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because the expectation does not depend on \. Consequently, the optimization values
\min and \max are all allowed values for \:

\min = \max ∈
[
0, 1 − 1

2𝑀

)
.

This also means the discrete forms \∗min and \∗max of the optimizers are in the set of all
allowed discrete values:

\∗min = \∗max ∈ Θ∗ \ {1}.

13. 𝑭𝜷 score119

The 𝐹𝛽 score F(𝛽)
\

was introduced by Chinchor (1992). It is the weighted harmonic120

average between the True Positive Rate (TPR\ ) and the Positive Predictive Value121

(PPV\ ). These two performance measures are discussed extensively in Sec. 5 and 9.122

The 𝐹𝛽 score balances predicting the actual positive observations correctly (TPR\ )123

and being cautious in predicting observations as positive (PPV\ ). The factor 𝛽 > 0124

indicates how much more TPR\ is weighted compared to PPV\ .125

13.1. Definition and distribution126

The 𝐹𝛽 score is commonly defined as

F(𝛽)
\

=
1 + 𝛽2

1
PPV\

+ 𝛽2

TPR\

.

By using the definitions of TPR\ and PPV\ in Eq. (3) and (7), F(𝛽)
\

can be formulated
in terms of the base measures:

F(𝛽)
\

=
(1 + 𝛽2) · TP\

𝛽2 · 𝑃 + TP\ + FP\

Eq. (B1) and (B2) allow us to write the formulation above in terms of only TP\ :

F(𝛽)
\

=
(1 + 𝛽2) · TP\

𝛽2 · 𝑃 + ⌊𝑀 · \⌉
.

Note that 𝑃 > 0 and ⌊𝑀 · \⌉ > 0, otherwise TPR\ or PPV\ is not defined, and hence,
F(𝛽)
\

is not defined. Now, F(𝛽)
\

is linear in TP\ and can be formulated as

F(𝛽)
\

= 𝑋\

(
1 + 𝛽2

𝛽2 · 𝑃 + ⌊𝑀 · \⌉
, 0
)
,

with range:

F(𝛽)
\

(𝑅)
∈ R

(
𝑋\

(
1 + 𝛽2

𝛽2 · 𝑃 + ⌊𝑀 · \⌉
, 0
))

.
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13.2. Expectation127

Because F(𝛽)
\

is linear in TP\ with slope 𝑎 = (1 + 𝛽2)/(𝛽2𝑃 + ⌊𝑀 · \⌉) and intercept
𝑏 = 0, its expectation is given by

E[F(𝛽)
\
] = E

[
𝑋\

(
1 + 𝛽2

𝛽2 · 𝑃 + ⌊𝑀 · \⌉
, 0
)]

(1)
=

1 + 𝛽2

𝛽2 · 𝑃 + ⌊𝑀 · \⌉
· E[TP\ ] + 0

=
⌊𝑀 · \⌉ · 𝑃 · (1 + 𝛽2)
𝑀 · (𝛽2 · 𝑃 + ⌊𝑀 · \⌉)

=
(1 + 𝛽2) · 𝑃 · \∗
𝛽2 · 𝑃 + 𝑀 · \∗

. (10)

13.3. Optimal baselines128

To determine the extreme values of the expectation of F(𝛽)
\

, and therefore the baselines,
the derivative of the function 𝑓 : [0, 1] → [0, 1] defined as

𝑓 (𝑡) =
(1 + 𝛽2) · 𝑃 · 𝑡
𝛽2 · 𝑃 + 𝑀 · 𝑡

is calculated. First note that E[F(𝛽)
\
] = 𝑓 (⌊𝑀 ·\⌉/𝑀). The derivative is given by

d 𝑓 (𝑡)
d𝑡

=
𝛽2(1 + 𝛽2) · 𝑃2

(𝛽2 · 𝑃 + 𝑀 · 𝑡)2 .

It is strictly positive for all 𝑡 in its domain; thus, 𝑓 is strictly increasing in 𝑡. This means
E[F(𝛽)

\
] given in Eq. (10) is non-decreasing in both \ and \∗. This is because the term

⌊𝑀 · \⌉/𝑀 is non-decreasing in \. Hence, the extreme values of the expectation of
F(𝛽)
\

are its border values:

min
\∈[1/(2𝑀),1]

(
E[F(𝛽)

\
]
)
= min

\∈[1/(2𝑀),1]

(
(1 + 𝛽2) · 𝑃 · ⌊𝑀 · \⌉
𝑀(𝛽2 · 𝑃 + ⌊𝑀 · \⌉)

)
=

(1 + 𝛽2) · 𝑃
𝑀(𝛽2 · 𝑃 + 1)

,

max
\∈[1/(2𝑀),1]

(
E[F(𝛽)

\
]
)
= max

\∈[1/(2𝑀),1]

(
(1 + 𝛽2) · 𝑃 · ⌊𝑀 · \⌉
𝑀(𝛽2 · 𝑃 + ⌊𝑀 · \⌉)

)
=

(1 + 𝛽2) · 𝑃
𝛽2 · 𝑃 + 𝑀

.

Consequently, the optimization values \min and \max for the extreme values are given
by

\min ∈ arg min
\∈[1/(2𝑀),1]

(
E[F(𝛽)

\
]
)
= arg min

\∈[1/(2𝑀),1]

(
⌊𝑀 · \⌉

𝛽2 · 𝑃 + ⌊𝑀 · \⌉

)
=

{
[ 1

2 , 1] if 𝑀 = 1[ 1
2𝑀 , 3

2𝑀
)

if 𝑀 > 1,

\max ∈ arg max
\∈[1/(2𝑀),1]

(
E[F(𝛽)

\
]
)
= arg max

\∈[1/(2𝑀),1]

(
⌊𝑀 · \⌉

𝛽2 · 𝑃 + ⌊𝑀 · \⌉

)
=

{
[ 1

2 , 1] if 𝑀 = 1[
1 − 1

2𝑀 , 1
]

if 𝑀 > 1,
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respectively. Following this reasoning, the discrete forms \∗min and \∗max are given
by

\∗min ∈ arg min
\∗∈Θ∗\{0}

{
E[F(𝛽)

\∗ ]
}
= arg min

\∗∈Θ∗\{0}

{
\∗

𝛽2 · 𝑃 + 𝑀 · \∗

}
=

{
1
𝑀

}
,

\∗max ∈ arg max
\∗∈Θ∗\{0}

{
E[F(𝛽)

\∗ ]
}
= arg max

\∗∈Θ∗\{0}

{
\∗

𝛽2 · 𝑃 + 𝑀 · \∗

}
= {1}.

