J. Appl. Prob. 62, 1–35 (2025) Printed in England © Applied Probability Trust 2025

SUPPLEMENTARY MATERIAL: THE DUTCH DRAW: CONSTRUCTING A UNIVERSAL BASELINE FOR BINARY CLASSIFICATION PROBLEMS

3	
4	SANDJAI BHULAI 🝺,* *** Vrije Universiteit Amsterdam
5	ETIENNE VAN DE BIJL 🝺,** **** Centrum Wiskunde & Informatica
6	MARK HOOGENDOORN 🝺,**** Vrije Universiteit Amsterdam
7	JAN KLEIN iD,** ****** Centrum Wiskunde & Informatica
8	JORIS PRIES iD,** ****** Centrum Wiskunde & Informatica
9	
10	
11	
12	
13	
14	
15	
16	

This Supplementary Material contains the complete theoretical analysis used to gather the information presented in Sec. 2 and 3 of the Dutch Draw article, and more specifically, Tables 2, 3, and 4. Each section is dedicated to one of the evaluation measures.

Submitted 31 March 2022; accepted 22 July 2024.

^{*} Postal address: Vrije Universiteit Amsterdam, Department of Mathematics, De Boelelaan 1111, 1081 HV, Amsterdam, Netherlands.

^{**} Postal address: Centrum Wiskunde & Informatica, Department of Stochastics, Science Park 123, 1098 XG, Amsterdam, Netherlands.

^{***} Email address: s.bhulai@vu.nl

^{****} Email address: evdb@cwi.nl

^{*****} Postal address: Department of Computer Science, De Boelelaan 1111, 1081 HV, Amsterdam, Netherlands. Email: m.hoogendoorn@vu.nl

^{******} Email address: jan_g_klein@outlook.com

^{*******} Email address: jorispries@gmail.com

^{********} Email address: mei@cwi.nl

The following definitions are frequently used in the Supplementary Material:

$$TP_{\theta} = TP_{\theta}, \tag{B1}$$

$$FP_{\theta} = \hat{P}_{\theta} - TP_{\theta}, \tag{B2}$$

$$FN_{\theta} = P - TP_{\theta}, \tag{B3}$$

$$TN_{\theta} = N - \hat{P}_{\theta} + TP_{\theta}.$$
 (B4)

$$X_{\theta}(a, b) := a \cdot TP_{\theta} + b$$
 with $a, b \in \mathbb{R}$,
 $f_{X_{\theta}}(a, b) :=$ probability distribution of $X_{\theta}(a, b)$.

$$\mathbb{E}[X_{\theta}(a,b)] = a \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + b = a \cdot \frac{\lfloor M \cdot \theta \rfloor}{M} \cdot P + b.$$
(1)

$$\mathcal{D}(\mathrm{TP}_{\theta}) := \{i \in \mathbb{N}_0 : \max\{0, \lfloor M \cdot \theta \rceil - (M - P)\} \le i \le \min\{P, \lfloor M \cdot \theta \rceil\}\},\$$
$$\mathcal{R}(X_{\theta}(a, b)) := \{a \cdot i + b\}_{i \in \mathcal{D}(\mathrm{TP}_{\theta})}.$$
(R)

¹⁷ An overview of the entire Supplementary Material can be viewed in Table 1.

TABLE 1: *Overview of the Supplementary Material:* Each measure is discussed in the corresponding section in the Supplementary Material

Measure	TP	TN	FN	FP	TPR	TNR	FNR	FPR	PPV	NPV	FDR	FOR
Section	1	2	3	4	5	6	7	8	9	10	11	12
Measure	F_{β}	J	MK	Acc	BAcc	MCC	к	FM	G ⁽²⁾	РТ	TS	
Section	13	14	15	16	17	18	19	20	21	22	23	

18

1. Number of True Positives

¹⁹ The number of True Positives TP_{θ} is one of the four base measures. This measure

²⁰ indicates how many of the predicted positive observations are actually positive. Under

the DD methodology, each evaluation measure can be written in terms of TP_{θ} .

1.1. Definition and distribution

Since we want to formulate each measure in terms of TP_{θ} , we have for TP_{θ} :

$$\operatorname{TP}_{\theta} \stackrel{(B1)}{=} X_{\theta} (1,0) \sim f_{X_{\theta}} (1,0).$$

The range of this base measure depends on θ . Therefore, Eq. (R) yields the range of this measure:

$$\operatorname{TP}_{\theta} \in \mathcal{R}\left(X_{\theta}\left(1,0\right)\right)$$

23 1.2. Expectation

The expectation of TP_{θ} using the DD is given by

$$\mathbb{E}[\mathrm{TP}_{\theta}] = \mathbb{E}[X_{\theta}(1,0)] \stackrel{(1)}{=} \frac{\lfloor M \cdot \theta \rceil}{M} \cdot P = \theta^* \cdot P.$$
(2)

24 **1.3. Optimal baselines**

The optimal expectation gives the DD baseline. Eq. (2) shows that the expected value depends on the parameter θ . Therefore, either the minimum or maximum of the expectation yields the baseline. They are given by

$$\min_{\theta \in [0,1]} \left(\mathbb{E}[\mathrm{TP}_{\theta}] \right) = P \cdot \min_{\theta \in [0,1]} \left(\frac{\lfloor M \cdot \theta \rfloor}{M} \right) = 0,$$
$$\max_{\theta \in [0,1]} \left(\mathbb{E}[\mathrm{TP}_{\theta}] \right) = P \cdot \max_{\theta \in [0,1]} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = P.$$

The values of $\theta \in [0, 1]$ that minimize or maximize the expected value are θ_{\min} and θ_{\max} , respectively, and are defined as

$$\theta_{\min} \in \underset{\theta \in [0,1]}{\arg\min} \left(\mathbb{E}[\mathrm{TP}_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\min} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = \left[0, \frac{1}{2M} \right),$$

$$\theta_{\max} \in \underset{\theta \in [0,1]}{\arg\max} \left(\mathbb{E}[\mathrm{TP}_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\max} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = \left[1 - \frac{1}{2M}, 1 \right]$$

Equivalently, the discrete optimizers $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ are determined by

$$\theta_{\min}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,min}} \{ \mathbb{E}[\operatorname{TP}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,min}} \{ \theta^{*} \} = \{0\},\$$

$$\theta_{\max}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ \mathbb{E}[\operatorname{TP}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ \theta^{*} \} = \{1\}.$$

2. Number of True Negatives

²⁶ The number of True Negatives TN_{θ} is also one of the four base measures. This

base measure counts the number of negative predicted instances that are actually
 negative.

29 **2.1. Definition and distribution**

Since we want to formulate each measure in terms of TP_{θ} , we have for TN_{θ} :

$$\Gamma \mathbf{N}_{\theta} = M - P - \lfloor M \cdot \theta \rfloor + \mathrm{TP}_{\theta},$$

which corresponds to Eq. (B4). Furthermore,

$$\mathrm{TN}_{\theta} \stackrel{(B4)}{=} X_{\theta} \left(1, M - P - \lfloor M \cdot \theta \rfloor \right) \sim f_{X_{\theta}} \left(1, M - P - \lfloor M \cdot \theta \rfloor \right),$$

and for its range

25

$$\mathrm{TN}_{\theta} \stackrel{(\boldsymbol{R})}{\in} \mathcal{R}\left(X_{\theta}\left(1, M - P - \lfloor M \cdot \theta \rfloor\right)\right).$$

30 2.2. Expectation

 TN_{θ} is linear in TP_{θ} with slope a = 1 and intercept $b = M - P - \lfloor M \cdot \theta \rfloor$, so its expectation is given by

$$\mathbb{E}[\mathrm{TN}_{\theta}] = \mathbb{E}[X_{\theta}(1, M - P - \lfloor M \cdot \theta \rceil)] \stackrel{(1)}{=} 1 \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + M - P - \lfloor M \cdot \theta \rceil$$
$$= \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M}\right) (M - P) = (1 - \theta^*) (M - P) \,.$$

31 2.3. Optimal baselines

To determine the range of the expectation of TN_{θ} and obtain baselines, its extreme values are calculated:

$$\min_{\theta \in [0,1]} \left(\mathbb{E}[\mathrm{TN}_{\theta}] \right) = (M - P) \min_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M} \right) = 0,$$
$$\max_{\theta \in [0,1]} \left(\mathbb{E}[\mathrm{TN}_{\theta}] \right) = (M - P) \max_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M} \right) = M - P.$$

The associated optimization values $\theta_{\min} \in [0, 1]$ and $\theta_{\max} \in [0, 1]$ are

$$\theta_{\min} \in \underset{\theta \in [0,1]}{\operatorname{arg\,min}} (\mathbb{E}[\operatorname{TN}_{\theta}]) = \underset{\theta \in [0,1]}{\operatorname{arg\,min}} \left(1 - \frac{\lfloor M \cdot \theta \rfloor}{M}\right) = \left[1 - \frac{1}{2M}, 1\right],$$
$$\theta_{\max} \in \underset{\theta \in [0,1]}{\operatorname{arg\,max}} (\mathbb{E}[\operatorname{TN}_{\theta}]) = \underset{\theta \in [0,1]}{\operatorname{arg\,max}} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M}\right) = \left[0, \frac{1}{2M}\right).$$

The discrete equivalents $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ are then determined by

$$\theta_{\min}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,min}} \{ \mathbb{E}[\operatorname{TN}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ 1 - \theta^{*} \} = \{1\},$$

$$\theta_{\max}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ \mathbb{E}[\operatorname{TN}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ 1 - \theta^{*} \} = \{0\}.$$

32

3. Number of False Negatives

³³ The *number of False Negative* FN_{θ} is one of the four base measures. This base measure

³⁴ counts the number of mistakes made by predicting instances negative while the actual

³⁵ labels are positive.

36 3.1. Definition and distribution

Eq. (B3) shows that FN_{θ} can be expressed in terms of TP_{θ} :

$$\operatorname{FN}_{\theta} \stackrel{(B3)}{=} P - \operatorname{TP}_{\theta} = X_{\theta} \left(-1, P \right) \sim f_{X_{\theta}} \left(-1, P \right),$$

and for its range:

$$\operatorname{FN}_{\theta} \stackrel{(\mathbf{R})}{\in} \mathcal{R}\left(X_{\theta}\left(-1,P\right)\right).$$

37 3.2. Expectation

As Eq. (B3) shows, FN_{θ} is linear in TP_{θ} with slope a = -1 and intercept b = P. Hence, the expectation of FN_{θ} is given by

$$\mathbb{E}[\mathrm{FN}_{\theta}] = \mathbb{E}[X_{\theta}(-1, P)] \stackrel{(1)}{=} -1 \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + P = \left(1 - \frac{\lfloor M \cdot \theta \rfloor}{M}\right) \cdot P = \left(1 - \theta^*\right) \cdot P.$$

38 3.3. Optimal baselines

The range of the expectation of FN_{θ} determines the baselines. The extreme values are given by

$$\min_{\theta \in [0,1]} \left(\mathbb{E}[\mathrm{FN}_{\theta}] \right) = P \cdot \min_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rfloor}{M} \right) = 0,$$
$$\max_{\theta \in [0,1]} \left(\mathbb{E}[\mathrm{FN}_{\theta}] \right) = P \cdot \max_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M} \right) = P.$$

The associated optimization values $\theta_{\min} \in [0, 1]$ and $\theta_{\max} \in [0, 1]$ are then

$$\begin{aligned} \theta_{\min} &\in \operatorname*{arg\,min}_{\theta \in [0,1]} (\mathbb{E}[\mathrm{FN}_{\theta}]) = \operatorname*{arg\,min}_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M}\right) = \left[1 - \frac{1}{2M}, 1\right], \\ \theta_{\max} &\in \operatorname*{arg\,max}_{\theta \in [0,1]} (\mathbb{E}[\mathrm{FN}_{\theta}]) = \operatorname*{arg\,max}_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M}\right) = \left[0, \frac{1}{2M}\right), \end{aligned}$$

respectively. The discrete versions $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ of the optimizers are as follows:

$$\begin{aligned} \theta_{\min}^* &\in \underset{\theta^* \in \Theta^*}{\arg\min} \{ \mathbb{E}[FN_{\theta^*}] \} = \underset{\theta^* \in \Theta^*}{\arg\max} \{ 1 - \theta^* \} = \{ 1 \}, \\ \theta_{\max}^* &\in \underset{\theta^* \in \Theta^*}{\arg\max} \{ \mathbb{E}[FN_{\theta^*}] \} = \underset{\theta^* \in \Theta^*}{\arg\max} \{ 1 - \theta^* \} = \{ 0 \}. \end{aligned}$$

39

4. Number of False Positives

⁴⁰ The number of False Positives FP_{θ} is one of the four base measures. This base measure

41 counts the number of mistakes made by predicting instances as positive while the actual

⁴² labels are negative.

