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Abstract

The concept of interaction classes (iClasses) for multi-environment trial data was introduced to
address the problem of summarising variety performance across environments in the presence
of variety by environment interaction (VEI). The approach involves the fitting of a factor
analytic linear mixed model (FALMM), with the resultant estimates of factor loadings being
used to form groups of environments (iClasses) that discriminate varieties with different patterns
of VEL It is then meaningful to summarise variety performance across environments within
iClasses. The iClass methodology was developed with respect to a FALMM in which the
genetic effects for different varieties were assumed independent. This was done for pedagogical
reasons but it was pointed out that the accuracy of variety selection is greatly enhanced by
considering the genetic relatedness of varieties, either via ancestral or genomic information.
The focus of the current paper is therefore to extend the iClass approach for FALMMs which
incorporate such information. In addition a measure of stability of variety performance across
iClasses is defined. The utility of the approach for variety selection is illustrated using a
multi-environment trial dataset from the lentil breeding program operated by Agriculture
Victoria.

Introduction

The analysis of multi-environment trial (MET) data is a fundamental and recurring task
for the selection of superior varieties in a plant breeding program. Smith, Cullis, and
Thompson 2005 provided a comprehensive review of statistical methods for MET data
and this still covers the most popular methods currently used. The methods can be broadly
classified into linear mixed model (LMM) and biplot analyses. LMMs are a widely used
class of statistical models that include both fixed and random effects and accommodate a
range of variance structures to allow for heterogeneity and correlation. Early applications
for MET data include Patterson et al. 1977 and Patterson and Silvey 1980, who used LMMs
that included main effects for varieties and environments, and variety by environment
interaction (VEI) effects. The variance structures for random effects had simple component
forms, commensurate with the assumption of independent effects with homogeneous
variance. Since the late 1990s, several research groups have developed and recommended
LMM that incorporate factor analytic (FA) structures for the variety effects in different
environments. This allows for a very general pattern of genetic variance and covariance
heterogeneity. Henceforth, this model will be referred to as a factor analytic linear mixed
model (FALMM). Key papers authored by advocates of these models include Gogel,
Cullis, and Verbyla 1995, Piepho 1997, Piepho 1998a, Smith, Cullis, and Thompson 2001,
Smith et al. 2021b, Burgueno et al. 2011 and Meyer 2009. Biplot approaches involve the
application of a singular value decomposition to a two-way table indexed by varieties
and environments, followed by a biplot graphical representation of the first two principal
components. This approach was popularised for MET data under the banner of AMMI
(Additive Main effects and Multiplicative Interaction models, Gauch 1992) and the most
common current method of this type is the GGE-biplot method (see, for example, Yan
and Kang 2002 and Yan, Nilsen, and Beattie 2023).

The analysis process for METs should be no different from any other data analysis
in that it should consist of two main activities. Lee, Nelder, and Pawitan 2006 discuss
this in detail and reference Lane and Nelder 1982 when they state that “the first (activity)
is model selection, which aims to find parsimonious well-fitting models for the basic
responses being measured, and the second is model prediction, where the output from the
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primary analysis is used to derive summarizing quantities of interest together with their
uncertainties.” It is well known that for the purposes of variety selection, a “well-fitting”
MET model must accommodate a range of sources of variation associated with both genetic
and non-genetic effects and field plot errors. It is crucial that the model appropriately
accommodates VEI and that it allows inclusion of information on the genetic relatedness
of varieties, either via ancestral or genomic data (Oakey et al. 2006; Oakey et al. 2007).
Non-genetic effects associated with experimental designs should be included and the
model should allow for error variance heterogeneity between environments and spatial
correlation within environments. Accommodating all of these sources appropriately in
the model will improve the accuracy of “output from the primary analysis”. The FALMM,
in particular the model proposed by Smith, Cullis, and Thompson 2001 and extended for
genetic relatedness by Oakey et al. 2007, successfully achieves this aim. This is, therefore,
the model used in the current paper.