14. Youden’s J Statistic129

The Youden’s J Statistic J\ , Youden’s Index, or (Bookmaker) Informedness was intro-130

duced by Youden (1950) to capture the performance of a diagnostic test as a single131

statistic. It incorporates both the True Positive and True Negative rates, discussed in132

Sec. 5 and 6, respectively. Youden’s J Statistic shows how well the model can correctly133

predict both the positive as well as the negative observations.134

14.1. Definition and distribution135

The Youden’s J Statistic is commonly defined as

J\ = TPR\ + TNR\ − 1.

By using Eq. (4) and (5), which provide the definitions of TPR\ and TNR\ in terms
of TP\ , the definition of J\ can be reformulated as

J\ =
𝑀 · TP\ − 𝑃 · ⌊𝑀 · \⌉

𝑃 (𝑀 − 𝑃)
.

Because TPR\ needs 𝑃 > 0, and TNR\ needs 𝑁 > 0, we have both these assumptions
for J\ . Consequently, 𝑀 > 1. Now, J\ is linear in TP\ and can therefore be written
as

J\ = 𝑋\

(
𝑀

𝑃 (𝑀 − 𝑃)
,− ⌊𝑀 · \⌉

𝑀 − 𝑃

)
∼ 𝑓𝑋\

(
𝑀

𝑃 (𝑀 − 𝑃)
,− ⌊𝑀 · \⌉

𝑀 − 𝑃

)
,

with range:

J\
(𝑅)
∈ R

(
𝑋\

(
𝑀

𝑃 (𝑀 − 𝑃)
,− ⌊𝑀 · \⌉

𝑀 − 𝑃

))
.

14.2. Expectation136

Since J\ is linear in TP\ with slope 𝑎 = 𝑀/(𝑃 (𝑀 − 𝑃)) and intercept 𝑏 = −⌊𝑀 ·
\⌉/(𝑀 − 𝑃), its expectation is given by

E[J\ ] = E
[
𝑋\

(
𝑀

𝑃 (𝑀 − 𝑃)
,− ⌊𝑀 · \⌉

𝑀 − 𝑃

)]
(1)
=

𝑀

𝑃 (𝑀 − 𝑃)
· E[TP\ ] −

⌊𝑀 · \⌉
𝑀 − 𝑃

= 0.
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14.3. Optimal baselines137

The extreme values of the expectation of J\ determine the baselines. They are given
by

min
\∈[0,1]

(E[J\ ]) = 0,

max
\∈[0,1]

(E[J\ ]) = 0,

because the expected value does not depend on \. Consequently, the optimization
values \min and \max can be any value in the domain of \:

\min = \max ∈ [0, 1] .

This also holds for the discrete forms \∗min and \∗max of the optimizers:

\∗min = \∗max ∈ Θ∗.

15. Markedness138

The Markedness MK\ or deltaP is a performance measure mostly used in linguistics139

and social sciences. It combines both the Positive Predictive Value and the Negative140

Predictive Value. These two measures are discussed in Sec. 9 and 10. The Markedness141

indicates how cautious the model is in predicting observations as positive and also how142

cautious it is in predicting them as negative.143

15.1. Definition and distribution144

Markedness is commonly defined as

MK\ = PPV\ + NPV\ − 1.

This definition of MK\ can be reformulated in terms of TP\ by using Eq. (8)
and (9):

MK\ =
𝑀 · TP\ − 𝑃 · ⌊𝑀 · \⌉
⌊𝑀 · \⌉(𝑀 − ⌊𝑀 · \⌉) .

Note that MK\ is only defined for 𝑀 > 1 and \ ∈ [1/(2𝑀), 1−1/(2𝑀)), otherwise the
denominator becomes zero. The assumption 𝑀 > 1 automatically follows from the
assumptions �̂� > 0 and �̂� > 0, which hold for PPV\ and NPV\ , respectively. In other
words, at least one observation predicted positive and at least one predicted negative;
thus, 𝑀 > 1. Now, MK\ is linear in TP\ and can therefore be written as

MK\ = 𝑋\

(
𝑀

⌊𝑀 · \⌉(𝑀 − ⌊𝑀 · \⌉) ,−
𝑃

𝑀 − ⌊𝑀 · \⌉

)
∼ 𝑓𝑋\

(
𝑀

⌊𝑀 · \⌉(𝑀 − ⌊𝑀 · \⌉) ,−
𝑃

𝑀 − ⌊𝑀 · \⌉

)
,

with range:

MK\

(𝑅)
∈ R

(
𝑋\

(
𝑀

⌊𝑀 · \⌉(𝑀 − ⌊𝑀 · \⌉) ,−
𝑃

𝑀 − ⌊𝑀 · \⌉

))
.
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15.2. Expectation145

By using slope 𝑎 = 𝑀/(⌊𝑀 · \⌉(𝑀 − ⌊𝑀 · \⌉)) and intercept 𝑏 = −𝑃/(𝑀 − ⌊𝑀 · \⌉),
the expectation of MK\ can be calculated:

E[MK\ ] = E
[
𝑋\

(
𝑀

⌊𝑀 · \⌉(𝑀 − ⌊𝑀 · \⌉) ,−
𝑃

𝑀 − ⌊𝑀 · \⌉

)]
(1)
=

𝑀

⌊𝑀 · \⌉(𝑀 − ⌊𝑀 · \⌉) · E[TP\ ] −
𝑃

𝑀 − ⌊𝑀 · \⌉ = 0.

15.3. Optimal baselines146

The extreme values of the expectation of MK\ determine the baselines. Its range is
given by:

min
\∈[1/(2𝑀),1−1/(2𝑀))

(E[MK\ ]) = 0,

max
\∈[1/(2𝑀),1−1/(2𝑀))

(E[MK\ ]) = 0,

since the expected value does not depend on \. Therefore, the optimization values
\min and \max are in the set of allowed values for \:

\min = \max ∈
[

1
2𝑀

, 1 − 1
2𝑀

)
.

This also means the discrete forms \∗min and \∗max of the optimizers are in the set of the
allowed discrete values:

\∗min = \∗max ∈ Θ∗ \ {0, 1}.

16. Accuracy147

The Accuracy Acc\ is the performance measure that assesses how good the model148

is in correctly predicting the observations without distinguishing between positive or149

negative observations.150

16.1. Definition and distribution151

The Accuracy is commonly defined as

Acc\ =
TP\ + TN\

𝑀
.

By using Eq. (B4), this can be restated as

Acc\ =
2 · TP\ + 𝑀 − 𝑃 − ⌊𝑀 · \⌉

𝑀
.