43 4.1. Definition and distribution

Each base measure can be expressed in terms of TP_{θ} , thus we have for FP_{θ} :

$$\operatorname{FP}_{\theta} \stackrel{(B2)}{=} \lfloor M \cdot \theta \rceil - \operatorname{TP}_{\theta} = X_{\theta} \left(-1, \lfloor M \cdot \theta \rceil \right) \sim f_{X_{\theta}} \left(-1, \lfloor M \cdot \theta \rceil \right),$$

and for its range:

$$\operatorname{FP}_{\theta} \stackrel{(\mathbf{R})}{\in} \mathcal{R}\left(X_{\theta}\left(-1, \lfloor M \cdot \theta \rfloor\right)\right).$$

44 4.2. Expectation

As Eq. (B2) shows, FP_{θ} is linear in TP_{θ} with slope a = -1 and intercept $b = \lfloor M \cdot \theta \rfloor$, thus the expectation of FP_{θ} is defined as

$$\mathbb{E}[\operatorname{FP}_{\theta}] = \mathbb{E}[X_{\theta}(-1, \lfloor M \cdot \theta \rceil)] \stackrel{(1)}{=} -1 \cdot \mathbb{E}[\operatorname{TP}_{\theta}] + \lfloor M \cdot \theta \rceil = \frac{\lfloor M \cdot \theta \rceil}{M} \cdot (M - P)$$
$$= \theta^* \cdot (M - P).$$

45 **4.3.** Optimal baselines

The extreme values of its expectation give the baselines of FP_{θ} . Hence:

$$\min_{\theta \in [0,1]} \left(\mathbb{E}[\mathrm{FP}_{\theta}] \right) = (M-P) \min_{\theta \in [0,1]} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = 0,$$
$$\max_{\theta \in [0,1]} \left(\mathbb{E}[\mathrm{FP}_{\theta}] \right) = (M-P) \max_{\theta \in [0,1]} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = M-P.$$

The corresponding optimization values $\theta_{\min} \in [0, 1]$ and $\theta_{\max} \in [0, 1]$ are

$$\theta_{\min} \in \underset{\theta \in [0,1]}{\arg\min} \left(\mathbb{E}[FP_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\min} \left(\frac{\lfloor M \cdot \theta \rfloor}{M} \right) = \left[0, \frac{1}{2M} \right),$$

$$\theta_{\max} \in \underset{\theta \in [0,1]}{\arg\max} \left(\mathbb{E}[FP_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\max} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = \left[1 - \frac{1}{2M}, 1 \right]$$

The discrete versions $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ of the optimization values are determined by

$$\theta_{\min}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,min}} \{ \mathbb{E}[\operatorname{FP}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,min}} \{ \theta^{*} \} = \{0\},$$

$$\theta_{\max}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ \mathbb{E}[\operatorname{FP}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ \theta^{*} \} = \{1\}.$$

5. True Positive Rate

⁴⁷ The *True Positive Rate* TPR_{θ} , *Recall*, or *Sensitivity* is the performance measure that

presents the fraction of positive observations that are correctly predicted. This makes
it a fundamental performance measure in binary classification.

50 5.1. Definition and distribution

46

⁵¹ The True Positive Rate is commonly defined as

$$TPR_{\theta} = \frac{TP_{\theta}}{P}.$$
(3)

⁵² Hence, P > 0 should hold, otherwise, the denominator is zero. Now, TPR_{θ} is linear

in TP $_{\theta}$ and can therefore be written as

$$\text{TPR}_{\theta} = X_{\theta} \left(\frac{1}{P}, 0\right) \sim f_{X_{\theta}} \left(\frac{1}{P}, 0\right), \tag{4}$$

and for its range:

$$\operatorname{TPR}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{1}{P},0\right)\right).$$

54 5.2. Expectation

Since TPR_{θ} is linear in TP_{θ} with slope a = 1/P and intercept b = 0, its expectation is

$$\mathbb{E}[\mathrm{TPR}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{1}{P}, 0\right)\right] \stackrel{(1)}{=} \frac{1}{P} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + 0 = \frac{\lfloor M \cdot \theta \rceil}{M} = \theta^{*}.$$

55 5.3. Optimal baselines

The range of the expectation of TPR_{θ} directly determines the baselines. The extreme values are given by

$$\min_{\theta \in [0,1]} \left(\mathbb{E}[\text{TPR}_{\theta}] \right) = \min_{\theta \in [0,1]} \left(\frac{\lfloor M \cdot \theta \rfloor}{M} \right) = 0,$$
$$\max_{\theta \in [0,1]} \left(\mathbb{E}[\text{TPR}_{\theta}] \right) = \max_{\theta \in [0,1]} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = 1.$$

Furthermore, the corresponding optimization values $\theta_{\min} \in [0, 1]$ and $\theta_{\max} \in [0, 1]$ are given by

$$\theta_{\min} \in \underset{\theta \in [0,1]}{\arg\min} \left(\mathbb{E}[\operatorname{TPR}_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\min} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = \left[0, \frac{1}{2M} \right),$$
$$\theta_{\max} \in \underset{\theta \in [0,1]}{\arg\max} \left(\mathbb{E}[\operatorname{TPR}_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\max} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = \left[1 - \frac{1}{2M}, 1 \right].$$

The discrete versions $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ of the optimizers are then

$$\begin{split} \theta^*_{\min} &\in \mathop{\arg\min}_{\theta^* \in \Theta^*} \left\{ \mathbb{E}[\operatorname{TPR}_{\theta^*}] \right\} = \mathop{\arg\min}_{\theta^* \in \Theta^*} \left\{ \theta^* \right\} = \{0\}, \\ \theta^*_{\max} &\in \mathop{\arg\max}_{\theta^* \in \Theta^*} \left\{ \mathbb{E}[\operatorname{TPR}_{\theta^*}] \right\} = \mathop{\arg\max}_{\theta^* \in \Theta^*} \left\{ \theta^* \right\} = \{1\}, \end{split}$$

56 respectively.

57

6. True Negative Rate

⁵⁸ The *True Negative Rate* TNR_{θ} , *Specificity*, or *Selectivity* is the measure that shows

⁵⁹ how relatively well the negative observations are correctly predicted. Hence, this

⁶⁰ performance measure is a fundamental measure in binary classification.

S. BHULAI ET AL.

-

61 6.1. Definition and distribution

The True Negative Rate is commonly defined as

$$\mathrm{TNR}_{\theta} = \frac{\mathrm{TN}_{\theta}}{N}.$$

Hence, N := M - P > 0 should hold, otherwise, the denominator is zero. By using Eq. (B4), TNR $_{\theta}$ can be rewritten as

$$\mathrm{TNR}_{\theta} = \frac{M - P - \lfloor M \cdot \theta \rfloor + \mathrm{TP}_{\theta}}{M - P} = 1 - \frac{\lfloor M \cdot \theta \rfloor - \mathrm{TP}_{\theta}}{M - P}.$$

⁶² Hence, it is linear in TP_{θ} and can therefore be written as

$$\operatorname{TNR}_{\theta} = X_{\theta} \left(\frac{1}{M - P}, 1 - \frac{\lfloor M \cdot \theta \rceil}{M - P} \right) \sim f_{X_{\theta}} \left(\frac{1}{M - P}, 1 - \frac{\lfloor M \cdot \theta \rceil}{M - P} \right), \quad (5)$$

and for its range:

$$\operatorname{TNR}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{1}{M-P}, 1-\frac{\lfloor M\cdot\theta \rceil}{M-P}\right)\right).$$

63 6.2. Expectation

Since TNR_{θ} is linear in TP_{θ} in terms of $X_{\theta}(a, b)$ with slope a = 1/(M - P) and intercept $b = 1 - \lfloor M \cdot \theta \rceil / (M - P)$, its expectation is

$$\mathbb{E}[\mathrm{TNR}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{1}{M-P}, 1 - \frac{\lfloor M \cdot \theta \rceil}{M-P}\right)\right] \stackrel{(1)}{=} \frac{1}{M-P} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + 1 - \frac{\lfloor M \cdot \theta \rceil}{M-P}$$
$$= 1 - \frac{\lfloor M \cdot \theta \rceil}{M} = 1 - \theta^{*}.$$

64 6.3. Optimal baselines

The extreme values of the expectation of TNR_{θ} determine the baselines. The range is given by

$$\min_{\theta \in [0,1]} \left(\mathbb{E}[\text{TNR}_{\theta}] \right) = \min_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rfloor}{M} \right) = 0,$$
$$\max_{\theta \in [0,1]} \left(\mathbb{E}[\text{TNR}_{\theta}] \right) = \max_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M} \right) = 1.$$

Moreover, the optimization values $\theta_{\min} \in [0, 1]$ and $\theta_{\max} \in [0, 1]$ corresponding to the extreme values are defined as

$$\theta_{\min} \in \underset{\theta \in [0,1]}{\operatorname{arg\,min}} (\mathbb{E}[\operatorname{TNR}_{\theta}]) = \underset{\theta \in [0,1]}{\operatorname{arg\,min}} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M}\right) = \left[1 - \frac{1}{2M}, 1\right],$$
$$\theta_{\max} \in \underset{\theta \in [0,1]}{\operatorname{arg\,max}} (\mathbb{E}[\operatorname{TNR}_{\theta}]) = \underset{\theta \in [0,1]}{\operatorname{arg\,max}} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M}\right) = \left[0, \frac{1}{2M}\right),$$

8

respectively. The discrete versions $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ of the optimizers are given by

$$\theta_{\min}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,min}} \{ \mathbb{E}[\operatorname{TNR}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ 1 - \theta^{*} \} = \{ 1 \},$$

$$\theta_{\max}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ \mathbb{E}[\operatorname{TNR}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ 1 - \theta^{*} \} = \{ 0 \}.$$

7. False Negative Rate

⁶⁶ The False Negative Rate FNR_{θ} or Miss Rate is the performance measure that indicates

67 the relative number of incorrectly predicted positive observations. Therefore, it can

⁶⁸ be seen as the counterpart to the True Positive Rate discussed in Sec. 5.

69 7.1. Definition and distribution

65

The False Negative Rate is commonly defined as

$$FNR_{\theta} = \frac{FN_{\theta}}{P}.$$

Hence, P > 0 should hold, otherwise, the denominator is zero. With the aid of Eq. (B3), FNR_{θ} can be reformulated to

$$\text{FNR}_{\theta} = \frac{P - \text{TP}_{\theta}}{P} = 1 - \frac{\text{TP}_{\theta}}{P}$$

Thus, it is linear in TP_{θ} and can therefore be written as

$$\operatorname{FNR}_{\theta} = X_{\theta}\left(-\frac{1}{P},1\right) \sim f_{X_{\theta}}\left(-\frac{1}{P},1\right),$$

and for its range:

$$\operatorname{FNR}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(-\frac{1}{P},1\right)\right).$$

70 7.2. Expectation

Because FNR_{θ} is linear in TP_{θ} with slope a = -1/P and intercept b = 1, its expectation is

$$\mathbb{E}[\mathrm{FNR}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(-\frac{1}{P},1\right)\right] \stackrel{(1)}{=} -\frac{1}{P} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + 1 = 1 - \frac{\lfloor M \cdot \theta \rfloor}{M} = 1 - \theta^{*}.$$

71 7.3. Optimal baselines

The range of the expectation of FNR_{θ} determines the baselines. The extreme values are given by:

$$\min_{\theta \in [0,1]} (\mathbb{E}[\text{FNR}_{\theta}]) = \min_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rfloor}{M} \right) = 0,$$
$$\max_{\theta \in [0,1]} (\mathbb{E}[\text{FNR}_{\theta}]) = \max_{\theta \in [0,1]} \left(1 - \frac{\lfloor M \cdot \theta \rfloor}{M} \right) = 1.$$

Furthermore, the optimizers $\theta_{\min} \in [0, 1]$ and $\theta_{\max} \in [0, 1]$ for the extreme values are as follows:

$$\theta_{\min} \in \underset{\theta \in [0,1]}{\arg\min} \left(\mathbb{E}[\text{FNR}_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\min} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M} \right) = \left[1 - \frac{1}{2M}, 1 \right],$$

$$\theta_{\max} \in \underset{\theta \in [0,1]}{\arg\max} \left(\mathbb{E}[\text{FNR}_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\max} \left(1 - \frac{\lfloor M \cdot \theta \rceil}{M} \right) = \left[0, \frac{1}{2M} \right),$$

respectively. The discrete versions $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ of the optimization values are then:

$$\theta_{\min}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,min}} \{ \mathbb{E}[\operatorname{FNR}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,min}} \{ 1 - \theta^{*} \} = \{ 1 \},$$

$$\theta_{\max}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ \mathbb{E}[\operatorname{FNR}_{\theta^{*}}] \} = \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,max}} \{ 1 - \theta^{*} \} = \{ 0 \}.$$

72

8. False Positive Rate

⁷³ The *False Positive Rate* FPR_{θ} or *Fall-out* is the performance measure that shows the

⁷⁴ fraction of incorrectly predicted negative observations. Hence, it can be seen as the

⁷⁵ counterpart to the True Negative Rate that is introduced in Sec. 6.