The output from the primary analysis must be summarised in a manner that facilitates
variety selection. In the presence of VEI, in particular crossover VEI which is synonymous
with changes in variety rankings, it makes no sense to base selection on the standard
concept of variety main effects or some analogous measure of overall performance across
all environments in the MET. Instead, variety performance needs to be summarised
for “meaningful” groups of environments. Within the framework of a FALMM, Smith
et al. 2021b addressed this using the fundamental parameters in the FA model, namely
the factor loadings, to form groups of environments. Given that the factor loadings
represent the latent environmental covariates that are driving the VEI, these groups
discriminate varieties with differential responses and thence differential patterns of VEL.
They are therefore called interaction classes (iClasses). Smith et al. 2021b defined overall
variety performance for each iClass by averaging variety predictions across the associated
environments. This facilitates selection of the best varieties within each iClass so addresses
the “what wins where” question, which has become a widely used catchphrase in the
biplot literature. This question should be extended to include “... and by how much” as
it is important to have a prediction of variety differences on the scale of the trait under
consideration, together with a measure of uncertainty. This is an integral part of iClass
overall performance which is reported in the units of measurement (for example, t/ha for
grain yield).

Smith et al. 2021b developed the concept of iClasses within the framework of FALMMs
in which the genetic effects for different varieties were assumed independent. They did
this for ease of demonstration but stressed that, in general, the analysis of plant breeding
METs will benefit greatly from the inclusion of information on the genetic relatedness of
varieties. This can be achieved with the use of a relationship matrix which may be based
on ancestral (pedigree) or genomic (marker) information. In the case of in-bred crops
the genetic effects in the FALMM are partitioned into additive (with a variance structure
that involves the relationship matrix) and non-additive effects. As commented by Oakey
et al. 2006, such a partitioning means that “a single analysis will allow both the selection
of potential parents for future breeding programs using additive effects and promising
commercial lines combining both additive and non-additive effects, i.e. the overall or total
genetic effect.” The FALMM with both additive and non-additive genetic effects involves
two separate FA models, one for each set of effects (see Oakey et al. 2007; Beeck et al. 2010;
Smith and Cullis 2018; Tolhurst et al. 2019). iClass methodology that can be applied in
this setting is the focus of the current paper. Parental selection involves a straight-forward
application of the concepts in Smith et al. 2021b to the FA model for the additive effects
alone, whereas the selection of varieties based on total (additive plus non-additive) effects
requires an extension that incorporates both the additive and non-additive FA models.

Many authors have noted that, in addition to knowing “what wins where”, it is also
important to characterise the stability of variety performance across environments. A sem-
inal review paper is that of Lin, Binns, and Leftkovitch 1986, who noted that “the concept
of stability is by no means unambiguous”. They provided a helpful table that summarised
nine commonly used measures and highlighted the differences in interpretations. Many of
these methods are popular today, the most widely used being associated with regressions of
the observed data for a variety on to an environmental index defined using the mean of all
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observations for the environment. Key references for this type of measure are Finlay and
Wilkinson 1963, Eberhart and Russell 1966 and Digby 1979. Oman 1991, Gogel, Cullis,
and Verbyla 1995 and Piepho 1997 considered mixed model versions of this approach.
Piepho 1998b provided a comprehensive review of stability measures (including those in
Lin, Binns, and Leftkovitch 1986) and showed how each relates to an underlying statistical
model. He made a pivotal point, namely that “Usefulness of any measure of stability
depends crucially on how well the underlying model approximates the real data.” Of the
commonly used stability measures, arguably the best fitting model is the regression on the
environmental mean model. However, it is well known that this rarely provides a “good
approximation to the data” since it typically only explains a very small proportion of VEL
In contrast, the FALMM routinely provides a good fit for MET data so is a prudent choice
of model on which to build a stability measure. Based on this model, Smith and Cullis
2018 proposed a stability measure that has a similar flavour to the regression approaches,
but involves the latent regression implicit in an FA model. Specifically, for each variety,
the stability measure is the root mean square deviation of the predicted effects from the
fitted values for the latent regression associated with the first (most important) factor. The
assumption is that the estimated loadings for the first factor are all positive so it represents
the scale (non cross-over) component of VEI and hence the deviations reflect cross-over
VEL This measure is sub-optimal, however, in the sense that it restricts attention to the first
factor only, so ignores the latent regressions on the higher order factors which typically
account for a non-ignorable amount of VEI. In the current paper, therefore, a stability
measure is proposed that captures the VEI associated with all the factors in the FALMM
(or as many as the breeder wishes to use) and has no requirement about positive signs for
the estimated loadings in the first factor. The measure can be visualised in the interaction
plots of Smith et al. 2021b which depict the overall performance of a small user-defined
set of varieties across iClasses. Due to the manner in which iClasses are formed, there is
a natural ordering on this plot, with the major sources of VEI being contrasted across
iClasses on opposite sides of the plot. This allows a visual inspection of VEI, or equivalently,
stability of performance across iClasses, for the nominated varieties. Stability is therefore
indicated by the relative magnitude of the peaks and troughs across the interaction plot.
In the current paper a numerical measure that quantifies this form of stability is developed.
It is easily computed in conjunction with iClass overall performance for all varieties in the
MET dataset. As such it may be useful as an additional trait for selection.