Note that it is linear in TP\ and can therefore be written as152

Acc\ = 𝑋\

(
2
𝑀

,
𝑀 − 𝑃 − ⌊𝑀 · \⌉

𝑀

)
∼ 𝑓𝑋\

(
2
𝑀

,
𝑀 − 𝑃 − ⌊𝑀 · \⌉

𝑀

)
, (11)
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with range:

Acc\
(𝑅)
∈ R

(
𝑋\

(
2
𝑀

,
𝑀 − 𝑃 − ⌊𝑀 · \⌉

𝑀

))
.

16.2. Expectation153

Since Acc\ is linear in TP\ with slope 𝑎 = 2/𝑀 and intercept 𝑏 = (𝑀−𝑃−⌊𝑀 ·\⌉)/𝑀 ,
its expectation can be derived:

E[Acc\ ] = E
[
𝑋\

(
2
𝑀

,
𝑀 − 𝑃 − ⌊𝑀 · \⌉

𝑀

)]
(1)
=

2
𝑀

· E[TP\ ] +
𝑀 − 𝑃 − ⌊𝑀 · \⌉

𝑀

=
(𝑀 − ⌊𝑀 · \⌉) (𝑀 − 𝑃) + ⌊𝑀 · \⌉ · 𝑃

𝑀2 =
(1 − \∗) (𝑀 − 𝑃) + \∗ · 𝑃

𝑀
. (12)

16.3. Optimal baselines154

The range of the expectation of Acc\ directly determines the baselines. To determine
the extreme values of Acc\ , the derivative of the function 𝑓 : [0, 1] → [0, 1] defined
as

𝑓 (𝑡) =
(1 − 𝑡) (𝑀 − 𝑃) + 𝑃 · 𝑡

𝑀

is calculated. First, note that E[Acc\ ] = 𝑓 (⌊𝑀 · \⌉/𝑀). The derivative is given
by

d 𝑓 (𝑡)
d𝑡

=
2𝑃 − 𝑀

𝑀
.

It does not depend on 𝑡, but whether the derivative is positive or negative depends on
𝑃 and 𝑀 . Whenever 𝑃 > 𝑀

2 , then 𝑓 is strictly increasing for all 𝑡 in its domain. If
𝑃 < 𝑀

2 , then 𝑓 is strictly decreasing. When 𝑃 = 𝑀
2 , 𝑓 is constant. Consequently,

the same holds for E[Acc\ ] given in Eq. (12). This is because the term ⌊𝑀 · \⌉/𝑀
is non-decreasing in \. Thus, the extreme values of the expectation of Acc\ are given
by

min
\∈[0,1]

(E[Acc\ ]) =
{

𝑃
𝑀

if 𝑃 < 𝑀
2

1 − 𝑃
𝑀

if 𝑃 ≥ 𝑀
2

= min
{
𝑃

𝑀
, 1 − 𝑃

𝑀

}
,

max
\∈[0,1]

(E[Acc\ ]) =
{

1 − 𝑃
𝑀

if 𝑃 < 𝑀
2

𝑃
𝑀

if 𝑃 ≥ 𝑀
2

= max
{
𝑃

𝑀
, 1 − 𝑃

𝑀

}
.
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This means that the optimization values \min ∈ [0, 1] and \max ∈ [0, 1] for these
extreme values are given by

\min ∈ arg min
\∈[0,1]

(E[Acc\ ]) =


[
1 − 1

2𝑀 , 1
]

if 𝑃 < 𝑀
2

[0, 1] if 𝑃 = 𝑀
2[

0, 1
2𝑀
)

if 𝑃 > 𝑀
2 ,

(13)

\max ∈ arg max
\∈[0,1]

(E[Acc\ ]) =


[
0, 1

2𝑀
)

if 𝑃 < 𝑀
2

[0, 1] if 𝑃 = 𝑀
2[

1 − 1
2𝑀 , 1

]
if 𝑃 > 𝑀

2 ,

(14)

respectively. Consequently, the discrete versions \∗min ∈ Θ∗ and \∗max ∈ Θ∗ of the
optimizers are given by

\∗min ∈ arg min
\∗∈Θ∗

{E[Acc\∗]} =


{1} if 𝑃 < 𝑀

2
Θ∗ if 𝑃 = 𝑀

2
{0} if 𝑃 > 𝑀

2 ,
(15)

\∗max ∈ arg max
\∗∈Θ∗

{E[Acc\∗]} =


{0} if 𝑃 < 𝑀

2
Θ∗ if 𝑃 = 𝑀

2
{1} if 𝑃 > 𝑀

2 ,
(16)

respectively.155

17. Balanced Accuracy156

The Balanced Accuracy BAcc\ is the mean of the True Positive Rate and True Negative157

Rate, which are discussed in Sec. 5 and 6. It determines how good the model is in158

correctly predicting the positive observations and in correctly predicting the negative159

observations on average.160

17.1. Definition and distribution161

The Balanced Accuracy is commonly defined as

BAcc\ =
1
2
· (TPR\ + TNR\ ).

By using Eq. (4) and (5), this can be reformulated as

BAcc\ =
1
2

(
TP\

𝑃
+ 1 − ⌊𝑀 · \⌉ − TP\

𝑀 − 𝑃

)
=

𝑀 · TP\

2𝑃 (𝑀 − 𝑃)
+ 𝑀 − 𝑃 − ⌊𝑀 · \⌉

2 (𝑀 − 𝑃)
.

Note that 𝑃 > 0 and 𝑁 > 0 should hold, otherwise TPR\ or TNR\ is not defined.
Consequently, 𝑀 > 1. Note that BAcc\ is linear in TP\ and can therefore be written
as

BAcc\ = 𝑋\

(
𝑀

2𝑃 (𝑀 − 𝑃)
,
𝑀 − 𝑃 − ⌊𝑀 · \⌉

2 (𝑀 − 𝑃)

)
∼ 𝑓𝑋\

(
𝑀

2𝑃 (𝑀 − 𝑃)
,
𝑀 − 𝑃 − ⌊𝑀 · \⌉

2 (𝑀 − 𝑃)

)
,
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with range:

BAcc\
(𝑅)
∈ R

(
𝑋\

(
𝑀

2𝑃 (𝑀 − 𝑃)
,
𝑀 − 𝑃 − ⌊𝑀 · \⌉

2 (𝑀 − 𝑃)

))
.

17.2. Expectation162

BAcc\ is linear in TP\ with slope 𝑎 = 𝑀/(2𝑃 (𝑀 − 𝑃)) and intercept 𝑏 = (𝑀 − 𝑃 −
⌊𝑀 · \⌉)/(2 (𝑀 − 𝑃)), so its expectation can be derived:

E[BAcc\ ] = E
[
𝑋\

(
𝑀

2𝑃 (𝑀 − 𝑃)
,
𝑀 − 𝑃 − ⌊𝑀 · \⌉

2 (𝑀 − 𝑃)

)]
(1)
=

𝑀

2𝑃 (𝑀 − 𝑃)
· E[TP\ ] +

𝑀 − 𝑃 − ⌊𝑀 · \⌉
2 (𝑀 − 𝑃)

=
1
2
.