76 8.1. Definition and distribution

The False Positive Rate is commonly defined as

$$\text{FPR}_{\theta} = \frac{\text{FP}_{\theta}}{N}$$

Hence, N := M - P should hold, otherwise, the denominator is zero. By using Eq. (B2), FPR_{θ} can be restated as

$$FPR_{\theta} = \frac{\lfloor M \cdot \theta \rceil - TP_{\theta}}{M - P}.$$
(6)

Note that it is linear in TP_{θ} and can therefore be written as

$$\operatorname{FPR}_{\theta} = X_{\theta} \left(-\frac{1}{M-P}, \frac{\lfloor M \cdot \theta \rceil}{M-P} \right) \sim f_{X_{\theta}} \left(-\frac{1}{M-P}, \frac{\lfloor M \cdot \theta \rceil}{M-P} \right)$$

with range:

$$\operatorname{FPR}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(-\frac{1}{M-P}, \frac{\lfloor M \cdot \theta \rfloor}{M-P}\right)\right).$$

77 8.2. Expectation

Since FPR_{θ} is linear in TP_{θ} with slope a = -1/(M - P) and intercept $b = \lfloor M \cdot \theta \rfloor/(M - P)$, its expectation is given by

$$\mathbb{E}[\operatorname{FPR}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(-\frac{1}{M-P}, \frac{\lfloor M \cdot \theta \rceil}{M-P}\right)\right] \stackrel{(1)}{=} -\frac{1}{M-P} \cdot \mathbb{E}[\operatorname{TP}_{\theta}] + \frac{\lfloor M \cdot \theta \rceil}{M-P} = \frac{\lfloor M \cdot \theta \rceil}{M} = \theta^{*}.$$

78 8.3. Optimal baselines

The extreme values of the expectation of FPR_{θ} determine the baselines. The range is given by

$$\min_{\theta \in [0,1]} \left(\mathbb{E}[\text{FPR}_{\theta}] \right) = \min_{\theta \in [0,1]} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = 0,$$
$$\max_{\theta \in [0,1]} \left(\mathbb{E}[\text{FPR}_{\theta}] \right) = \max_{\theta \in [0,1]} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = 1.$$

Moreover, the optimizers $\theta_{\min} \in [0, 1]$ and $\theta_{\max} \in [0, 1]$ for the extreme values are determined by

$$\theta_{\min} \in \underset{\theta \in [0,1]}{\arg\min} \left(\mathbb{E}[\text{FPR}_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\min} \left(\frac{\lfloor M \cdot \theta \rfloor}{M} \right) = \left[0, \frac{1}{2M} \right),$$

$$\theta_{\max} \in \underset{\theta \in [0,1]}{\arg\max} \left(\mathbb{E}[\text{FPR}_{\theta}] \right) = \underset{\theta \in [0,1]}{\arg\max} \left(\frac{\lfloor M \cdot \theta \rceil}{M} \right) = \left[1 - \frac{1}{2M}, 1 \right],$$

respectively. The discrete forms $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ of these are then

$$\begin{aligned} \theta^*_{\min} &\in \underset{\theta^* \in \Theta^*}{\arg\min} \left\{ \mathbb{E}[\text{FNR}_{\theta^*}] \right\} = \underset{\theta^* \in \Theta^*}{\arg\min} \left\{ \theta^* \right\} = \{0\}, \\ \theta^*_{\max} &\in \underset{\theta^* \in \Theta^*}{\arg\max} \left\{ \mathbb{E}[\text{FNR}_{\theta^*}] \right\} = \underset{\theta^* \in \Theta^*}{\arg\max} \left\{ \theta^* \right\} = \{1\}. \end{aligned}$$

79

9. Positive Predictive Value

⁸⁰ The *Positive Predictive Value* PPV_{θ} or *Precision* is the performance measure that ⁸¹ considers the fraction of all positively predicted observations that are, in fact, positive. ⁸² Therefore, it provides an indication of how cautious the model is in assigning positive ⁸³ predictions. A large value means the model is cautious in predicting observations as ⁸⁴ positive, while a small value means the opposite.

9.1. Definition and distribution

⁸⁶ The Positive Predictive Value is commonly defined as

$$PPV_{\theta} = \frac{TP_{\theta}}{TP_{\theta} + FP_{\theta}}.$$
(7)

By using Eq. (B1) and (B2), this definition can be reformulated to

$$\mathrm{PPV}_{\theta} = \frac{\mathrm{TP}_{\theta}}{\lfloor M \cdot \theta \rfloor}.$$

Note that this performance measure is only defined whenever $\lfloor M \cdot \theta \rfloor > 0$, otherwise

- the denominator is zero. Therefore, we assume specifically for PPV_{θ} that $\theta \ge \frac{1}{2M}$.
- ⁸⁹ The definition of PPV_{θ} is linear in TP_{θ} and can thus be formulated as

$$PPV_{\theta} = X_{\theta} \left(\frac{1}{\lfloor M \cdot \theta \rceil}, 0 \right) \sim f_{X_{\theta}} \left(\frac{1}{\lfloor M \cdot \theta \rceil}, 0 \right), \tag{8}$$

with range:

$$\operatorname{PPV}_{\theta} \stackrel{(\mathcal{R})}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{1}{\lfloor M \cdot \theta \rceil}, 0\right)\right).$$

90 9.2. Expectation

Because PPV_{θ} is linear in TP_{θ} with slope $a = 1/\lfloor M \cdot \theta \rfloor$ and intercept b = 0, its expectation is

$$\mathbb{E}[\mathrm{PPV}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{1}{\lfloor M \cdot \theta \rceil}, 0\right)\right] \stackrel{(1)}{=} \frac{1}{\lfloor M \cdot \theta \rceil} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + 0 = \frac{P}{M}.$$

91 9.3. Optimal baselines

The baselines are determined by the extreme values of the expectation of PPV_{θ} :

$$\min_{\substack{\theta \in [1/(2M), 1]}} (\mathbb{E}[\text{PPV}_{\theta}]) = \frac{P}{M},$$
$$\max_{\substack{\theta \in [1/(2M), 1]}} (\mathbb{E}[\text{PPV}_{\theta}]) = \frac{P}{M},$$

because the expectation does not depend on θ . Hence, the optimization values θ_{\min} and θ_{\max} are simply all allowed values for θ :

$$\theta_{\min} = \theta_{\max} \in \left[\frac{1}{2M}, 1\right].$$

Consequently, the discrete versions θ_{\min}^* and θ_{\max}^* of these optimizers are in the set of all allowed discrete values:

$$\theta_{\min}^* = \theta_{\max}^* \in \Theta^* \setminus \{0\}.$$

10. Negative Predictive Value

³³ The Negative Predictive Value NPV $_{\theta}$ is the performance measure that indicates the

fraction of all negatively predicted observations that are, in fact, negative. Hence,
it shows how cautious the model is in assigning negative predictions. A large value
means the model is cautious in predicting observations negatively, while a small value

⁹⁷ means the opposite.

92

98 10.1. Definition and distribution

The Negative Predictive Value is commonly defined as

$$\mathrm{NPV}_{\theta} = \frac{\mathrm{TN}_{\theta}}{\mathrm{TN}_{\theta} + \mathrm{FN}_{\theta}}.$$

With the help of Eq. (B3) and (B4), this definition can be rewritten as

$$\mathrm{NPV}_{\theta} = 1 - \frac{P - \mathrm{TP}_{\theta}}{M - \lfloor M \cdot \theta \rfloor}.$$

Note that this performance measure is only defined whenever $\lfloor M \cdot \theta \rceil < M$, otherwise the denominator is zero. Therefore, we assume specifically for NPV_{θ} that $\theta < 1 - \frac{1}{2M}$. The definition of NPV_{θ} is linear in TP_{θ} and can thus be formulated as

$$\operatorname{NPV}_{\theta} = X_{\theta} \left(\frac{1}{M - \lfloor M \cdot \theta \rceil}, 1 - \frac{P}{M - \lfloor M \cdot \theta \rceil} \right) \sim f_{X_{\theta}} \left(\frac{1}{M - \lfloor M \cdot \theta \rceil}, 1 - \frac{P}{M - \lfloor M \cdot \theta \rceil} \right),$$
(9)

with range:

$$\operatorname{NPV}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{1}{M-\lfloor M\cdot\theta\rceil}, 1-\frac{P}{M-\lfloor M\cdot\theta\rceil}\right)\right).$$

99 10.2. Expectation

Since NPV_{θ} is linear in TP_{θ} with slope $a = 1/(M - \lfloor M \cdot \theta \rfloor)$ and intercept $b = 1 - P/(M - \lfloor M \cdot \theta \rfloor)$, its expectation is given by

$$\mathbb{E}[\operatorname{NPV}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{1}{M-\lfloor M\cdot\theta\rceil}, 1-\frac{P}{M-\lfloor M\cdot\theta\rceil}\right)\right]$$
$$\stackrel{(1)}{=}\frac{1}{M-\lfloor M\cdot\theta\rceil} \cdot \mathbb{E}[\operatorname{TP}_{\theta}] + 1 - \frac{P}{M-\lfloor M\cdot\theta\rceil} = 1 - \frac{P}{M}.$$

100 **10.3. Optimal baselines**

The extreme values of the expectation of NPV $_{\theta}$ determine the baselines. They are given by

$$\min_{\substack{\theta \in [0, 1-1/(2M))}} (\mathbb{E}[\mathrm{NPV}_{\theta}]) = 1 - \frac{P}{M},$$
$$\max_{\substack{\theta \in [0, 1-1/(2M))}} (\mathbb{E}[\mathrm{NPV}_{\theta}]) = 1 - \frac{P}{M},$$

because the expectation does not depend on θ . Consequently, the optimization values θ_{\min} and θ_{\max} are all allowed values for θ :

$$\theta_{\min} = \theta_{\max} \in \left[0, 1 - \frac{1}{2M}\right).$$

This also means the discrete forms θ_{\min}^* and θ_{\max}^* of the optimizers are in the set of all allowed discrete values:

$$\theta_{\min}^* = \theta_{\max}^* \in \Theta^* \setminus \{1\}.$$

101

11. False Discovery Rate

¹⁰² The *False Discovery Rate* FDR_{θ} is the performance measure that looks at the fraction ¹⁰³ of positively predicted observations that are actually negative. Therefore, it can be ¹⁰⁴ seen as the counterpart to the Positive Predictive Value that we discuss in Sec. 9. ¹⁰⁵ Consequently, a small value means the model is cautious in predicting observations as ¹⁰⁶ positive, while a large value means the opposite.

S. BHULAI ET AL.

107 **11.1. Definition and distribution**

The False Discovery Rate is commonly defined as

$$FDR_{\theta} = \frac{FP_{\theta}}{TP_{\theta} + FP_{\theta}} = 1 - PPV_{\theta}.$$

With the help of Eq. (8), this definition can be rewritten as

$$FDR_{\theta} = 1 - \frac{TP_{\theta}}{\lfloor M \cdot \theta \rfloor}$$

Note that this performance measure is only defined whenever $\lfloor M \cdot \theta \rceil > 0$, otherwise the denominator is zero. Therefore, we assume specifically for FDR_{θ} that $\theta > \frac{1}{2M}$. The definition of FDR_{θ} is linear in TP_{θ} and can thus be formulated as

$$\operatorname{FDR}_{\theta} = X_{\theta} \left(-\frac{1}{\lfloor M \cdot \theta \rceil}, 1 \right) \sim f_{X_{\theta}} \left(-\frac{1}{\lfloor M \cdot \theta \rceil}, 1 \right)$$

with range:

$$\operatorname{FDR}_{\theta} \stackrel{(\mathbf{R})}{\in} \mathcal{R}\left(X_{\theta}\left(-\frac{1}{\lfloor M \cdot \theta \rceil}, 1\right)\right)$$

108 **11.2. Expectation**

Since FDR_{θ} is linear in TP_{θ} with slope $a = -1/\lfloor M \cdot \theta \rfloor$ and intercept b = 1, its expectation is given by

$$\mathbb{E}[\mathrm{FDR}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(-\frac{1}{\lfloor M \cdot \theta \rceil}, 1\right)\right] \stackrel{(1)}{=} -\frac{1}{\lfloor M \cdot \theta \rceil} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + 1 = 1 - \frac{P}{M}.$$

109 11.3. Optimal baselines

The extreme values of the expectation of FDR_{θ} determine the baselines. Its range is given by

$$\min_{\substack{\theta \in (1/(2M), 1]}} (\mathbb{E}[FDR_{\theta}]) = 1 - \frac{P}{M},$$
$$\max_{\substack{\theta \in (1/(2M), 1]}} (\mathbb{E}[FDR_{\theta}]) = 1 - \frac{P}{M},$$

because the expectation does not depend on θ . Consequently, the optimization values θ_{\min} and θ_{\max} are all allowed values for θ :

$$\theta_{\min} = \theta_{\max} \in \left(\frac{1}{2M}, 1\right].$$

This also means the discrete forms θ_{\min}^* and θ_{\max}^* of the optimizers are in the set of all allowed discrete values:

$$\theta_{\min}^* = \theta_{\max}^* \in \Theta^* \setminus \{0\}.$$

14

12. False Omission Rate

The *False Omission Rate* FOR $_{\theta}$ is the performance measure that considers the fraction of observations that are predicted negative but are in fact positive. Hence, it can be seen as the counterpart to the Negative Predictive Value introduced in Sec. 10. Consequently, a small value means the model is cautious in negatively predicting observations, while a large value means the opposite.