The main goals of this paper are to extend the iClass methodology introduced in Smith
et al. 2021b for analyses that include information on the genetic relatedness of varieties and
to present a new measure of stability of variety performance. The utility of the methods
is demonstrated using a motivating example from an Australian lentil breeding program.

Materials and methods
The motivating example considered in this paper was provided by the Agriculture Victoria
lentil breeding program. This program involves five stages of variety testing, labelled as L0,
L1, L2, L3 and L4. Using the techniques of Smith et al. 2021a, a dataset was constructed
to facilitate selections for stages L0, L1, L2 and L3 in 2023. In this paper the analysis is
conducted for this entire dataset, but in the interests of brevity, the iClass methodology is
applied for one set of selections only. The L3 selections have been chosen for this purpose,
partly because these comprise the smallest number of varieties so the methodology is most
easily demonstrated and partly because these are the final decisions prior to commercial
release so have immediate ramifications for both the breeding program and growers.
Overall, the dataset contains 160 trials grown in 90 environments and a total of 10356
unique varieties. In this paper a “trial” refers to the physical collection of field plots
onto which a valid experimental design is imposed. An “environment” is defined by the
geographic location and year of planting of a trial. Of the 90 environments in the MET
dataset, 43 encompassed multiple trials due to the presence of trials for different stages
at the same location. All trials in an environment were managed in the same way and
had the same plot dimensions. The number of varieties per trial ranged from 36 to 2487
and the number of plots from 108 to 3024. In 70 trials, partially replicated designs (Cullis
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et al. 2020) were employed in which some varieties were tested without replication (that
is, a single plot for each) and others were tested using two replicate plots. In the remaining
trials, there was near complete replication with either two or three replicates of most
varieties.

The distribution of trials across stages and years is shown in Table 1. Note that, prior
to 2023, varieties in different stages of testing were grown in separate trials, whereas in
2023, varieties from stages L1, L2 and L3 were grown together in the same trial. The
inclusion of the L4 trials from 2018, 2019 and 2020 warrants discussion. These were
included in accordance with one of the key philosophies of Smith et al. 2021a, namely to
maximise the amount of observed data for the varieties under consideration for selection.
The varieties impacted by the inclusion of the L4 trials were five 2023 L3 varieties under
consideration for commercial release. Inclusion of the L4 trials provided an additional two
years of data for each of these varieties and between 22 and 26 additional environments.
It is acknowledged that the inclusion of these trials, some of which were the smallest in
the dataset with only 36 varieties, must be investigated in terms of any potential negative
impact on the estimation of genetic variance parameters. This is fully explored in the
Supplementary Material, Section 1, where it is shown that the impact is likely to be
negligible, with any associated losses in the reliability of variety predictions being far
outweighed by the benefits of including the additional data. Supplementary Material,
Section 1 demonstrates the statistical benefits of including the L4 trials. It should also be
noted there are substantial benefits in terms of grower confidence, since, in general, L4
trials are grown in more locations than earlier stage trials and the inclusion of the L4 trials
in the current dataset provided an additional 14 location/year combinations (environments)
for variety comparisons.