17.3. Optimal baselines163

The baselines are directly determined by the ranges of the expectation of BAcc\ . Since
the expectation is constant, its extreme values are the same:

min
\∈[0,1]

(E[BAcc\ ]) =
1
2
,

max
\∈[0,1]

(E[BAcc\ ]) =
1
2
.

This means that the optimization values \min ∈ [0, 1] and \max ∈ [0, 1] for these
extreme values are simply

\min ∈ arg min
\∈[0,1]

(E[BAcc\ ]) = [0, 1],

\max ∈ arg max
\∈[0,1]

(E[BAcc\ ]) = [0, 1],

respectively. Consequently, the discrete versions \∗min ∈ Θ∗ and \∗max ∈ Θ∗ of the
optimizers are given by

\∗min ∈ arg min
\∗∈Θ∗

{E[Acc\∗]} = Θ∗,

\∗max ∈ arg max
\∗∈Θ∗

{E[Acc\∗]} = Θ∗,

respectively.164

18. Matthews Correlation Coefficient165

The Matthews Correlation Coefficient MCC\ was established by Matthews (1975).166

However, its definition is identical to that of the Yule phi coefficient, which was167

introduced by Yule (1912). The performance measure can be seen as the correlation168

coefficient between the actual and predicted classes. Hence, it is one of the few169

measures that lies in [−1, 1] instead of [0, 1].170
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18.1. Definition and distribution171

The Matthews Correlation Coefficient is commonly defined as

MCC\ =
TP\ · TN\ − FN\ · FP\√

(TP\ + FP\ )(TP\ + FN\ )(TN\ + FP\ )(TN\ + FN\ )
.

By using Eq. (B2) and (B4), this definition can be reformulated as172

MCC\ =
𝑀 · TP\ − 𝑃 · ⌊𝑀 · \⌉√︁

⌊𝑀 · \⌉ · 𝑃 (𝑀 − 𝑃) (𝑀 − ⌊𝑀 · \⌉)
. (17)

To ensure the denominator is non-zero, the assumptions 𝑃 > 0, 𝑁 > 0, �̂� := ⌊𝑀 · \⌉ >
0, and �̂� := 𝑀 − ⌊𝑀 · \⌉ > 0 must hold. If one of these assumptions is violated, then
the denominator in Eq. (17) is zero, and MCC\ is not defined. Therefore, we have for
MCC\ that 1

2𝑀 ≤ \ < 1 − 1
2𝑀 and 𝑀 > 1. Next, to improve readability we introduce

the variable 𝐶(𝑀, 𝑃, \) to replace the denominator in Eq. (17):

𝐶(𝑀, 𝑃, \) :=
√︁
⌊𝑀 · \⌉ · 𝑃 (𝑀 − 𝑃) (𝑀 − ⌊𝑀 · \⌉).

The definition of MCC\ is linear in TP\ and can thus be formulated as

MCC\ = 𝑋\

(
𝑀

𝐶(𝑀, 𝑃, \)
,
−𝑃 · ⌊𝑀 · \⌉
𝐶(𝑀, 𝑃, \)

)
∼ 𝑓𝑋\

(
𝑀

𝐶(𝑀, 𝑃, \)
,
−𝑃 · ⌊𝑀 · \⌉
𝐶(𝑀, 𝑃, \)

)
,

with range:

MCC\

(𝑅)
∈ R

(
𝑋\

(
𝑀

𝐶(𝑀, 𝑃, \)
,
−𝑃 · ⌊𝑀 · \⌉
𝐶(𝑀, 𝑃, \)

))
.

18.2. Expectation173

MCC\ is linear in TP\ with slope 𝑎 = 𝑀/𝐶(𝑀, 𝑃, \) and intercept 𝑏 = −𝑃 · ⌊𝑀 ·
\⌉/𝐶(𝑀, 𝑃, \), so its expectation can be derived from Eq. (1):

E[MCC\ ] = E
[
𝑋\

(
𝑀

𝐶(𝑀, 𝑃, \)
,
−𝑃 · ⌊𝑀 · \⌉
𝐶(𝑀, 𝑃, \)

)]
(1)
=

𝑀

𝐶(𝑀, 𝑃, \)
· E[TP\ ] −

𝑃 · ⌊𝑀 · \⌉
𝐶(𝑀, 𝑃, \)

= 0.

18.3. Optimal baselines174

The baselines are directly determined by the ranges of the expectation of MCC\ . Since
the expectation is constant, its extreme values are the same:

min
\∈[1/(2𝑀),1−1/(2𝑀))

(E[MCC\ ]) = 0,

max
\∈[1/(2𝑀),1−1/(2𝑀))

(E[MCC\ ]) = 0.



Supplementary Material: The Dutch Draw 25

This means that the optimization values \min and \max for these extreme values are
simply:

\min = \max ∈
[

1
2𝑀

, 1 − 1
2𝑀

)
,

respectively. Consequently, the discrete versions \∗min and \∗max of the optimizers are
given by:

\∗min = \∗max ∈ Θ∗ \ {0, 1}.

19. Cohen’s Kappa175

Cohen’s kappa ^\ is a less straightforward performance measure than the other176

measures discussed in this research. It is used to quantify the inter-rater reliability for177

two raters of categorical observations (Kvålseth, 1989). In our case, we compare the178

first rater, which is the DD classifier, with the perfect rater, which assigns the true label179

to each observation.180

19.1. Definition and distribution181

Although there are several definitions for Cohen’s kappa, here we choose the follow-
ing:

^\ =
𝑃\
𝑜 − 𝑃\

𝑒

1 − 𝑃\
𝑒

,

with 𝑃\
𝑜 the Accuracy Acc\ as defined in Sec. 16 and 𝑃\

𝑒 the probability that the shuffle
approach assigns the true label by chance. These two values can be expressed in terms
of the base measures as follows:

𝑃\
𝑜 = Acc\ =

TP\ + TN\

𝑀
,

𝑃\
𝑒 =

(TP\ + FP\ ) · 𝑃 + (TN\ + FN\ ) (𝑀 − 𝑃)
𝑀2 .