116 **12.1. Definition and distribution**

110

The False Omission Rate is commonly defined as

$$FOR_{\theta} = \frac{FN_{\theta}}{TN_{\theta} + FN_{\theta}}.$$

With the aid of Eq. (B3), this can be reformulated to

$$\operatorname{FOR}_{\theta} = \frac{P - \operatorname{TP}_{\theta}}{M - \lfloor M \cdot \theta \rfloor}.$$

Note that this performance measure is only defined whenever $\lfloor M \cdot \theta \rceil < M$, otherwise the denominator is zero. Therefore, we assume specifically for FOR_{θ} that $\theta < 1 - \frac{1}{2M}$. Now, FOR_{θ} is linear in TP_{θ} and can therefore be written as

$$\operatorname{FOR}_{\theta} = X_{\theta} \left(-\frac{1}{M - \lfloor M \cdot \theta \rceil}, \frac{P}{M - \lfloor M \cdot \theta \rceil} \right) \sim f_{X_{\theta}} \left(-\frac{1}{M - \lfloor M \cdot \theta \rceil}, \frac{P}{M - \lfloor M \cdot \theta \rceil} \right),$$

with range:

$$\operatorname{FOR}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(-\frac{1}{M-\lfloor M\cdot\theta\rceil},\frac{P}{M-\lfloor M\cdot\theta\rceil}\right)\right).$$

117 12.2. Expectation

Because FOR_{θ} is linear in TP_{θ} with slope $a = -1/(M - \lfloor M \cdot \theta \rfloor)$ and intercept $b = P/(M - \lfloor M \cdot \theta \rfloor)$, its expectation is

$$\mathbb{E}[\mathrm{FOR}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(-\frac{1}{M-\lfloor M\cdot\theta\rceil}, \frac{P}{M-\lfloor M\cdot\theta\rceil}\right)\right]$$
$$\stackrel{(1)}{=} -\frac{1}{M-\lfloor M\cdot\theta\rceil} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + \frac{P}{M-\lfloor M\cdot\theta\rceil} = \frac{P}{M}.$$

118 12.3. Optimal baselines

The range of the expectation of FOR_{θ} determines the baselines. The extreme values are defined as

$$\min_{\substack{\theta \in [0, 1-1/(2M))}} (\mathbb{E}[FOR_{\theta}]) = \frac{P}{M},$$
$$\max_{\substack{\theta \in [0, 1-1/(2M))}} (\mathbb{E}[FOR_{\theta}]) = \frac{P}{M},$$

because the expectation does not depend on θ . Consequently, the optimization values θ_{\min} and θ_{\max} are all allowed values for θ :

$$\theta_{\min} = \theta_{\max} \in \left[0, 1 - \frac{1}{2M}\right).$$

This also means the discrete forms θ_{\min}^* and θ_{\max}^* of the optimizers are in the set of all allowed discrete values:

$$\theta_{\min}^* = \theta_{\max}^* \in \Theta^* \setminus \{1\}.$$

13. F_{β} score

The F_{β} score $F_{\theta}^{(\beta)}$ was introduced by Chinchor (1992). It is the weighted harmonic average between the True Positive Rate (TPR_{θ}) and the Positive Predictive Value (PPV_{θ}). These two performance measures are discussed extensively in Sec. 5 and 9. The F_{β} score balances predicting the actual positive observations correctly (TPR_{θ})

and being cautious in predicting observations as positive (PPV_{θ}). The factor $\beta > 0$ indicates how much more TPR_{θ} is weighted compared to PPV_{θ}.

126 13.1. Definition and distribution

The F_{β} score is commonly defined as

$$F_{\theta}^{(\beta)} = \frac{1 + \beta^2}{\frac{1}{\text{PPV}_{\theta}} + \frac{\beta^2}{\text{TPR}_{\theta}}}$$

By using the definitions of TPR_{θ} and PPV_{θ} in Eq. (3) and (7), $F_{\theta}^{(\beta)}$ can be formulated in terms of the base measures:

$$\mathbf{F}_{\theta}^{(\beta)} = \frac{(1+\beta^2) \cdot \mathbf{TP}_{\theta}}{\beta^2 \cdot P + \mathbf{TP}_{\theta} + \mathbf{FP}_{\theta}}$$

Eq. (B1) and (B2) allow us to write the formulation above in terms of only TP_{θ} :

$$\mathbf{F}_{\theta}^{(\beta)} = \frac{(1+\beta^2) \cdot \mathrm{TP}_{\theta}}{\beta^2 \cdot P + \lfloor M \cdot \theta \rfloor}$$

Note that P > 0 and $\lfloor M \cdot \theta \rceil > 0$, otherwise TPR_{θ} or PPV_{θ} is not defined, and hence, $F_{\theta}^{(\beta)}$ is not defined. Now, $F_{\theta}^{(\beta)}$ is linear in TP_{θ} and can be formulated as

$$\mathbf{F}_{\theta}^{(\beta)} = X_{\theta} \left(\frac{1 + \beta^2}{\beta^2 \cdot P + \lfloor M \cdot \theta \rfloor}, 0 \right),$$

with range:

$$\mathbf{F}_{\theta}^{(\beta)} \stackrel{(\mathbf{R})}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{1+\beta^{2}}{\beta^{2} \cdot P + \lfloor M \cdot \theta \rceil}, 0\right)\right).$$

119

121

122

123

127 13.2. Expectation

Because $F_{\theta}^{(\beta)}$ is linear in TP_{θ} with slope $a = (1 + \beta^2)/(\beta^2 P + \lfloor M \cdot \theta \rfloor)$ and intercept b = 0, its expectation is given by

$$\mathbb{E}[\mathbf{F}_{\theta}^{(\beta)}] = \mathbb{E}\left[X_{\theta}\left(\frac{1+\beta^{2}}{\beta^{2}\cdot P + \lfloor M\cdot\theta \rceil}, 0\right)\right] \stackrel{(1)}{=} \frac{1+\beta^{2}}{\beta^{2}\cdot P + \lfloor M\cdot\theta \rceil} \cdot \mathbb{E}[\mathbf{TP}_{\theta}] + 0$$
$$= \frac{\lfloor M\cdot\theta \rceil \cdot P \cdot (1+\beta^{2})}{M \cdot (\beta^{2}\cdot P + \lfloor M\cdot\theta \rceil)}$$
$$= \frac{(1+\beta^{2}) \cdot P \cdot \theta^{*}}{\beta^{2}\cdot P + M \cdot \theta^{*}}.$$
(10)

128 13.3. Optimal baselines

To determine the extreme values of the expectation of $F_{\theta}^{(\beta)}$, and therefore the baselines, the derivative of the function $f : [0, 1] \rightarrow [0, 1]$ defined as

$$f(t) = \frac{(1+\beta^2) \cdot P \cdot t}{\beta^2 \cdot P + M \cdot t}$$

is calculated. First note that $\mathbb{E}[F_{\theta}^{(\beta)}] = f(\lfloor M \cdot \theta \rceil/M)$. The derivative is given by

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = \frac{\beta^2 (1+\beta^2) \cdot P^2}{(\beta^2 \cdot P + M \cdot t)^2}$$

It is strictly positive for all *t* in its domain; thus, *f* is strictly increasing in *t*. This means $\mathbb{E}[F_{\theta}^{(\beta)}]$ given in Eq. (10) is non-decreasing in both θ and θ^* . This is because the term $\lfloor M \cdot \theta \rfloor / M$ is non-decreasing in θ . Hence, the extreme values of the expectation of $F_{\theta}^{(\beta)}$ are its border values:

$$\min_{\theta \in [1/(2M),1]} \left(\mathbb{E}[\mathbf{F}_{\theta}^{(\beta)}] \right) = \min_{\theta \in [1/(2M),1]} \left(\frac{(1+\beta^2) \cdot P \cdot \lfloor M \cdot \theta \rceil}{M(\beta^2 \cdot P + \lfloor M \cdot \theta \rceil)} \right) = \frac{(1+\beta^2) \cdot P}{M(\beta^2 \cdot P + 1)}$$
$$\max_{\theta \in [1/(2M),1]} \left(\mathbb{E}[\mathbf{F}_{\theta}^{(\beta)}] \right) = \max_{\theta \in [1/(2M),1]} \left(\frac{(1+\beta^2) \cdot P \cdot \lfloor M \cdot \theta \rceil}{M(\beta^2 \cdot P + \lfloor M \cdot \theta \rceil)} \right) = \frac{(1+\beta^2) \cdot P}{\beta^2 \cdot P + M}.$$

Consequently, the optimization values θ_{\min} and θ_{\max} for the extreme values are given by

$$\begin{aligned} \theta_{\min} &\in \underset{\theta \in [1/(2M),1]}{\arg\min} \left(\mathbb{E}[\mathbf{F}_{\theta}^{(\beta)}] \right) = \underset{\theta \in [1/(2M),1]}{\arg\min} \left(\frac{\lfloor M \cdot \theta \rceil}{\beta^2 \cdot P + \lfloor M \cdot \theta \rceil} \right) = \begin{cases} \left[\frac{1}{2},1\right] & \text{if } M = 1\\ \left[\frac{1}{2M},\frac{3}{2M}\right) & \text{if } M > 1, \end{cases} \\ \theta_{\max} &\in \underset{\theta \in [1/(2M),1]}{\arg\max} \left(\mathbb{E}[\mathbf{F}_{\theta}^{(\beta)}] \right) = \underset{\theta \in [1/(2M),1]}{\arg\max} \left(\frac{\lfloor M \cdot \theta \rceil}{\beta^2 \cdot P + \lfloor M \cdot \theta \rceil} \right) = \begin{cases} \left[\frac{1}{2},1\right] & \text{if } M = 1\\ \left[1 - \frac{1}{2M},1\right] & \text{if } M > 1, \end{cases} \end{aligned}$$

respectively. Following this reasoning, the discrete forms θ_{\min}^* and θ_{\max}^* are given by

$$\begin{aligned} \theta_{\min}^* &\in \underset{\theta^* \in \Theta^* \setminus \{0\}}{\operatorname{arg\,min}} \left\{ \mathbb{E}[\mathsf{F}_{\theta^*}^{(\beta)}] \right\} &= \underset{\theta^* \in \Theta^* \setminus \{0\}}{\operatorname{arg\,min}} \left\{ \frac{\theta^*}{\beta^2 \cdot P + M \cdot \theta^*} \right\} = \left\{ \frac{1}{M} \right\}, \\ \theta_{\max}^* &\in \underset{\theta^* \in \Theta^* \setminus \{0\}}{\operatorname{arg\,max}} \left\{ \mathbb{E}[\mathsf{F}_{\theta^*}^{(\beta)}] \right\} &= \underset{\theta^* \in \Theta^* \setminus \{0\}}{\operatorname{arg\,max}} \left\{ \frac{\theta^*}{\beta^2 \cdot P + M \cdot \theta^*} \right\} = \{1\}. \end{aligned}$$

14. Youden's J Statistic

The Youden's J Statistic J_{θ} , Youden's Index, or (Bookmaker) Informedness was introduced by Youden (1950) to capture the performance of a diagnostic test as a single statistic. It incorporates both the True Positive and True Negative rates, discussed in Sec. 5 and 6, respectively. Youden's J Statistic shows how well the model can correctly

¹³⁴ predict both the positive as well as the negative observations.

135 14.1. Definition and distribution

The Youden's J Statistic is commonly defined as

$$\mathbf{J}_{\theta} = \mathrm{TPR}_{\theta} + \mathrm{TNR}_{\theta} - 1.$$

By using Eq. (4) and (5), which provide the definitions of TPR_{θ} and TNR_{θ} in terms of TP_{θ} , the definition of J_{θ} can be reformulated as

$$\mathbf{J}_{\theta} = \frac{M \cdot \mathrm{TP}_{\theta} - P \cdot \lfloor M \cdot \theta \rceil}{P \left(M - P \right)}$$

Because TPR_{θ} needs P > 0, and TNR_{θ} needs N > 0, we have both these assumptions for J_{θ} . Consequently, M > 1. Now, J_{θ} is linear in TP_{θ} and can therefore be written as

$$\mathbf{J}_{\theta} = X_{\theta} \left(\frac{M}{P(M-P)}, -\frac{\lfloor M \cdot \theta \rceil}{M-P} \right) \sim f_{X_{\theta}} \left(\frac{M}{P(M-P)}, -\frac{\lfloor M \cdot \theta \rceil}{M-P} \right),$$

with range:

$$\mathbf{J}_{\theta} \stackrel{(\mathbf{R})}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{M}{P(M-P)}, -\frac{\lfloor M \cdot \theta \rfloor}{M-P}\right)\right).$$

136 **14.2. Expectation**

Since J_{θ} is linear in TP_{θ} with slope a = M/(P(M - P)) and intercept $b = -\lfloor M \cdot \theta \rfloor/(M - P)$, its expectation is given by

$$\mathbb{E}[\mathbf{J}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{M}{P(M-P)}, -\frac{\lfloor M \cdot \theta \rfloor}{M-P}\right)\right] \stackrel{(1)}{=} \frac{M}{P(M-P)} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] - \frac{\lfloor M \cdot \theta \rceil}{M-P} = 0.$$

129

137 14.3. Optimal baselines

The extreme values of the expectation of J_{θ} determine the baselines. They are given by

$$\min_{\substack{\theta \in [0,1]}} (\mathbb{E}[\mathbf{J}_{\theta}]) = 0,$$
$$\max_{\substack{\theta \in [0,1]}} (\mathbb{E}[\mathbf{J}_{\theta}]) = 0,$$

because the expected value does not depend on θ . Consequently, the optimization values θ_{\min} and θ_{\max} can be any value in the domain of θ :

$$\theta_{\min} = \theta_{\max} \in [0, 1].$$

This also holds for the discrete forms θ_{\min}^* and θ_{\max}^* of the optimizers:

$$\theta_{\min}^* = \theta_{\max}^* \in \Theta^*.$$

15. Markedness

¹³⁹ The *Markedness* MK_{θ} or *deltaP* is a performance measure mostly used in linguistics

and social sciences. It combines both the Positive Predictive Value and the Negative

Predictive Value. These two measures are discussed in Sec. 9 and 10. The Markedness

indicates how cautious the model is in predicting observations as positive and also how

¹⁴³ cautious it is in predicting them as negative.