Table 1. Multi-environment trial dataset for LO, L1, L2 and L3 stage selection decisions in 2023:
number of trials included from each stage and year. Note that, prior to 2023, the entries in different
stages were grown in separate trials whereas in 2023, the L1, L2 and L3 entries were grown together in
the same trial.

Year
Stage 2017 2018 2019 2020 2021 2022 2023
LO 2 2 2 1 2 2 2
L1 3 4 3 3 5 5 T
L2 6 6 7 7 10 10 14
L3 0 0 0 9 16 13 1
L4 0 12 10 4 0 0 0

In the current paper, genetic relatedness is included in the analysis via pedigree records
on 11330 varieties (that is, all varieties with phenotypic data together with 974 ancestors).
A numerator relationship matrix (NRM), denoted by A, was created from these pedigree
records.

Statistical methods
The MET dataset is assumed to comprise p environments with "y denoting the number
. e . :th
of plots for environment j (= 1...p). Let Y] denote the nj—vector of data for the j
environment and y denote the n—vector of data combined across all environments in the
MET. Thus y = (ﬂ,y;, . ,y;)T and n = Zﬁ;l ;. The linear mixed model for y can be
written as
Y= XT+Zoug+ Zyup +e (1)
where T is a vector of fixed effects with associated design matrix X; ug is the vector of
random genetic effects with associated design matrix Zg; up is a vector of random non-
. . ) ) . | T oT T
genetic (or peripheral) effects with associated design matrix Z, and e = (¢], €}, . . ., ep) is
the combined vector of errors from all environments. The vector of fixed effects includes

mean parameters for individual environments. The vector of random peripheral effects
includes effects associated with the designs of individual trials within environments. The
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variance matrix for u, is typically given by G, = @5;1(;1’]' where GI’j = var ("Pj) and up;

is the vector of peripheral effects for environment j.

Variance models for genetic effects
The random genetic effects, #g, comprise the variety effects nested within environments
(VE effects). In this paper these effects are partitioned into additive and non-additive
genetic effects, so for clarity g will be referred to as the total VE effects. If m denotes the
total number of unique varieties across all environments, then the vector g has length mp.
These are assumed to be ordered as varieties within environments. The total VE effects
can be partitioned into additive and non-additive VE effects (u, and u,, respectively) as
follows:

Ug = Ug + U, ()

where it is assumed that

Ug _ Ga ® G, 0
var( he ) = [ 0 G. 21, (3)

where G, and G, are p X p symmetric positive semi-definite matrices that will be referred
to as the between environment additive and non-additive genetic variance matrices,
respectively. The matrix G, is an m x m (known) relationship matrix which may either be
an NRM, denoted A, or a genomic relationship matrix (GRM). Note that for notational
simplicity, it is assumed that pedigree and/or genomic information is available for all m
varieties. This is easily relaxed in practice. In the current paper, the motivating example
involves the use of pedigree information, so the approach is developed in this context, in
which case G, = A. Note that 4 is often expanded to include both the varieties grown in
the MET together with their ancestors (that were not grown in the MET). This may be
done both to allow prediction of the additive VE effects for the latter and also to exploit
the sparsity it induces in the inverse of the NRM. Either way, m is defined to denote the
number of varieties with pedigree information which will therefore also be the number of
rows and columns in A. Finally, note that var (ug) =G, A+G,®1,,

Factor analytic models for VE effects

Given the partitioning of the total VE effects, a separate factor analytic model for each
set of VE effects is allowed. Thus a factor analytic model of order k,, denoted FAky, is
assumed for the additive VE effects and an FAk, model is assumed for the non-additive
VE effects. Note that the orders of the two models, that is, k, and k, may (are likely to) be
different. The FA models for the VE effects can be written as

Ug

(Aa@lm)fa+8a =B, + 84
Ne@Iy)f,+8e=PBo+ 8 (4)