By using Eq. (11), (B1), (B2), (B3) and (B4) the above can be rewritten as

𝑃\
𝑜 =

2 · TP\ + 𝑀 − 𝑃 − ⌊𝑀 · \⌉
𝑀

,

𝑃\
𝑒 =

⌊𝑀 · \⌉ · 𝑃 + (𝑀 − ⌊𝑀 · \⌉) (𝑀 − 𝑃)
𝑀2 .

Note that for ^\ to be well-defined, we need 1 − 𝑃\
𝑒 ≠ 0. In other words,

⌊𝑀 · \⌉ · 𝑃 + (𝑀 − ⌊𝑀 · \⌉) (𝑀 − 𝑃) ≠ 𝑀2.

This simplifies to

⌊𝑀 · \⌉
𝑀

≠
𝑃

2𝑃 − 𝑀
. (18)
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The left-hand side is by definition in the interval [0, 1]. For the right-hand side to be
in that interval, we first need 𝑃/(2𝑃 − 𝑀) ≥ 0. Since 𝑃 ≥ 0, that means 2𝑃 − 𝑀 > 0;
hence, 𝑃 > 𝑀

2 . Secondly, 𝑃/(2𝑃−𝑀) ≤ 1. Since we know 𝑃 > 𝑀
2 , we obtain 𝑃 ≥ 𝑀 .

This inequality reduces to 𝑃 = 𝑀 , because 𝑃 is always at most 𝑀 . Whenever 𝑃 = 𝑀 ,
then Eq. (18) becomes

⌊𝑀 · \⌉
𝑀

≠ 1.

To summarize, when 𝑃 < 𝑀 , then all \ ∈ [0, 1] are allowed in ^\ , but when 𝑃 = 𝑀 ,182

then \ < 1 − 1/(2𝑀).183

Now, by using 𝑃\
𝑜 and 𝑃\

𝑒 in the definition of Cohen’s kappa, we obtain:

^\ =
2 · 𝑀 · TP\ − 2 · ⌊𝑀 · \⌉ · 𝑃

𝑃 (𝑀 − ⌊𝑀 · \⌉) + (𝑀 − 𝑃) ⌊𝑀 · \⌉ .

To improve readability, we introduce the variables 𝑎^\ and 𝑏^\ defined as

𝑎^\ =
2𝑀

𝑃 (𝑀 − ⌊𝑀 · \⌉) + (𝑀 − 𝑃) ⌊𝑀 · \⌉

𝑏^\ = − 2 · ⌊𝑀 · \⌉ · 𝑃
𝑃 (𝑀 − ⌊𝑀 · \⌉) + (𝑀 − 𝑃) ⌊𝑀 · \⌉ .

Hence, ^\ is linear in TP\ and can be written as

^\ = 𝑋\

(
𝑎^\ , 𝑏^\

)
∼ 𝑓𝑋\

(
𝑎^\ , 𝑏^\

)
,

with range:

^\
(𝑅)
∈ R

(
𝑋\

(
𝑎^\ , 𝑏^\

))
.

19.2. Expectation184

As Cohen’s kappa is linear in TP\ , its expectation can be derived:

E[^\ ] = E
[
𝑋\

(
𝑎^\ , 𝑏^\

)] (1)
= 𝑎^\ · E[TP\ ] + 𝑏^\

=
2 · ⌊𝑀 · \⌉ · 𝑃

𝑃 (𝑀 − ⌊𝑀 · \⌉) + (𝑀 − 𝑃) ⌊𝑀 · \⌉ − 2 · ⌊𝑀 · \⌉ · 𝑃
𝑃 (𝑀 − ⌊𝑀 · \⌉) + (𝑀 − 𝑃) ⌊𝑀 · \⌉

= 0.
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19.3. Optimal baselines185

The baselines are directly determined by the ranges of the expectation of ^\ . Since
the expectation is constant, its extreme values are the same:{

min\∈[0,1] (E[^\ ]) = 0 if 𝑃 < 𝑀

min\∈[0,1−1/(2𝑀)) (E[^\ ]) = 0 if 𝑃 = 𝑀 ,{
max\∈[0,1] (E[^\ ]) = 0 if 𝑃 < 𝑀

max\∈[0,1−1/(2𝑀)) (E[^\ ]) = 0 if 𝑃 = 𝑀 .

This means that the optimization values \min and \max for these extreme values are
simply all allowed values:{

\min = \max ∈ [0, 1] if 𝑃 < 𝑀

\min = \max ∈
[
0, 1 − 1

2𝑀
]

if 𝑃 = 𝑀 ,

respectively. Consequently, the discrete versions \∗min and \∗max of the optimizers are
given by {

\∗min = \∗max ∈ Θ∗ if 𝑃 < 𝑀

\∗min = \∗max ∈ Θ∗ \ {1} if 𝑃 = 𝑀 .

20. Fowlkes-Mallows Index186

The Fowlkes-Mallows Index FM\ or G-mean 1 was introduced by (Fowlkes and187

Mallows, 1983) as a way to calculate the similarity between two clusterings. It is188

the geometric average between the True Positive Rate (TPR\ ) and Positive Predictive189

Value (PPV\ ), which are discussed in Sec. 5 and 9, respectively. It balances correctly190

predicting the actual positive observations (TPR\ ) and being cautious in predicting191

observations as positive (PPV\ ).192

20.1. Definition and distribution193

The Fowlkes-Mallows Index is commonly defined as

FM\ =
√︁

TPR\ · PPV\ .

By using the definitions of TPR\ and PPV\ in terms of TP\ in Eq. (4) and (8),
respectively, we obtain:

FM\ =
TP\√︁

𝑃 · ⌊𝑀 · \⌉
.

Since TPR\ is only defined when 𝑃 > 0 and PPV\ only when �̂� := ⌊𝑀 · \⌉ > 0, also
FM\ has these assumptions. Therefore, \ ≥ 1

2𝑀 . The definition of FM\ is linear in
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TP\ and can thus be formulated as

FM\ = 𝑋\

(
1√︁

𝑃 · ⌊𝑀 · \⌉
, 0

)
∼ 𝑓𝑋\

(
1√︁

𝑃 · ⌊𝑀 · \⌉
, 0

)
,

with range:

FM\

(𝑅)
∈ R

(
𝑋\

(
1√︁

𝑃 · ⌊𝑀 · \⌉
, 0

))
.

20.2. Expectation194

Because FM\ is linear in TP\ with slope 𝑎 = 1√
𝑃 · ⌊𝑀 ·\ ⌉

and intercept 𝑏 = 0, its

expectation is

E[FM\ ] = E
[
𝑋\

(
1√︁

𝑃 · ⌊𝑀 · \⌉
, 0

)]
(1)
=

1√︁
𝑃 · ⌊𝑀 · \⌉

· E[TP\ ] + 0 =

√︁
𝑃 · ⌊𝑀 · \⌉

𝑀

=

√︂
\∗ · 𝑃
𝑀

.