144 **15.1. Definition and distribution**

138

Markedness is commonly defined as

$$MK_{\theta} = PPV_{\theta} + NPV_{\theta} - 1.$$

This definition of MK_{θ} can be reformulated in terms of TP_{θ} by using Eq. (8) and (9):

$$\mathrm{MK}_{\theta} = \frac{M \cdot \mathrm{TP}_{\theta} - P \cdot \lfloor M \cdot \theta \rfloor}{\lfloor M \cdot \theta \rfloor (M - \lfloor M \cdot \theta \rfloor)}.$$

Note that MK_{θ} is only defined for M > 1 and $\theta \in [1/(2M), 1-1/(2M))$, otherwise the denominator becomes zero. The assumption M > 1 automatically follows from the assumptions $\hat{P} > 0$ and $\hat{N} > 0$, which hold for PPV_{θ} and NPV_{θ} , respectively. In other words, at least one observation predicted positive and at least one predicted negative; thus, M > 1. Now, MK_{θ} is linear in TP_{θ} and can therefore be written as

$$\begin{aligned} \mathsf{MK}_{\theta} &= X_{\theta} \left(\frac{M}{\lfloor M \cdot \theta \rceil (M - \lfloor M \cdot \theta \rceil)}, -\frac{P}{M - \lfloor M \cdot \theta \rceil} \right) \\ &\sim f_{X_{\theta}} \left(\frac{M}{\lfloor M \cdot \theta \rceil (M - \lfloor M \cdot \theta \rceil)}, -\frac{P}{M - \lfloor M \cdot \theta \rceil} \right), \end{aligned}$$

with range:

$$\mathsf{MK}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{M}{\lfloor M \cdot \theta \rceil (M - \lfloor M \cdot \theta \rceil)}, -\frac{P}{M - \lfloor M \cdot \theta \rceil}\right)\right).$$

145 15.2. Expectation

By using slope $a = M/(\lfloor M \cdot \theta \rceil (M - \lfloor M \cdot \theta \rceil))$ and intercept $b = -P/(M - \lfloor M \cdot \theta \rceil)$, the expectation of MK_{θ} can be calculated:

$$\mathbb{E}[\mathbf{M}\mathbf{K}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{M}{\lfloor M \cdot \theta \rceil (M - \lfloor M \cdot \theta \rceil)}, -\frac{P}{M - \lfloor M \cdot \theta \rceil}\right)\right]$$
$$\stackrel{(1)}{=} \frac{M}{\lfloor M \cdot \theta \rceil (M - \lfloor M \cdot \theta \rceil)} \cdot \mathbb{E}[\mathbf{T}\mathbf{P}_{\theta}] - \frac{P}{M - \lfloor M \cdot \theta \rceil} = 0.$$

146 **15.3. Optimal baselines**

The extreme values of the expectation of MK_{θ} determine the baselines. Its range is given by:

$$\min_{\substack{\theta \in [1/(2M), 1-1/(2M))}} (\mathbb{E}[\mathsf{MK}_{\theta}]) = 0,$$
$$\max_{\substack{\theta \in [1/(2M), 1-1/(2M))}} (\mathbb{E}[\mathsf{MK}_{\theta}]) = 0,$$

since the expected value does not depend on θ . Therefore, the optimization values θ_{\min} and θ_{\max} are in the set of allowed values for θ :

$$\theta_{\min} = \theta_{\max} \in \left[\frac{1}{2M}, 1 - \frac{1}{2M}\right).$$

This also means the discrete forms θ_{\min}^* and θ_{\max}^* of the optimizers are in the set of the allowed discrete values:

$$\theta_{\min}^* = \theta_{\max}^* \in \Theta^* \setminus \{0, 1\}.$$

147

16. Accuracy

¹⁴⁸ The Accuracy Acc $_{\theta}$ is the performance measure that assesses how good the model

¹⁴⁹ is in correctly predicting the observations without distinguishing between positive or

¹⁵⁰ negative observations.

151 16.1. Definition and distribution

The Accuracy is commonly defined as

$$\operatorname{Acc}_{\theta} = \frac{\operatorname{TP}_{\theta} + \operatorname{TN}_{\theta}}{M}.$$

By using Eq. (B4), this can be restated as

$$\operatorname{Acc}_{\theta} = \frac{2 \cdot \operatorname{TP}_{\theta} + M - P - \lfloor M \cdot \theta \rceil}{M}.$$

¹⁵² Note that it is linear in TP_{θ} and can therefore be written as

$$\operatorname{Acc}_{\theta} = X_{\theta} \left(\frac{2}{M}, \frac{M - P - \lfloor M \cdot \theta \rceil}{M} \right) \sim f_{X_{\theta}} \left(\frac{2}{M}, \frac{M - P - \lfloor M \cdot \theta \rceil}{M} \right), \quad (11)$$

with range:

$$\operatorname{Acc}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{2}{M}, \frac{M-P-\lfloor M\cdot\theta \rceil}{M}\right)\right).$$

153 **16.2. Expectation**

Since $\operatorname{Acc}_{\theta}$ is linear in $\operatorname{TP}_{\theta}$ with slope a = 2/M and intercept $b = (M - P - \lfloor M \cdot \theta \rfloor)/M$, its expectation can be derived:

$$\mathbb{E}[\operatorname{Acc}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{2}{M}, \frac{M - P - \lfloor M \cdot \theta \rceil}{M}\right)\right] \stackrel{(1)}{=} \frac{2}{M} \cdot \mathbb{E}[\operatorname{TP}_{\theta}] + \frac{M - P - \lfloor M \cdot \theta \rceil}{M}$$
$$= \frac{(M - \lfloor M \cdot \theta \rceil)(M - P) + \lfloor M \cdot \theta \rceil \cdot P}{M^{2}} = \frac{(1 - \theta^{*})(M - P) + \theta^{*} \cdot P}{M}.$$
(12)

154 **16.3. Optimal baselines**

The range of the expectation of Acc_{θ} directly determines the baselines. To determine the extreme values of Acc_{θ} , the derivative of the function $f : [0, 1] \rightarrow [0, 1]$ defined as

$$f(t) = \frac{(1-t)(M-P) + P \cdot t}{M}$$

is calculated. First, note that $\mathbb{E}[\operatorname{Acc}_{\theta}] = f(\lfloor M \cdot \theta \rceil/M)$. The derivative is given by

$$\frac{\mathrm{d}f(t)}{\mathrm{d}t} = \frac{2P - M}{M}.$$

It does not depend on t, but whether the derivative is positive or negative depends on P and M. Whenever $P > \frac{M}{2}$, then f is strictly increasing for all t in its domain. If $P < \frac{M}{2}$, then f is strictly decreasing. When $P = \frac{M}{2}$, f is constant. Consequently, the same holds for $\mathbb{E}[\operatorname{Acc}_{\theta}]$ given in Eq. (12). This is because the term $\lfloor M \cdot \theta \rfloor/M$ is non-decreasing in θ . Thus, the extreme values of the expectation of $\operatorname{Acc}_{\theta}$ are given by

$$\min_{\theta \in [0,1]} \left(\mathbb{E}[\operatorname{Acc}_{\theta}] \right) = \begin{cases} \frac{P}{M} & \text{if } P < \frac{M}{2} \\ 1 - \frac{P}{M} & \text{if } P \ge \frac{M}{2} \end{cases} = \min\left\{ \frac{P}{M}, 1 - \frac{P}{M} \right\},\\ \max_{\theta \in [0,1]} \left(\mathbb{E}[\operatorname{Acc}_{\theta}] \right) = \begin{cases} 1 - \frac{P}{M} & \text{if } P < \frac{M}{2} \\ \frac{P}{M} & \text{if } P \ge \frac{M}{2} \end{cases} = \max\left\{ \frac{P}{M}, 1 - \frac{P}{M} \right\}. \end{cases}$$

This means that the optimization values $\theta_{\min} \in [0, 1]$ and $\theta_{\max} \in [0, 1]$ for these extreme values are given by

$$\theta_{\min} \in \underset{\theta \in [0,1]}{\operatorname{arg\,min}} (\mathbb{E}[\operatorname{Acc}_{\theta}]) = \begin{cases} \left[1 - \frac{1}{2M}, 1\right] & \text{if } P < \frac{M}{2} \\ \left[0, 1\right] & \text{if } P = \frac{M}{2} \\ \left[0, \frac{1}{2M}\right) & \text{if } P > \frac{M}{2}, \end{cases}$$
(13)

$$\theta_{\max} \in \underset{\theta \in [0,1]}{\arg \max} \left(\mathbb{E}[\operatorname{Acc}_{\theta}] \right) = \begin{cases} \left[0, \frac{1}{2M} \right) & \text{if } P < \frac{M}{2} \\ \left[0, 1 \right] & \text{if } P = \frac{M}{2} \\ \left[1 - \frac{1}{2M}, 1 \right] & \text{if } P > \frac{M}{2}, \end{cases}$$
(14)

respectively. Consequently, the discrete versions $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ of the optimizers are given by

$$\theta_{\min}^{*} \in \underset{\theta^{*} \in \Theta^{*}}{\operatorname{arg\,min}} \left\{ \mathbb{E}[\operatorname{Acc}_{\theta^{*}}] \right\} = \begin{cases} \{1\} & \text{if } P < \frac{M}{2} \\ \Theta^{*} & \text{if } P = \frac{M}{2} \\ \{0\} & \text{if } P > \frac{M}{2}, \end{cases}$$
(15)

$$\theta_{\max}^* \in \underset{\theta^* \in \Theta^*}{\arg \max} \left\{ \mathbb{E}[\operatorname{Acc}_{\theta^*}] \right\} = \begin{cases} \{0\} & \text{if } P < \frac{M}{2} \\ \Theta^* & \text{if } P = \frac{M}{2} \\ \{1\} & \text{if } P > \frac{M}{2}, \end{cases}$$
(16)

¹⁵⁵ respectively.

156

17. Balanced Accuracy

¹⁵⁷ The *Balanced Accuracy* $BAcc_{\theta}$ is the mean of the True Positive Rate and True Negative ¹⁵⁸ Rate, which are discussed in Sec. 5 and 6. It determines how good the model is in

Rate, which are discussed in Sec. 5 and 6. It determines how good the model is in correctly predicting the positive observations and in correctly predicting the negative

¹⁶⁰ observations on average.

161 17.1. Definition and distribution

The Balanced Accuracy is commonly defined as

$$BAcc_{\theta} = \frac{1}{2} \cdot (TPR_{\theta} + TNR_{\theta}).$$

By using Eq. (4) and (5), this can be reformulated as

$$BAcc_{\theta} = \frac{1}{2} \left(\frac{\mathrm{TP}_{\theta}}{P} + 1 - \frac{\lfloor M \cdot \theta \rfloor - \mathrm{TP}_{\theta}}{M - P} \right) = \frac{M \cdot \mathrm{TP}_{\theta}}{2P \left(M - P\right)} + \frac{M - P - \lfloor M \cdot \theta \rfloor}{2 \left(M - P\right)}$$

Note that P > 0 and N > 0 should hold, otherwise TPR_{θ} or TNR_{θ} is not defined. Consequently, M > 1. Note that BAcc_{θ} is linear in TP_{θ} and can therefore be written as

$$\operatorname{BAcc}_{\theta} = X_{\theta} \left(\frac{M}{2P(M-P)}, \frac{M-P-\lfloor M\cdot\theta \rceil}{2(M-P)} \right) \sim f_{X_{\theta}} \left(\frac{M}{2P(M-P)}, \frac{M-P-\lfloor M\cdot\theta \rceil}{2(M-P)} \right),$$

with range:

$$\operatorname{BAcc}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{M}{2P(M-P)}, \frac{M-P-\lfloor M\cdot\theta\rceil}{2(M-P)}\right)\right).$$

162 17.2. Expectation

BAcc_{θ} is linear in TP_{θ} with slope a = M/(2P(M - P)) and intercept $b = (M - P - \lfloor M \cdot \theta \rfloor)/(2(M - P))$, so its expectation can be derived:

$$\mathbb{E}[\operatorname{BAcc}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{M}{2P(M-P)}, \frac{M-P-\lfloor M\cdot\theta\rceil}{2(M-P)}\right)\right]$$
$$\stackrel{(1)}{=}\frac{M}{2P(M-P)} \cdot \mathbb{E}[\operatorname{TP}_{\theta}] + \frac{M-P-\lfloor M\cdot\theta\rceil}{2(M-P)} = \frac{1}{2}$$

163 17.3. Optimal baselines

The baselines are directly determined by the ranges of the expectation of $BAcc_{\theta}$. Since the expectation is constant, its extreme values are the same:

$$\min_{\substack{\theta \in [0,1]}} \left(\mathbb{E}[\operatorname{BAcc}_{\theta}] \right) = \frac{1}{2},$$
$$\max_{\substack{\theta \in [0,1]}} \left(\mathbb{E}[\operatorname{BAcc}_{\theta}] \right) = \frac{1}{2}.$$

This means that the optimization values $\theta_{\min} \in [0, 1]$ and $\theta_{\max} \in [0, 1]$ for these extreme values are simply

$$\theta_{\min} \in \underset{\theta \in [0,1]}{\arg \min} (\mathbb{E}[BAcc_{\theta}]) = [0,1],$$
$$\theta_{\max} \in \underset{\theta \in [0,1]}{\arg \max} (\mathbb{E}[BAcc_{\theta}]) = [0,1],$$

respectively. Consequently, the discrete versions $\theta_{\min}^* \in \Theta^*$ and $\theta_{\max}^* \in \Theta^*$ of the optimizers are given by

$$\theta^*_{\min} \in \underset{\theta^* \in \Theta^*}{\arg \min} \{\mathbb{E}[\operatorname{Acc}_{\theta^*}]\} = \Theta^*,\\ \theta^*_{\max} \in \underset{\theta^* \in \Theta^*}{\arg \max} \{\mathbb{E}[\operatorname{Acc}_{\theta^*}]\} = \Theta^*,$$

164 respectively.

165

18. Matthews Correlation Coefficient

¹⁶⁶ The Matthews Correlation Coefficient MCC_{θ} was established by Matthews (1975).