Ue

where Ay is the p x k, matrix of environment loadings for the individual additive factors;
S, is the associated mk,—vector of variety scores (ordered as varieties within factors) and 8,
is the mp—vector of additive lack of fit effects which are also known as the additive specific
VE (SVE) effects. The additive common VE (CVE) effects are given by B, = (A @ Iu) f .
The FA model for non-additive VE effects involves A,, which is the p x k, matrix
of environment loadings for the individual non-additive factors; f JRT the associated
mk,~vector of variety scores and 8, is the mp—vector of non-additive SVE effects. The
non-additive CVE effects are given by B, = (Ae @ Is) f .
This then provides a model for the total VE effects of the form

(Aa ®Im)fa +8a+(Ae ®I”7)fe * 0
= [3g+6g (5)

where By =Ba+B. and 8, = 8, + 8, are defined to be the total CVE and total SVE effects,
respectively.

Ug
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In the FA models it is assumed that

f.)_| Da®A 0
var (o o b ©
where D, and D, are k; x k, and k, x k, symmetric positive definite matrices that will be

referred to as the additive and non-additive factor score variance matrices, respectively.
Additionally, it is assumed that

8.\ [Y.2A4 0
Var(6e>—{ 0 ‘l’e®1m] (7)
where W, and ¥, are p x p diagonal matrices with elements referred to as the additive

and non-additive specific variances, respectively.
The variance assumptions in equations (6) and (7) lead to

B, \ [ ADJAL ©A 0

var ( B, )~ 0 AeD AL @ I, (8)
s \ [ (AaDuAL +¥,) 0 A 0

Var( e > ) [ 0 (AeDeAy +¥e) @1, ©)

so that the between environment additive and non-additive genetic variance matrices are
given by G, = AyD,AL + ¥, and G, = A DA, +W,, respectively.

Smith et al. 2021b discussed the need to apply constraints in an FA model in order to
ensure a unique solution. Their approach is adopted here and the same form of constraints
for both the additive and non-additive FA models is imposed. Thus it is assumed that
the additive factor scores are independent so that D,, is a diagonal (non-identity) matrix
with elements d,, (r=1...k,) and furthermore these are written in decreasing order of
magnitude. It is also assumed that A] A, is an identity matrix (that is, the columns of A,
are orthonormal vectors). Similarly it is assumed that the non-additive factor scores are
independent so that D, is a diagonal (non-identity) matrix with elements d, (s=1...k.)
and these are written in decreasing order of magnitude. It is also assumed that A} A, is an
identity matrix. These constraints allow for a meaningful interpretation of loadings and
scores (Smith and Cullis 2018; Smith et al. 2021b). The constraints used for estimation
will be discussed in the section “Model fitting and estimation”.

It is instructive to express the model for the total VE effects in expanded form as

follows: write A, = [}‘m s ?\akﬂ] where A,, is the p-vector of environment loadings
.. . T T O\T . .
for additive factor r and write f .= (f 4 f ﬂka) where f o 18 the m—vector of variety

scores for additive factor r. Analogous definitions are used for the loadings and scores for
the non-additive factors. The model in equation (5) can then be written as

uy = O @5 fy e @ L) fp 4t (Aay © 1) f, +
(e @1n)f o+ Pes O T)f o+ o+ (A, @ L) fo +8¢  (10)

which has the appearance of a multiple regression with k = k, + k, terms in which the
covariates are the loadings (A, and A,,) and there are separate slopes for individual varieties
which are given by the variety scores (f, and f, ).

The percentage of variance accounted for by each factor in the overall model of
equation (10) can be obtained using the results in the Appendix. Thus the percentages of
variance accounted for by additive factor r (= 1. .. k,) and non-additive factor s (= 1... k)
are given by

Va
Ve

s

100 X ad, /tr (aG, + Ge)
100 X d, /tr (aG, + G,) (11)

r

where a is (typically) the mean of the diagonal elements of A for those varieties that
were grown in the MET or alternatively the subset under consideration for selection. By
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definition the additive factor score variances are in decreasing order so that V,, > V,, >

. > Vg, - Similarly the non-additive factor score variances are in decreasing order so that
Ve, > Ve, > ... > Vg, . However the overall ordering of factors (that is, across additive
and non-additive) is data dependent.

Variance models for errors
The reader is referred to the Supplementary Material, Section 2.