20.3. Optimal baselines195

The extreme values of the expectation of FM\ determine the baselines. They are given
by:

min
\∈[1/(2𝑀),1]

(E[FM\ ]) = min
\∈[1/(2𝑀),1]

(√︁
𝑃 · ⌊𝑀 · \⌉

𝑀

)
=

√
𝑃

𝑀
,

max
\∈[1/(2𝑀),1]

(E[FM\ ]) = max
\∈[1/(2𝑀),1]

(√︁
𝑃 · ⌊𝑀 · \⌉

𝑀

)
=

√︂
𝑃

𝑀
,

because the expectation is a non-decreasing function in \. Note that the minimum and
maximum are equal when 𝑀 = 1. Consequently, the optimizers \min and \max for the
extreme values are determined by:

\min ∈ arg min
\∈[1/(2𝑀),1]

(E[FM\ ]) = arg min
\∈[1/(2𝑀),1]

(√︁
𝑃 · ⌊𝑀 · \⌉

𝑀

)
=

{[ 1
2𝑀 , 1

]
if 𝑀 = 1[ 1

2𝑀 , 3
2𝑀
)

if 𝑀 > 1,

\max ∈ arg max
\∈[1/(2𝑀),1]

(E[FM\ ]) = arg max
\∈[1/(2𝑀),1]

(√︁
𝑃 · ⌊𝑀 · \⌉

𝑀

)
=

{[ 1
2𝑀 , 1

]
if 𝑀 = 1[

1 − 1
2𝑀 , 1

]
if 𝑀 > 1,
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respectively. The discrete forms \∗min and \∗max of these are given by:

\∗min ∈ arg min
\∗∈Θ∗\{0}

{E[FM\∗]} = arg min
\∗∈Θ∗\{0}

{√︂
\∗ · 𝑃
𝑀

}
=

{
1
𝑀

}
,

\∗max ∈ arg max
\∗∈Θ∗\{0}

{E[FM\∗]} = arg max
\∗∈Θ∗\{0}

{√︂
\∗ · 𝑃
𝑀

}
= {1}.

21. G-mean 2196

The G-mean 2 G(2)
\

was established by (Kubat et al., 1998). This performance measure197

is the geometric average between the True Positive Rate (TPR\ ) and True Negative198

Rate (TNR\ ), which we discuss in Sec. 5 and 6, respectively. Hence, it balances199

correctly predicting the positive observations and correctly predicting the negative200

observations.201

21.1. Definition and distribution202

The G-mean 2 is defined as

G(2)
\

=
√︁

TPR\ · TNR\ .

Since TPR\ needs the assumption 𝑃 > 0 and TNR\ needs 𝑁 := 𝑀 − 𝑃 > 0, we have
these restrictions also for G(2)

\
. Consequently, 𝑀 > 1. Now, by using the definitions of

TPR\ and TNR\ in terms of TP\ in, respectively, Eq. (4) and (5), we obtain:

G(2)
\

=

√︄
TP\ · (𝑀 − 𝑃 − ⌊𝑀 · \⌉) + TP2

\

𝑃 (𝑀 − 𝑃)
.

This function is not a linear function of TP\ , and hence, we cannot write it in the form203

𝑋\ (𝑎, 𝑏) = 𝑎 · TP\ + 𝑏 for some variables 𝑎, 𝑏 ∈ R.204

21.2. Expectation205

Since G(2)
\

is not linear in TP\ , we cannot easily use the expectation of TP\ to determine
that for G(2)

\
. However, we can determine the second moment of G(2)

\
:

E

[(
G(2)

\

)2
]
=

𝑀 − 𝑃 − ⌊𝑀 · \⌉
𝑃 (𝑀 − 𝑃)

· E[TP\ ] +
1

𝑃 (𝑀 − 𝑃)
· E[TP2

\ ]

=
𝑀 − 𝑃 − ⌊𝑀 · \⌉

𝑃 (𝑀 − 𝑃)
· ⌊𝑀 · \⌉

𝑀
· 𝑃 + 1

𝑃 (𝑀 − 𝑃)
·
(
Var[TP\ ] + E[TP\ ]2))

=
(𝑀 − 𝑃 − ⌊𝑀 · \⌉) · ⌊𝑀 · \⌉

𝑀 (𝑀 − 𝑃)
+

⌊𝑀 ·\ ⌉(𝑀−⌊𝑀 ·\ ⌉)𝑃(𝑀−𝑃)
𝑀2(𝑀−1) +

(
⌊𝑀 ·\ ⌉
𝑀

· 𝑃
)2

𝑃 (𝑀 − 𝑃)

=
⌊𝑀 · \⌉ · (𝑀 − ⌊𝑀 · \⌉)

𝑀(𝑀 − 1)
= \∗ ·

(
1 − \∗

)
· 𝑀

𝑀 − 1
.

Of course, since the distribution of TP\ is known, the expectation of G(2)
\

can always206

be numerically calculated.207
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21.3. Optimal baselines208

We can show for the G(2)
\

that the performance upper bound for the DD baseline is given
by 0.5 by taking the inequality of the geometric mean and the arithmetic mean:

E[G(2)
\
] = E

[√︂
TP\

𝑃
· TN\

𝑁

]
≤ 1

2
· E

[
TP\

𝑃
+ TN\

𝑁

]
=

1
2
· (E

[
TP\

𝑃

]
+ E

[
TN\

𝑁

]
) =

1
2
· (\∗ + (1 − \∗)) =

1
2

Another helpful lower bound on the performance of the DD can be derived when
labeling randomly 𝑀 − 𝑃 observations positive. If a \ is selected s.t. \∗ = 𝑀−𝑃

𝑀
,

then:

E[G(2)
\∗=𝑀−𝑃

𝑀

] = E

√︄

TP\ · 0 + TP2
\

𝑃 (𝑀 − 𝑃)

 =
1

√
𝑃 · (𝑀 − 𝑃)

· E[TP\ ] =
√
𝑃 · (𝑀 − 𝑃)

𝑀

It can be observed that when 𝑃 = 𝑀 − 𝑃, the lower and upper bounds are 0.5.209

This implies that the maximum expectation can be achieved by randomly predicting210

50211

Since the function 𝜑 : R→ R≥0 given by 𝜑(𝑥) = 𝑥2 is a convex function, we have by
Jensen’s inequality that:

E[G(2)
\
]2 ≤ E

[(
G(2)

\

)2
]
= \∗

(
1 − \∗

) 𝑀

𝑀 − 1
.

This means that

E[G(2)
\
] ≤

√︂
\∗ (1 − \∗)

𝑀

𝑀 − 1
.