¹⁶⁷ However, its definition is identical to that of the Yule phi coefficient, which was

¹⁶⁸ introduced by Yule (1912). The performance measure can be seen as the correlation

¹⁶⁹ coefficient between the actual and predicted classes. Hence, it is one of the few

measures that lies in [-1, 1] instead of [0, 1].

171 18.1. Definition and distribution

The Matthews Correlation Coefficient is commonly defined as

$$MCC_{\theta} = \frac{TP_{\theta} \cdot TN_{\theta} - FN_{\theta} \cdot FP_{\theta}}{\sqrt{(TP_{\theta} + FP_{\theta})(TP_{\theta} + FN_{\theta})(TN_{\theta} + FP_{\theta})(TN_{\theta} + FN_{\theta})}}$$

¹⁷² By using Eq. (B2) and (B4), this definition can be reformulated as

$$MCC_{\theta} = \frac{M \cdot TP_{\theta} - P \cdot \lfloor M \cdot \theta \rceil}{\sqrt{\lfloor M \cdot \theta \rceil \cdot P (M - P) (M - \lfloor M \cdot \theta \rceil)}}.$$
(17)

To ensure the denominator is non-zero, the assumptions P > 0, N > 0, $\hat{P} := \lfloor M \cdot \theta \rfloor > 0$, and $\hat{N} := M - \lfloor M \cdot \theta \rfloor > 0$ must hold. If one of these assumptions is violated, then the denominator in Eq. (17) is zero, and MCC_{θ} is not defined. Therefore, we have for MCC_{θ} that $\frac{1}{2M} \le \theta < 1 - \frac{1}{2M}$ and M > 1. Next, to improve readability we introduce the variable $C(M, P, \theta)$ to replace the denominator in Eq. (17):

$$C(M, P, \theta) := \sqrt{\lfloor M \cdot \theta \rfloor} \cdot P(M - P)(M - \lfloor M \cdot \theta \rfloor).$$

The definition of MCC_{θ} is linear in TP_{θ} and can thus be formulated as

$$\mathrm{MCC}_{\theta} = X_{\theta} \left(\frac{M}{C(M, P, \theta)}, \frac{-P \cdot \lfloor M \cdot \theta \rceil}{C(M, P, \theta)} \right) \sim f_{X_{\theta}} \left(\frac{M}{C(M, P, \theta)}, \frac{-P \cdot \lfloor M \cdot \theta \rceil}{C(M, P, \theta)} \right),$$

with range:

$$\operatorname{MCC}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{M}{C(M,P,\theta)}, \frac{-P \cdot \lfloor M \cdot \theta \rceil}{C(M,P,\theta)}\right)\right).$$

173 18.2. Expectation

 MCC_{θ} is linear in TP_{θ} with slope $a = M/C(M, P, \theta)$ and intercept $b = -P \cdot \lfloor M \cdot \theta \rfloor/C(M, P, \theta)$, so its expectation can be derived from Eq. (1):

$$\mathbb{E}[\mathrm{MCC}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{M}{C(M, P, \theta)}, \frac{-P \cdot \lfloor M \cdot \theta \rceil}{C(M, P, \theta)}\right)\right] \stackrel{(1)}{=} \frac{M}{C(M, P, \theta)} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] - \frac{P \cdot \lfloor M \cdot \theta \rceil}{C(M, P, \theta)} = 0.$$

174 18.3. Optimal baselines

The baselines are directly determined by the ranges of the expectation of MCC_{θ} . Since the expectation is constant, its extreme values are the same:

$$\begin{split} \min_{\substack{\theta \in [1/(2M), 1-1/(2M))}} (\mathbb{E}[\text{MCC}_{\theta}]) &= 0, \\ \max_{\substack{\theta \in [1/(2M), 1-1/(2M))}} (\mathbb{E}[\text{MCC}_{\theta}]) &= 0. \end{split}$$

This means that the optimization values θ_{\min} and θ_{\max} for these extreme values are simply:

$$\theta_{\min} = \theta_{\max} \in \left[\frac{1}{2M}, 1 - \frac{1}{2M}\right),$$

respectively. Consequently, the discrete versions θ_{\min}^* and θ_{\max}^* of the optimizers are given by:

$$\theta_{\min}^* = \theta_{\max}^* \in \Theta^* \setminus \{0, 1\}.$$

175

19. Cohen's Kappa

Cohen's kappa κ_{θ} is a less straightforward performance measure than the other measures discussed in this research. It is used to quantify the inter-rater reliability for two raters of categorical observations (Kvålseth, 1989). In our case, we compare the first rater, which is the DD classifier, with the perfect rater, which assigns the true label

180 to each observation.

181 19.1. Definition and distribution

Although there are several definitions for Cohen's kappa, here we choose the following:

$$\kappa_{\theta} = \frac{P_o^{\theta} - P_e^{\theta}}{1 - P_e^{\theta}},$$

with P_o^{θ} the Accuracy Acc_{θ} as defined in Sec. 16 and P_e^{θ} the probability that the shuffle approach assigns the true label by chance. These two values can be expressed in terms of the base measures as follows:

$$P_o^{\theta} = \operatorname{Acc}_{\theta} = \frac{\operatorname{TP}_{\theta} + \operatorname{TN}_{\theta}}{M},$$
$$P_e^{\theta} = \frac{(\operatorname{TP}_{\theta} + \operatorname{FP}_{\theta}) \cdot P + (\operatorname{TN}_{\theta} + \operatorname{FN}_{\theta}) (M - P)}{M^2}$$

By using Eq. (11), (B1), (B2), (B3) and (B4) the above can be rewritten as

$$\begin{split} P_o^{\theta} &= \frac{2 \cdot \mathrm{TP}_{\theta} + M - P - \lfloor M \cdot \theta \rceil}{M}, \\ P_e^{\theta} &= \frac{\lfloor M \cdot \theta \rceil \cdot P + (M - \lfloor M \cdot \theta \rceil) (M - P)}{M^2} \end{split}$$

Note that for κ_{θ} to be well-defined, we need $1 - P_e^{\theta} \neq 0$. In other words,

$$\lfloor M \cdot \theta \rfloor \cdot P + (M - \lfloor M \cdot \theta \rfloor) (M - P) \neq M^2.$$

This simplifies to

$$\frac{\lfloor M \cdot \theta \rceil}{M} \neq \frac{P}{2P - M}.$$
(18)

The left-hand side is by definition in the interval [0, 1]. For the right-hand side to be in that interval, we first need $P/(2P - M) \ge 0$. Since $P \ge 0$, that means 2P - M > 0; hence, $P > \frac{M}{2}$. Secondly, $P/(2P - M) \le 1$. Since we know $P > \frac{M}{2}$, we obtain $P \ge M$. This inequality reduces to P = M, because P is always at most M. Whenever P = M, then Eq. (18) becomes

$$\frac{\lfloor M \cdot \theta \rceil}{M} \neq 1.$$

To summarize, when P < M, then all $\theta \in [0, 1]$ are allowed in κ_{θ} , but when P = M, then $\theta < 1 - 1/(2M)$.

Now, by using P_o^{θ} and P_e^{θ} in the definition of Cohen's kappa, we obtain:

$$\kappa_{\theta} = \frac{2 \cdot M \cdot \mathrm{TP}_{\theta} - 2 \cdot \lfloor M \cdot \theta \rceil \cdot P}{P(M - \lfloor M \cdot \theta \rceil) + (M - P) \lfloor M \cdot \theta \rceil}$$

To improve readability, we introduce the variables $a_{\kappa_{\theta}}$ and $b_{\kappa_{\theta}}$ defined as

$$a_{\kappa_{\theta}} = \frac{2M}{P\left(M - \lfloor M \cdot \theta \rfloor\right) + (M - P) \lfloor M \cdot \theta \rceil}$$
$$b_{\kappa_{\theta}} = -\frac{2 \cdot \lfloor M \cdot \theta \rceil \cdot P}{P\left(M - \lfloor M \cdot \theta \rceil\right) + (M - P) \lfloor M \cdot \theta \rceil}$$

Hence, κ_{θ} is linear in TP_{θ} and can be written as

$$\kappa_{\theta} = X_{\theta} \left(a_{\kappa_{\theta}}, b_{\kappa_{\theta}} \right) \sim f_{X_{\theta}} \left(a_{\kappa_{\theta}}, b_{\kappa_{\theta}} \right),$$

with range:

$$\kappa_{\theta} \stackrel{(\mathbf{R})}{\in} \mathcal{R}\left(X_{\theta}\left(a_{\kappa_{\theta}}, b_{\kappa_{\theta}}\right)\right).$$

¹⁸⁴ **19.2. Expectation**

As Cohen's kappa is linear in TP_{θ} , its expectation can be derived:

$$\mathbb{E}[\kappa_{\theta}] = \mathbb{E}\left[X_{\theta}\left(a_{\kappa_{\theta}}, b_{\kappa_{\theta}}\right)\right] \stackrel{(1)}{=} a_{\kappa_{\theta}} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + b_{\kappa_{\theta}} \\ = \frac{2 \cdot \lfloor M \cdot \theta \rceil \cdot P}{P\left(M - \lfloor M \cdot \theta \rceil\right) + (M - P)\lfloor M \cdot \theta \rceil} - \frac{2 \cdot \lfloor M \cdot \theta \rceil \cdot P}{P\left(M - \lfloor M \cdot \theta \rceil\right) + (M - P)\lfloor M \cdot \theta \rceil} \\ = 0.$$

185 19.3. Optimal baselines

The baselines are directly determined by the ranges of the expectation of κ_{θ} . Since the expectation is constant, its extreme values are the same:

$$\begin{cases} \min_{\theta \in [0,1]} (\mathbb{E}[\kappa_{\theta}]) = 0 & \text{if } P < M \\ \min_{\theta \in [0,1-1/(2M))} (\mathbb{E}[\kappa_{\theta}]) = 0 & \text{if } P = M, \end{cases}$$
$$\begin{cases} \max_{\theta \in [0,1]} (\mathbb{E}[\kappa_{\theta}]) = 0 & \text{if } P < M \\ \max_{\theta \in [0,1-1/(2M))} (\mathbb{E}[\kappa_{\theta}]) = 0 & \text{if } P = M. \end{cases}$$

This means that the optimization values θ_{\min} and θ_{\max} for these extreme values are simply all allowed values:

$$\begin{cases} \theta_{\min} = \theta_{\max} \in [0, 1] & \text{if } P < M \\ \theta_{\min} = \theta_{\max} \in [0, 1 - \frac{1}{2M}] & \text{if } P = M, \end{cases}$$

respectively. Consequently, the discrete versions θ_{\min}^* and θ_{\max}^* of the optimizers are given by

$$\begin{cases} \theta_{\min}^* = \theta_{\max}^* \in \Theta^* & \text{if } P < M \\ \theta_{\min}^* = \theta_{\max}^* \in \Theta^* \setminus \{1\} & \text{if } P = M. \end{cases}$$

186

20. Fowlkes-Mallows Index

The *Fowlkes-Mallows Index* FM_{θ} or *G-mean 1* was introduced by (Fowlkes and Mallows, 1983) as a way to calculate the similarity between two clusterings. It is the geometric average between the True Positive Rate (TPR_{θ}) and Positive Predictive Value (PPV_{θ}), which are discussed in Sec. 5 and 9, respectively. It balances correctly predicting the actual positive observations (TPR_{θ}) and being cautious in predicting observations as positive (PPV_{θ}).

20.1. Definition and distribution

The Fowlkes-Mallows Index is commonly defined as

1

$$\mathrm{FM}_{\theta} = \sqrt{\mathrm{TPR}_{\theta} \cdot \mathrm{PPV}_{\theta}}.$$

By using the definitions of TPR_{θ} and PPV_{θ} in terms of TP_{θ} in Eq. (4) and (8), respectively, we obtain:

$$\mathrm{FM}_{\theta} = \frac{\mathrm{TP}_{\theta}}{\sqrt{P \cdot \lfloor M \cdot \theta \rfloor}}.$$

Since TPR_{θ} is only defined when P > 0 and PPV_{θ} only when $\hat{P} := \lfloor M \cdot \theta \rceil > 0$, also FM_{θ} has these assumptions. Therefore, $\theta \ge \frac{1}{2M}$. The definition of FM_{θ} is linear in

 TP_{θ} and can thus be formulated as

$$\mathrm{FM}_{\theta} = X_{\theta} \left(\frac{1}{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}}, 0 \right) \sim f_{X_{\theta}} \left(\frac{1}{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}}, 0 \right),$$

with range:

$$\operatorname{FM}_{\theta} \stackrel{(R)}{\in} \mathcal{R}\left(X_{\theta}\left(\frac{1}{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}}, 0\right)\right).$$

¹⁹⁴ 20.2. Expectation

Because FM_{θ} is linear in TP_{θ} with slope $a = \frac{1}{\sqrt{P \cdot \lfloor M \cdot \theta \rfloor}}$ and intercept b = 0, its expectation is

$$\mathbb{E}[\mathrm{FM}_{\theta}] = \mathbb{E}\left[X_{\theta}\left(\frac{1}{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}}, 0\right)\right] \stackrel{(1)}{=} \frac{1}{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + 0 = \frac{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}}{M}$$
$$= \sqrt{\frac{\theta^* \cdot P}{M}}.$$