Model fitting and estimation

Every model in this paper was fitted using DWReml| which is a package within the
R statistical software (R Core Team 2022). DWReml fits the linear mixed model and
estimates variance parameters using residual maximum likelihood (REML) (Patterson and
Thompson 1971) and the average information algorithm and a supernodal sparse linear
solver. The models could also have been fitted using the commercially available software
ASReml-R (Butler et al. 2017). The models required a NRM and this was created from
pedigree records using pedicure which is a package within the R statistical software (R
Core Team 2022) that provides tools for pedigrees and genetic marker matrices. Both
DWReml and pedicure were developed by David Butler and Brian Cullis. Beta versions
are freely available from Brian Cullis (beullis@uow.edu.au) on request.

The FA variance models were fitted as in Smith and Cullis 2018, that is, by splitting
the VE effects into the common and specific VE effects, each with their own variance
structure. Thus, for the additive VE effects the two variance models were var (B,) and
var (8,) as given in equations (8) and (7). The two variance models for the non-additive
VE effects were var (B,) and var (8,) as given in equations (8) and (7).

As discussed in Smith et al. 2021b, model fitting using the constraints on loadings and
factor score variances as outlined in the section “Factor analytic models for VE effects”
is difficult and both DWReml and ASReml-R (Butler et al. 2017) use simpler constraints.
These involve setting D, = I}, and D, = I, . Additionally if k, > 1, then all the elements
in the upper triangle of A, are set to zero. If k, > 1 the same constraints are applied to the
non-additive loadings. The original forms of the loading and score variance matrices can
be reconstructed using a rotation based on a singular value decomposition of the associated
loading matrix. The reader is referred to Smith et al. 2021b for full details.

Note that two separate rotations are conducted, corresponding to the additive and
non-additive factor models. This is to be contrasted with the approach proposed in Smith
and Cullis 2018 in which the columns in the additive and non-additive loading matrices
are combined to form an overall matrix of loadings to which a single rotation is applied.
The authors claimed this provides a “special factor analytic form” for the total VE effects.
However, the two models are not compatible, because the factor scores in the additive
model have a variance structure that involves a relationship matrix whereas the factor
scores in the non-additive model are independent. The single rotation then mixes the
variance structures in a manner that is both unclear and results in scores that are correlated
across factors. The separate rotations used in the current paper ensure that the joint factor
score variance matrix remains as in equation (6), so that in terms of the regression implicit
in equation (10), the slopes (scores) for an individual variety are independent (uncorrelated)
across all k terms. This allows for uncomplicated interpretations of the variety scores.
Furthermore, the use of two separate rotations is consistent with the fundamental reason
for the rotations, namely to move away from the computationally convenient constraints
imposed for uniqueness. The constraints only apply within an individual factor analytic
model so that two separate rotations are required, corresponding to the additive and
non-additive loading matrices. In this context it is helpful to consider that in the simplest
case where each of the two factor models comprises a single factor, there is no need for
any rotation.

The model fit provides REML estimates of all variance parameters and empirical best
linear unbiased predictions (EBLUPs) of all random effects.
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Variety selection using interaction classes

In cases where the aim is selection based on additive effects alone, the iClass approach of
Smith et al. 2021b can be directly applied to the FA model for the additive VE effects.
For example in the analysis of data for inbred crops, such as lentils, there may be interest
in using the additive effects for the selection of potential new parental lines. The iClass
technique of Smith et al. 2021b applied to additive VE effects could also be used in cases
where the LMM does not include non-additive effects, such as the analysis of out-crossing
species.

The extension of Smith et al. 2021b considered here relates to the selection of superior
varieties in terms of their total (additive plus non-additive) VE effects. iClasses for this
purpose can be formed by first ordering all k = k, + k. factors in terms of their percentage
variance accounted for, namely using V,, and V,, of equation (11). As discussed in the
section “Factor analytic models for VE effects”, the factors are already in order of variance
accounted for within their respective FA models, but the ordering across additive and
non-additive factors may result in a mixing of the two types. The factor loadings ordered
in this way are denoted by A, (¢ = 1... k). The corresponding vectors of factor scores are
denoted byf[.