Therefore, whenever \∗ ∈ {0, 1}, then E[G(2)
\
] ≤ 0. Since G(2)

\
≥ 0, it must hold that

E[G(2)
\
] = 0. Hence, the set {0, 1} contains minimizers for E[G(2)

\
]. The continuous

version of this set is the interval [0, 1/(2𝑀)) ∪ [1 − 1/(2𝑀), 1]. To show that this
interval contains the only possible values for the minimizers, consider the definition
for the expectation of G(2)

\
:

E
[
G(2)

\

]
=

∑︁
𝑘∈D(TP\ )

√︄
𝑘 · ((𝑀 − 𝑃) − (⌊𝑀 · \⌉ − 𝑘))

𝑃 (𝑀 − 𝑃)
· P(TP\ = 𝑘),

where D(TP\ ) is the domain of TP\ , i.e. the set of values 𝑘 such that P(TP\ = 𝑘) > 0.
Now, let \ be such that 1/(2𝑀) ≤ \ < 1−1/(2𝑀). Furthermore, consider the summand
𝑆

(\)
𝑘

corresponding to 𝑘 = min{𝑃, ⌊𝑀 · \⌉} ∈ D(TP\ ):

𝑆
(\)
𝑘=min{𝑃,⌊𝑀 ·\ ⌉ } =


√︃

𝑀−⌊𝑀 ·\ ⌉
𝑀−𝑃 · P(TP\ = 𝑃) if 𝑃 ≤ ⌊𝑀 · \⌉√︃

⌊𝑀 ·\ ⌉
𝑃

· P(TP\ = ⌊𝑀 · \⌉) if 𝑃 > ⌊𝑀 · \⌉,
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which is strictly positive in both cases. Hence, there is at least one term in the
summation in the definition of E

[
G(2)

\

]
that is larger than 0; thus, the expectation is

strictly positive for 1/(2𝑀) ≤ \ < 1−1/(2𝑀). Consequently, the minimization values
\min ∈ [0, 1] are:

\min ∈ arg min
\∈[0,1]

(
E[G(2)

\
]
)
=

[
0,

1
2𝑀

)
∪
[
1 − 1

2𝑀
, 1
]
.

Following this reasoning, the discrete form \∗min ∈ Θ∗ is given by:

\∗min ∈ arg min
\∗∈Θ∗

{
E[G(2)

\
]
}
= {0, 1}.

22. Prevalence Threshold (PT)212

A relatively new performance measure named Prevalence Threshold (PT\ ) was intro-213

duced by (Balayla, 2020). We could not find many articles that use this measure, but214

it is included for completeness. However, this performance measure has an inherent215

problem that eliminates the possibility of determining all statistics.216

22.1. Definition and distribution217

The Prevalence Threshold PT\ is commonly defined as

PT\ =

√
TPR\ · FPR\ − FPR\

TPR\ − FPR\

.

By using the definitions of TPR\ and FPR\ in terms of TP\ (see Equations (4) and (6)),
we obtain:

PT\ =

√︁
𝑃 · (𝑀 − 𝑃) · TP\ · (⌊𝑀 · \⌉ − TP\ ) − 𝑃(⌊𝑀 · \⌉ − TP\ )

𝑀 · TP\ − 𝑃 · ⌊𝑀 · \⌉ . (19)

It is clear that this performance measure is not a linear function of TP\ , therefore we218

cannot easily calculate its expectation. However, there are more fundamental problems219

with PT\ .220

22.2. Division by zero221

Eq. (19) shows that PT\ is a problematic measure. When is the denominator zero?222

This happens when TP\ = (⌊𝑀 · \⌉/𝑀) · 𝑃. In this case, the fraction is undefined,223

as the denominator is zero. Furthermore, also the numerator is zero in that case. The224

number of true positives TP\ can attain the value (⌊𝑀 · \⌉/𝑀) · 𝑃 = \∗ · 𝑃 whenever225

the latter is also an integer. For example, this always happens for \∗ ∈ {0, 1}. But even226

when \∗ ∈ Θ∗ \ {0, 1}, PT\ is still only safe to use when 𝑀 and 𝑃 are coprime, i.e.227

when the only positive integer that is a divisor of both of them is 1. Otherwise, there228

are always values of \∗ ∈ Θ∗ \ {0, 1} that cause \∗ · 𝑃 to be an integer and therefore229

PT\ to be undefined when TP\ attains that value.230
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One solution would be to say PT\ := 𝑐, 𝑐 ∈ [0, 1], whenever both the numerator231

and denominator are zero. However, this 𝑐 is arbitrary and directly influences the232

optimization of the expectation. This makes the optimal parameter values dependent233

on 𝑐, which is beyond the scope of this chapter. Thus, no statistics are derived for the234

Prevalence Threshold PT\ .235

23. Threat Score (TS) / Critical Success Index (CSI)236

The Threat Score (Palmer and Allen, 1949) TS\ or Critical Success Index (Schaefer,237

1990) is a performance measure that is used for evaluation of forecasting binary weather238

events: it either happens in a specific location or it does not. It was already used in239

1884 to evaluate the prediction of tornadoes (Schaefer, 1990). The Threat Score is240

the ratio of successful event forecasts (TP\ ) to the total number of positive predictions241

(TP\ + FP\ ) and the number of events that were missed (FN\ ).242

23.1. Definition and distribution243

The Threat Score is thus defined as

TS\ =
TP\

TP\ + FP\ + FN\

.

By using Eq. (B2) and (B3), this definition can be reformulated as

TS\ =
TP\

𝑃 + ⌊𝑀 · \⌉ − TP\

.

Note that TS\ is well-defined whenever 𝑃 > 0. The definition of TS\ is not244

linear in TP\ , and so there are no 𝑎, 𝑏 ∈ R such that we can write the definition245

as 𝑋\ (𝑎, 𝑏).246

23.2. Expectation247

Because TS\ is not linear in TP\ , determining the expectation is less straightforward
than for other performance measures. The definition of the expectation is

E[TS\ ] =
∑︁

𝑘∈D(TP\ )

𝑘

𝑃 + ⌊𝑀 · \⌉ − 𝑘
· P(TP\ = 𝑘).