195 **20.3.** Optimal baselines

The extreme values of the expectation of FM_{θ} determine the baselines. They are given by:

$$\min_{\theta \in [1/(2M),1]} (\mathbb{E}[\mathrm{FM}_{\theta}]) = \min_{\theta \in [1/(2M),1]} \left(\frac{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}}{M}\right) = \frac{\sqrt{P}}{M},$$
$$\max_{\theta \in [1/(2M),1]} (\mathbb{E}[\mathrm{FM}_{\theta}]) = \max_{\theta \in [1/(2M),1]} \left(\frac{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}}{M}\right) = \sqrt{\frac{P}{M}},$$

because the expectation is a non-decreasing function in θ . Note that the minimum and maximum are equal when M = 1. Consequently, the optimizers θ_{\min} and θ_{\max} for the extreme values are determined by:

$$\theta_{\min} \in \operatorname*{arg\,min}_{\theta \in [1/(2M), 1]} (\mathbb{E}[\mathrm{FM}_{\theta}]) = \operatorname*{arg\,min}_{\theta \in [1/(2M), 1]} \left(\frac{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}}{M} \right) = \begin{cases} \left[\frac{1}{2M}, 1\right] & \text{if } M = 1\\ \left[\frac{1}{2M}, \frac{3}{2M}\right) & \text{if } M > 1, \end{cases}$$

$$\theta_{\max} \in \underset{\theta \in [1/(2M),1]}{\operatorname{arg\,max}} (\mathbb{E}[\mathrm{FM}_{\theta}]) = \underset{\theta \in [1/(2M),1]}{\operatorname{arg\,max}} \left(\frac{\sqrt{P \cdot \lfloor M \cdot \theta \rceil}}{M} \right) = \begin{cases} \left[\frac{1}{2M}, 1\right] & \text{if } M = 1\\ \left[1 - \frac{1}{2M}, 1\right] & \text{if } M > 1, \end{cases}$$

respectively. The discrete forms θ_{\min}^* and θ_{\max}^* of these are given by:

$$\theta_{\min}^{*} \in \underset{\theta^{*} \in \Theta^{*} \setminus \{0\}}{\operatorname{arg\,min}} \left\{ \mathbb{E}[\mathrm{FM}_{\theta^{*}}] \right\} = \underset{\theta^{*} \in \Theta^{*} \setminus \{0\}}{\operatorname{arg\,min}} \left\{ \sqrt{\frac{\theta^{*} \cdot P}{M}} \right\} = \left\{ \frac{1}{M} \right\},$$
$$\theta_{\max}^{*} \in \underset{\theta^{*} \in \Theta^{*} \setminus \{0\}}{\operatorname{arg\,max}} \left\{ \mathbb{E}[\mathrm{FM}_{\theta^{*}}] \right\} = \underset{\theta^{*} \in \Theta^{*} \setminus \{0\}}{\operatorname{arg\,max}} \left\{ \sqrt{\frac{\theta^{*} \cdot P}{M}} \right\} = \{1\}.$$

196

21. G-mean 2

¹⁹⁷ The *G-mean* 2 $G_{\theta}^{(2)}$ was established by (Kubat et al., 1998). This performance measure ¹⁹⁸ is the geometric average between the True Positive Rate (TPR_{θ}) and True Negative ¹⁹⁹ Rate (TNR_{θ}), which we discuss in Sec. 5 and 6, respectively. Hence, it balances ²⁰⁰ correctly predicting the positive observations and correctly predicting the negative ²⁰¹ observations.

202 21.1. Definition and distribution

The G-mean 2 is defined as

$$\mathbf{G}_{\theta}^{(2)} = \sqrt{\mathbf{TPR}_{\theta} \cdot \mathbf{TNR}_{\theta}}.$$

Since TPR_{θ} needs the assumption P > 0 and TNR_{θ} needs N := M - P > 0, we have these restrictions also for $G_{\theta}^{(2)}$. Consequently, M > 1. Now, by using the definitions of TPR_{θ} and TNR_{θ} in terms of TP_{θ} in, respectively, Eq. (4) and (5), we obtain:

$$\mathbf{G}_{\theta}^{(2)} = \sqrt{\frac{\mathrm{TP}_{\theta} \cdot (M - P - \lfloor M \cdot \theta \rceil) + \mathrm{TP}_{\theta}^{2}}{P(M - P)}}$$

²⁰³ This function is not a linear function of TP_{θ} , and hence, we cannot write it in the form

 $X_{\theta}(a, b) = a \cdot \text{TP}_{\theta} + b$ for some variables $a, b \in \mathbb{R}$.

205 21.2. Expectation

Since $G_{\theta}^{(2)}$ is not linear in TP_{θ} , we cannot easily use the expectation of TP_{θ} to determine that for $G_{\theta}^{(2)}$. However, we can determine the second moment of $G_{\theta}^{(2)}$:

$$\mathbb{E}\left[\left(\mathbf{G}_{\theta}^{(2)}\right)^{2}\right] = \frac{M-P-\lfloor M\cdot\theta\rceil}{P(M-P)} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] + \frac{1}{P(M-P)} \cdot \mathbb{E}[\mathrm{TP}_{\theta}^{2}]$$

$$= \frac{M-P-\lfloor M\cdot\theta\rceil}{P(M-P)} \cdot \frac{\lfloor M\cdot\theta\rceil}{M} \cdot P + \frac{1}{P(M-P)} \cdot \left(\mathbf{Var}[\mathrm{TP}_{\theta}] + \mathbb{E}[\mathrm{TP}_{\theta}]^{2}\right))$$

$$= \frac{(M-P-\lfloor M\cdot\theta\rceil) \cdot \lfloor M\cdot\theta\rceil}{M(M-P)} + \frac{\frac{\lfloor M\cdot\theta\rceil(M-\lfloor M\cdot\theta\rceil)P(M-P)}{M^{2}(M-1)} + \left(\frac{\lfloor M\cdot\theta\rceil}{M} \cdot P\right)^{2}}{P(M-P)}$$

$$= \frac{\lfloor M\cdot\theta\rceil \cdot (M-\lfloor M\cdot\theta\rceil)}{M(M-1)} = \theta^{*} \cdot \left(1-\theta^{*}\right) \cdot \frac{M}{M-1}.$$

Of course, since the distribution of TP_{θ} is known, the expectation of $G_{\theta}^{(2)}$ can always

²⁰⁷ be numerically calculated.

208 21.3. Optimal baselines

We can show for the $G_{\theta}^{(2)}$ that the performance upper bound for the DD baseline is given by 0.5 by taking the inequality of the geometric mean and the arithmetic mean:

$$\mathbb{E}[\mathbf{G}_{\theta}^{(2)}] = \mathbb{E}\left[\sqrt{\frac{\mathbf{TP}_{\theta}}{P}} \cdot \frac{\mathbf{TN}_{\theta}}{N}\right] \le \frac{1}{2} \cdot \mathbb{E}\left[\frac{\mathbf{TP}_{\theta}}{P} + \frac{\mathbf{TN}_{\theta}}{N}\right]$$
$$= \frac{1}{2} \cdot \left(\mathbb{E}\left[\frac{\mathbf{TP}_{\theta}}{P}\right] + \mathbb{E}\left[\frac{\mathbf{TN}_{\theta}}{N}\right]\right) = \frac{1}{2} \cdot \left(\theta^* + (1 - \theta^*)\right) = \frac{1}{2}$$

Another helpful lower bound on the performance of the DD can be derived when labeling randomly M - P observations positive. If a θ is selected s.t. $\theta^* = \frac{M-P}{M}$, then:

$$\mathbb{E}[\mathbf{G}_{\theta^* = \frac{M-P}{M}}^{(2)}] = \mathbb{E}\left[\sqrt{\frac{\mathrm{TP}_{\theta} \cdot 0 + \mathrm{TP}_{\theta}^2}{P\left(M - P\right)}}\right] = \frac{1}{\sqrt{P \cdot (M - P)}} \cdot \mathbb{E}[\mathrm{TP}_{\theta}] = \frac{\sqrt{P \cdot (M - P)}}{M}$$

It can be observed that when P = M - P, the lower and upper bounds are 0.5.

This implies that the maximum expectation can be achieved by randomly predicting 50

Since the function $\varphi : \mathbb{R} \to \mathbb{R}_{\geq 0}$ given by $\varphi(x) = x^2$ is a convex function, we have by Jensen's inequality that:

$$\mathbb{E}[\mathbf{G}_{\theta}^{(2)}]^2 \leq \mathbb{E}\left[\left(\mathbf{G}_{\theta}^{(2)}\right)^2\right] = \theta^* \left(1 - \theta^*\right) \frac{M}{M - 1}.$$

This means that

$$\mathbb{E}[\mathsf{G}_{\theta}^{(2)}] \leq \sqrt{\theta^* \left(1 - \theta^*\right) \frac{M}{M - 1}}.$$

Therefore, whenever $\theta^* \in \{0, 1\}$, then $\mathbb{E}[G_{\theta}^{(2)}] \leq 0$. Since $G_{\theta}^{(2)} \geq 0$, it must hold that $\mathbb{E}[G_{\theta}^{(2)}] = 0$. Hence, the set $\{0, 1\}$ contains minimizers for $\mathbb{E}[G_{\theta}^{(2)}]$. The continuous version of this set is the interval $[0, 1/(2M)) \cup [1 - 1/(2M), 1]$. To show that this interval contains the only possible values for the minimizers, consider the definition for the expectation of $G_{\theta}^{(2)}$:

$$\mathbb{E}\left[\mathbf{G}_{\theta}^{(2)}\right] = \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta})} \sqrt{\frac{k \cdot \left((M-P) - \left(\lfloor M \cdot \theta \rceil - k\right)\right)}{P\left(M-P\right)}} \cdot \mathbb{P}(\mathrm{TP}_{\theta} = k),$$

where $\mathcal{D}(\text{TP}_{\theta})$ is the domain of TP_{θ} , i.e. the set of values k such that $\mathbb{P}(\text{TP}_{\theta} = k) > 0$. Now, let θ be such that $1/(2M) \le \theta < 1 - 1/(2M)$. Furthermore, consider the summand $S_k^{(\theta)}$ corresponding to $k = \min\{P, \lfloor M \cdot \theta \rfloor\} \in \mathcal{D}(\text{TP}_{\theta})$:

$$S_{k=\min\{P,\lfloor M\cdot\theta\rceil\}}^{(\theta)} = \begin{cases} \sqrt{\frac{M-\lfloor M\cdot\theta\rceil}{M-P}} \cdot \mathbb{P}(\mathrm{TP}_{\theta}=P) & \text{if } P \leq \lfloor M\cdot\theta\rceil \\ \sqrt{\frac{\lfloor M\cdot\theta\rceil}{P}} \cdot \mathbb{P}(\mathrm{TP}_{\theta}=\lfloor M\cdot\theta\rceil) & \text{if } P > \lfloor M\cdot\theta\rceil, \end{cases}$$

which is strictly positive in both cases. Hence, there is at least one term in the summation in the definition of $\mathbb{E}\left[G_{\theta}^{(2)}\right]$ that is larger than 0; thus, the expectation is strictly positive for $1/(2M) \le \theta < 1 - 1/(2M)$. Consequently, the minimization values $\theta_{\min} \in [0, 1]$ are:

$$\theta_{\min} \in \operatorname*{arg\,min}_{\theta \in [0,1]} \left(\mathbb{E}[\mathbf{G}_{\theta}^{(2)}] \right) = \left[0, \frac{1}{2M} \right) \cup \left[1 - \frac{1}{2M}, 1 \right].$$

Following this reasoning, the discrete form $\theta_{\min}^* \in \Theta^*$ is given by:

$$\theta_{\min}^* \in \operatorname*{arg\,min}_{\theta^* \in \Theta^*} \left\{ \mathbb{E}[\mathbf{G}_{\theta}^{(2)}] \right\} = \{0, 1\}.$$

212

22. Prevalence Threshold (PT)

²¹³ A relatively new performance measure named *Prevalence Threshold* (PT_{θ}) was intro-

duced by (Balayla, 2020). We could not find many articles that use this measure, but

it is included for completeness. However, this performance measure has an inherent

²¹⁶ problem that eliminates the possibility of determining all statistics.

217 **22.1. Definition and distribution**

The *Prevalence Threshold* PT_{θ} is commonly defined as

$$\mathrm{PT}_{\theta} = \frac{\sqrt{\mathrm{TPR}_{\theta} \cdot \mathrm{FPR}_{\theta}} - \mathrm{FPR}_{\theta}}{\mathrm{TPR}_{\theta} - \mathrm{FPR}_{\theta}}.$$

By using the definitions of TPR_{θ} and FPR_{θ} in terms of TP_{θ} (see Equations (4) and (6)), we obtain:

$$PT_{\theta} = \frac{\sqrt{P \cdot (M - P) \cdot TP_{\theta} \cdot (\lfloor M \cdot \theta \rceil - TP_{\theta})} - P(\lfloor M \cdot \theta \rceil - TP_{\theta})}{M \cdot TP_{\theta} - P \cdot \lfloor M \cdot \theta \rceil}.$$
 (19)

It is clear that this performance measure is not a linear function of TP_{θ} , therefore we cannot easily calculate its expectation. However, there are more fundamental problems with PT_{θ} .

221 22.2. Division by zero

Eq. (19) shows that PT_{θ} is a problematic measure. When is the denominator zero? 222 This happens when $TP_{\theta} = (\lfloor M \cdot \theta \rfloor / M) \cdot P$. In this case, the fraction is undefined, 223 as the denominator is zero. Furthermore, also the numerator is zero in that case. The 224 number of true positives TP_{θ} can attain the value $(\lfloor M \cdot \theta \rfloor / M) \cdot P = \theta^* \cdot P$ whenever 225 the latter is also an integer. For example, this always happens for $\theta^* \in \{0, 1\}$. But even 226 when $\theta^* \in \Theta^* \setminus \{0, 1\}$, PT $_{\theta}$ is still only safe to use when M and P are coprime, i.e. 227 when the only positive integer that is a divisor of both of them is 1. Otherwise, there 228 are always values of $\theta^* \in \Theta^* \setminus \{0, 1\}$ that cause $\theta^* \cdot P$ to be an integer and therefore 229 PT_{θ} to be undefined when TP_{θ} attains that value.