Unfortunately, we cannot explicitly solve this sum, but it can be calculated numeri-248

cally.249

23.3. Optimal baselines250

Although no explicit formula can be given for the expectation, we can calculate its251

extreme values and the corresponding optimizers.252

Minimal Baseline Firstly, we show that \min ∈ [0, 1
2𝑀 ) constitutes a minimum and

that there are no \ outside this interval also yielding this minimum. To this end,

E[TS\min] =
∑︁

𝑘∈D(TS\min )

𝑘

𝑃 + 0 − 𝑘
· P(TS\min = 𝑘) = 0,
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because D(TS\min) = {0}. This is the lowest possible value since TS\ is a non-negative
performance measure; hence, E[TS\ ] ≥ 0 for any \ ∈ [0, 1]. Now, let \′ ≥ 1

2𝑀 , then
there exists a 𝑘 ′ > 0 such that P(TP\ ′ = 𝑘 ′) > 0. Consequently, E[TS\ ′] > 0 and this
means the interval [0, 1

2𝑀 ) contains the only values that constitute the minimum. In
summary,

min
\∈[0,1]

(E[TS\ ]) = 0,

\min ∈ arg min
\∈[0,1]

(E[TS\ ]) =
[
0,

1
2𝑀

)
.

Since \∗min is the discretization of \min, it corresponds to 0. More precisely:

\∗min ∈ arg min
\∗∈Θ∗

{E[TS\∗]} = {0}.

Maximal baseline Secondly, to determine the maximum of E[TS\ ] and the corre-
sponding parameter \max, we determine an upper bound for the expectation, show that
this value is attained for a specific interval, and that there is no \ outside this interval
also yielding this value. To do this, assume that ⌊𝑀 · \⌉ > 0. This makes sense,
because ⌊𝑀 · \⌉ = 0 implies \ < 1/(2𝑀) and such a \ would yield the minimum 0.
Now,

E[TS\ ] =
∑︁

𝑘∈D(TP\ )

𝑘

𝑃 + ⌊𝑀 · \⌉ − 𝑘
· P(TP\ = 𝑘)

≤
∑︁

𝑘∈D(TP\ )

𝑘

𝑃 + ⌊𝑀 · \⌉ − 𝑃
· P(TP\ = 𝑘) =

1
⌊𝑀 · \⌉

∑︁
𝑘∈D(TP\ )

𝑘 · P(TP\ = 𝑘)

=
E[TP\ ]
⌊𝑀 · \⌉

(1)
=

𝑃

𝑀
.

Next, let \max ∈ [1 − 1/(2𝑀), 1], then

E[TS\max] =
𝑃∑︁

𝑘=𝑀−(𝑀−𝑃)

𝑘

𝑃 + 𝑀 − 𝑘
· P(TP\max = 𝑘) =

𝑃

𝑃 + 𝑀 − 𝑃
· P(TP\max = 𝑃) =

𝑃

𝑀
,

because P(TP\max = 𝑃) = 1. Hence, the upper bound is attained for \max ∈ [1 −253

1/(2𝑀), 1], and thus, \max is a maximizer.254

Now, specifically for 𝑃 = 1, we show that the interval of maximizers is actually
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[1/(2𝑀), 1]. Thus, let \ ∈ [1/(2𝑀), 1 − 1/(2𝑀)), then 0 < ⌊𝑀 · \⌉ < 𝑀 and

E[TS\ ] =
min{1,⌊𝑀 ·\ ⌉ }∑︁

𝑘=max{0,⌊𝑀 ·\ ⌉−(𝑀−1)}

𝑘

1 + ⌊𝑀 · \⌉ − 𝑘
· P(TP\ = 𝑘)

=
0

1 + ⌊𝑀 · \⌉ − 0
· P(TP\ = 0) + 1

1 + ⌊𝑀 · \⌉ − 1
· P(TP\ = 1)

=
1

⌊𝑀 · \⌉ · P(TP\ = 1) =
1

⌊𝑀 · \⌉ ·
((1

1
)(

𝑀−1
⌊𝑀 ·\ ⌉−1

)(
𝑀

⌊𝑀 ·\ ⌉
) )

=
1
𝑀

,

which is exactly the upper bound E[TS\max] = 𝑃/𝑀 for 𝑃 = 1.255

Next, to show that the maximizers are only in [1− 1/(2𝑀), 1] for 𝑃 > 1, assume there
is a \′ < 1 − 1

2𝑀 that also yields the maximum. Hence, there is a 𝑘 ′ ∈ D(TP\ ′) with
0 < 𝑘 ′ < 𝑃 such that P(TP\ ′ = 𝑘 ′). This means

E[TS\ ′] =
∑︁

𝑘∈D(TP\′ )

𝑘

𝑃 + ⌊𝑀 · \′⌉ − 𝑘
· P(TP\ ′ = 𝑘)

=
𝑘 ′

𝑃 + ⌊𝑀 · \′⌉ − 𝑘 ′
· P(TP\ ′ = 𝑘 ′) +

∑︁
𝑘∈D(TP\′ )\{𝑘′ }

𝑘

𝑃 + ⌊𝑀 · \′⌉ − 𝑘
· P(TP\ ′ = 𝑘)

≤ 𝑘 ′

𝑃 + ⌊𝑀 · \′⌉ − (𝑃 − 1)
· P(TP\ ′ = 𝑘 ′)+∑︁

𝑘∈D(TP\′ )\{𝑘′ }

𝑘

𝑃 + ⌊𝑀 · \′⌉ − 𝑃
· P(TP\ ′ = 𝑘)

=
𝑘 ′

⌊𝑀 · \′⌉ + 1
P(TP\ ′ = 𝑘 ′) +

∑︁
𝑘∈D(TP\′ )\{𝑘′ }

𝑘

⌊𝑀 · \′⌉ P(TP\ ′ = 𝑘)

<
𝑘 ′

⌊𝑀 · \′⌉ · P(TP\ ′ = 𝑘 ′) +
∑︁

𝑘∈D(TP\′ )\{𝑘′ }

𝑘

⌊𝑀 · \′⌉ · P(TP\ ′ = 𝑘)

=
1

⌊𝑀 · \′⌉
∑︁

𝑘∈D(TP\′ )
𝑘 · P(TP\ ′ = 𝑘) =

𝑃

𝑀
.

Hence, there is a strict inequality E[TS\ ′] < 𝑃
𝑀

and this means \′ is not a maximizer of
the expectation. Consequently, the maximizers are only in the interval [1−1/(2𝑀), 1]
for 𝑃 > 1. In summary,

max
\∈[0,1]

(E[TS\ ]) =
𝑃

𝑀
,

\max ∈ arg max
\∈[0,1]

(E[TS\ ]) =
{[ 1

2𝑀 , 1
]

if 𝑃 = 1[
1 − 1

2𝑀 , 1
]

if 𝑃 > 1.
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Since \∗max is the discretization of \max, we obtain:

\∗max ∈ arg max
\∗∈Θ∗

{E[TS\∗]} =
{
Θ∗ \ {0} if 𝑃 = 1
{1} if 𝑃 > 1.
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