One solution would be to say $PT_{\theta} := c, c \in [0, 1]$, whenever both the numerator and denominator are zero. However, this *c* is arbitrary and directly influences the optimization of the expectation. This makes the optimal parameter values dependent on *c*, which is beyond the scope of this chapter. Thus, no statistics are derived for the Prevalence Threshold PT_{θ} .

23. Threat Score (TS) / Critical Success Index (CSI)

²³⁷ The *Threat Score* (Palmer and Allen, 1949) TS_{θ} or *Critical Success Index* (Schaefer, ²³⁸ 1990) is a performance measure that is used for evaluation of forecasting binary weather ²³⁹ events: it either happens in a specific location or it does not. It was already used in ²⁴⁰ 1884 to evaluate the prediction of tornadoes (Schaefer, 1990). The Threat Score is ²⁴¹ the ratio of successful event forecasts (TP_{θ}) to the total number of positive predictions ²⁴² (TP_{θ} + FP_{θ}) and the number of events that were missed (FN_{θ}).

243 **23.1. Definition and distribution**

The Threat Score is thus defined as

$$\mathrm{TS}_{\theta} = \frac{\mathrm{TP}_{\theta}}{\mathrm{TP}_{\theta} + \mathrm{FP}_{\theta} + \mathrm{FN}_{\theta}}.$$

By using Eq. (B2) and (B3), this definition can be reformulated as

$$\mathrm{TS}_{\theta} = \frac{\mathrm{TP}_{\theta}}{P + \lfloor M \cdot \theta \rceil - \mathrm{TP}_{\theta}}.$$

Note that TS_{θ} is well-defined whenever P > 0. The definition of TS_{θ} is not linear in TP_{θ} , and so there are no $a, b \in \mathbb{R}$ such that we can write the definition as $X_{\theta}(a, b)$.

247 23.2. Expectation

Because TS_{θ} is not linear in TP_{θ} , determining the expectation is less straightforward than for other performance measures. The definition of the expectation is

$$\mathbb{E}[\mathrm{TS}_{\theta}] = \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta})} \frac{k}{P + \lfloor M \cdot \theta \rfloor - k} \cdot \mathbb{P}(\mathrm{TP}_{\theta} = k).$$

²⁴⁸ Unfortunately, we cannot explicitly solve this sum, but it can be calculated numeri-²⁴⁹ cally.

250 23.3. Optimal baselines

Although no explicit formula can be given for the expectation, we can calculate its

extreme values and the corresponding optimizers.

Minimal Baseline Firstly, we show that $\theta_{\min} \in [0, \frac{1}{2M})$ constitutes a minimum and that there are no θ outside this interval also yielding this minimum. To this end,

$$\mathbb{E}[\mathrm{TS}_{\theta_{\min}}] = \sum_{k \in \mathcal{D}(\mathrm{TS}_{\theta_{\min}})} \frac{k}{P + 0 - k} \cdot \mathbb{P}(\mathrm{TS}_{\theta_{\min}} = k) = 0,$$

because $\mathcal{D}(TS_{\theta_{\min}}) = \{0\}$. This is the lowest possible value since TS_{θ} is a non-negative performance measure; hence, $\mathbb{E}[TS_{\theta}] \ge 0$ for any $\theta \in [0, 1]$. Now, let $\theta' \ge \frac{1}{2M}$, then there exists a k' > 0 such that $\mathbb{P}(TP_{\theta'} = k') > 0$. Consequently, $\mathbb{E}[TS_{\theta'}] > 0$ and this means the interval $[0, \frac{1}{2M})$ contains the only values that constitute the minimum. In summary,

$$\min_{\theta \in [0,1]} (\mathbb{E}[\mathrm{TS}_{\theta}]) = 0,$$

$$\theta_{\min} \in \operatorname*{arg\,min}_{\theta \in [0,1]} (\mathbb{E}[\mathrm{TS}_{\theta}]) = \left[0, \frac{1}{2M}\right).$$

Since θ_{\min}^* is the discretization of θ_{\min} , it corresponds to 0. More precisely:

$$\theta_{\min}^* \in \operatorname*{arg\,min}_{\theta^* \in \Theta^*} \left\{ \mathbb{E}[\mathsf{TS}_{\theta^*}] \right\} = \{0\}$$

Maximal baseline Secondly, to determine the maximum of $\mathbb{E}[TS_{\theta}]$ and the corresponding parameter θ_{max} , we determine an upper bound for the expectation, show that this value is attained for a specific interval, and that there is no θ outside this interval also yielding this value. To do this, assume that $\lfloor M \cdot \theta \rfloor > 0$. This makes sense, because $\lfloor M \cdot \theta \rfloor = 0$ implies $\theta < 1/(2M)$ and such a θ would yield the minimum 0. Now,

$$\begin{split} \mathbb{E}[\mathrm{TS}_{\theta}] &= \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta})} \frac{k}{P + \lfloor M \cdot \theta \rceil - k} \cdot \mathbb{P}(\mathrm{TP}_{\theta} = k) \\ &\leq \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta})} \frac{k}{P + \lfloor M \cdot \theta \rceil - P} \cdot \mathbb{P}(\mathrm{TP}_{\theta} = k) = \frac{1}{\lfloor M \cdot \theta \rceil} \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta})} k \cdot \mathbb{P}(\mathrm{TP}_{\theta} = k) \\ &= \frac{\mathbb{E}[\mathrm{TP}_{\theta}]}{\lfloor M \cdot \theta \rceil} \stackrel{(1)}{=} \frac{P}{M}. \end{split}$$

Next, let $\theta_{\text{max}} \in [1 - 1/(2M), 1]$, then

$$\mathbb{E}[\mathrm{TS}_{\theta_{\max}}] = \sum_{k=M-(M-P)}^{P} \frac{k}{P+M-k} \cdot \mathbb{P}(\mathrm{TP}_{\theta_{\max}} = k) = \frac{P}{P+M-P} \cdot \mathbb{P}(\mathrm{TP}_{\theta_{\max}} = P) = \frac{P}{M},$$

because $\mathbb{P}(\text{TP}_{\theta_{\text{max}}} = P) = 1$. Hence, the upper bound is attained for $\theta_{\text{max}} \in [1 - 1/(2M), 1]$, and thus, θ_{max} is a maximizer.

Now, specifically for P = 1, we show that the interval of maximizers is actually

[1/(2M), 1]. Thus, let $\theta \in [1/(2M), 1 - 1/(2M))$, then $0 < \lfloor M \cdot \theta \rfloor < M$ and

$$\mathbb{E}[\mathrm{TS}_{\theta}] = \sum_{k=\max\{0,\lfloor M\cdot\theta\rceil-(M-1)\}}^{\min\{1,\lfloor M\cdot\theta\rceil\}} \frac{k}{1+\lfloor M\cdot\theta\rceil-k} \cdot \mathbb{P}(\mathrm{TP}_{\theta}=k)$$
$$= \frac{0}{1+\lfloor M\cdot\theta\rceil-0} \cdot \mathbb{P}(\mathrm{TP}_{\theta}=0) + \frac{1}{1+\lfloor M\cdot\theta\rceil-1} \cdot \mathbb{P}(\mathrm{TP}_{\theta}=1)$$
$$= \frac{1}{\lfloor M\cdot\theta\rceil} \cdot \mathbb{P}(\mathrm{TP}_{\theta}=1) = \frac{1}{\lfloor M\cdot\theta\rceil} \cdot \left(\frac{\binom{1}{1}\binom{M-1}{\lfloor M\cdot\theta\rceil-1}}{\binom{M}{\lfloor M\cdot\theta\rceil}}\right) = \frac{1}{M},$$

which is exactly the upper bound $\mathbb{E}[TS_{\theta_{max}}] = P/M$ for P = 1.

Next, to show that the maximizers are only in [1 - 1/(2M), 1] for P > 1, assume there is a $\theta' < 1 - \frac{1}{2M}$ that also yields the maximum. Hence, there is a $k' \in \mathcal{D}(\mathrm{TP}_{\theta'})$ with 0 < k' < P such that $\mathbb{P}(\mathrm{TP}_{\theta'} = k')$. This means

$$\begin{split} \mathbb{E}[\mathrm{TS}_{\theta'}] &= \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta'})} \frac{k}{P + \lfloor M \cdot \theta' \rceil - k} \cdot \mathbb{P}(\mathrm{TP}_{\theta'} = k) \\ &= \frac{k'}{P + \lfloor M \cdot \theta' \rceil - k'} \cdot \mathbb{P}(\mathrm{TP}_{\theta'} = k') + \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta'}) \setminus \{k'\}} \frac{k}{P + \lfloor M \cdot \theta' \rceil - k} \cdot \mathbb{P}(\mathrm{TP}_{\theta'} = k) \\ &\leq \frac{k'}{P + \lfloor M \cdot \theta' \rceil - (P - 1)} \cdot \mathbb{P}(\mathrm{TP}_{\theta'} = k') + \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta'}) \setminus \{k'\}} \frac{k}{P + \lfloor M \cdot \theta' \rceil - P} \cdot \mathbb{P}(\mathrm{TP}_{\theta'} = k) \\ &= \frac{k'}{\lfloor M \cdot \theta' \rceil + 1} \mathbb{P}(\mathrm{TP}_{\theta'} = k') + \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta'}) \setminus \{k'\}} \frac{k}{\lfloor M \cdot \theta' \rceil} \mathbb{P}(\mathrm{TP}_{\theta'} = k) \\ &< \frac{k'}{\lfloor M \cdot \theta' \rceil} \cdot \mathbb{P}(\mathrm{TP}_{\theta'} = k') + \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta'}) \setminus \{k'\}} \frac{k}{\lfloor M \cdot \theta' \rceil} \cdot \mathbb{P}(\mathrm{TP}_{\theta'} = k) \\ &= \frac{1}{\lfloor M \cdot \theta' \rceil} \sum_{k \in \mathcal{D}(\mathrm{TP}_{\theta'})} k \cdot \mathbb{P}(\mathrm{TP}_{\theta'} = k) = \frac{P}{M}. \end{split}$$

Hence, there is a strict inequality $\mathbb{E}[TS_{\theta'}] < \frac{P}{M}$ and this means θ' is not a maximizer of the expectation. Consequently, the maximizers are only in the interval [1 - 1/(2M), 1] for P > 1. In summary,

$$\max_{\theta \in [0,1]} (\mathbb{E}[\mathrm{TS}_{\theta}]) = \frac{P}{M},$$

$$\theta_{\max} \in \underset{\theta \in [0,1]}{\operatorname{arg\,max}} (\mathbb{E}[\mathrm{TS}_{\theta}]) = \begin{cases} \left[\frac{1}{2M}, 1\right] & \text{if } P = 1\\ \left[1 - \frac{1}{2M}, 1\right] & \text{if } P > 1. \end{cases}$$

Since θ_{\max}^* is the discretization of θ_{\max} , we obtain:

$$\theta_{\max}^* \in \underset{\theta^* \in \Theta^*}{\arg \max} \left\{ \mathbb{E}[\mathrm{TS}_{\theta^*}] \right\} = \begin{cases} \Theta^* \setminus \{0\} & \text{if } P = 1\\ \{1\} & \text{if } P > 1. \end{cases}$$

References

- Chinchor N. (1992) Muc-4 evaluation metrics. In: Proceedings of the 4th Conference on Message Understanding,
 Association for Computational Linguistics, USA, MUC4 '92, p. 22–29, DOI https://doi.org/10.3115/1072064.
- 259 1072067 16

256

Balayla J. (2020) Prevalence threshold (ϕe) and the geometry of screening curves. *PLoS ONE* 15(10):e0240215, DOI https://doi.org/10.1371/journal.pone.0240215 31

 Fowlkes E. B., Mallows C. L. (1983) A method for comparing two hierarchical clusterings. *Journal of the American* Statistical Association 78(383):553–569, DOI https://doi.org/10.1080/01621459.1983.10478008 27

Kubat M., Holte R. C., Matwin S. (1998) Machine learning for the detection of oil spills in satellite radar images.
 Machine Learning 30(2/3):195–215, DOI https://doi.org/10.1023/a:1007452223027 29

Kvålseth T. O. (1989) Note on cohen's kappa. *Psychological Reports* 65(1):223–226, DOI https://doi.org/10.2466/pr0.
 1989.65.1.223 25

Matthews B. (1975) Comparison of the predicted and observed secondary structure of t4 phage lysozyme. *Biochimica et Biophysica Acta (BBA) - Protein Structure* 405(2):442–451, DOI https://doi.org/10.1016/0005-2795(75)90109-9
 23

Palmer W., Allen R. (1949) Note on the accuracy of forecasts concerning the rain problem. US Weather Bureau manuscript 32

Schaefer J. T. (1990) The critical success index as an indicator of warning skill. Weather and Forecasting 5(4):570–575,
 DOI https://doi.org/10.1175/1520-0434(1990)005<0570:tcsiaa>2.0.co;2 32

Yule G. U. (1912) On the methods of measuring association between two attributes. *Journal of the Royal Statistical Society* 75(6):579, DOI https://doi.org/10.2307/2340126 23

277 Youden W. J. (1950) Index for rating diagnostic tests. *Cancer* 3(1):32–35, DOI https://doi.org/10.1002/
 278 1097-0142(1950)3:1<32::aid-cncr2820030106>3.0.co;2-3