At this point it is instructive to clarify the logic behind the iClass concept introduced
in Smith et al. 2021b. The key is to use the regression interpretation of an FA model for
VE effects. In the current paper in which there is a separate FA model for the additive and
non-additive VE effects, the regression interpretation stems from equation (10). Using the
notation just defined for indexing factors across additive and non-additive terms, the fitted
values from this regression for variety i in environment j are given by

By, = 5‘11/71'1 * 5\21]7'72 MR f‘k,ffk (12)

where the hat symbol above a variance parameter indicates the REML estimate of the
parameter and the tilde symbol above a random effect indicates the EBLUP of the effect. A
visual assessment of the contribution of an individual factor (term in the regression) to the
overall fitted value aids in the explanation of iClasses. A hypothetical example comprising
k = 3 factors fitted to p = 9 environments is considered. Figure 1 shows, for three varieties

(v1, v2 and v3), the fitted values for each factor (that is, 5\['th) plotted against the covariate
(the rotated estimated environment loadings, 5\[]' for the factor). The slopes of the lines are

the EBLUPs of the variety scores (1, 2, and f3,) for the factor.

In this example, the first factor contains all positive estimated loadings and it is clear
from Figure 1 (a) that there are no cross-over interactions of varieties for any environments.
Thus in terms of the fitted values for the first factor, variety v1 always ranks first, followed
by v2 then v3. The second and third factors are bi-polar, with mixtures of positive and
negative estimated loadings. Figures 1 (b) and (c) show that, for all environments that
have the same sign for the estimated loadings (either positive or negative), there is no
cross-over interaction between varieties in terms of the fitted values for the associated
factor. Thus for the second factor (see Figure 1 (b)) variety v2 ranks first, v3 second and v1
last for all environments with a positive estimated loading (e4 and e1) and variety v1 ranks
first, v3 second and v2 last for all environments with negative loadings (the remainder).
Clearly the cross-overs (rank changes) occur at the origin (indicated by a dashed vertical
line). Thus for any pair of environments that differ in the signs of their estimated loadings
(so positive versus negative) there are changes in variety rankings. These two, but dual,
phenomenon provide the motivation for using the signs of estimated loadings to allocate
environments into iClasses.

Specifically, an as in Smith et al. 2021b, the REML estimates of the (ordered) loadings
are mapped to categorical variables which reflect the signs of the estimates. Formally,

for the ¢ factor loading, the variable S; is defined and has only two possible values for
environment j (j=1...p):

. ) 1et f' 5\ > 0
S, = sion(i.) = p” (positive) i \ij
i = signAy) “n” (negative) if A <0

(13)
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Figure 1. Factor analytic regression model for hypothetical example: fitted values for three varieties
(v1, v2 and v3) from model with three factors and nine environments. Fitted values (represented as
points) are plotted against estimated factor loadings for individual factors (panels (a), (b) and (c)).
The slopes of the regression lines are the empirical best linear unbiased predictions of factor scores for
each variety. The residual maximum likelihood estimates of the (rotated) loadings are shown along the
bottom axis and the associated environments are labelled along the top axis.
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iClasses are then formed from all possible combinations of the values (“p” or “n”) of the
categorical variables S;. Thus, for example, if the total number of additive and non-additive
factors is k = 3, there is a maximum of 23 = 8 possible iClasses with the set of labels given
by Q = {ppp, ppn, pnp, pnn, npp, npn, nnp, nnn}. Not all of the iClasses may be present
in the data. In the hypothetical example only four of the possible eight iClasses are present,
namely ppp (comprising environment e4), ppn (environment el), pnp (environments e2,
e3 and e7) and pnn (environments €5, €6, e8 and e9). It is important to note that the
ordering of the characters that form the labels corresponds to the order of importance
(in terms of percentage variance accounted for) of the factors (across both additive and
non-additive factors).

Interaction classes: variety performance
Overall variety performance measures for individual iClasses (iClassOP) can then be
computed. The iClassOP for variety i in iClass w (w € Q) is given by

Bgiw = Z Bg,j/”w (14)

JEW

where #, is the number of environments in iClass w and the sum is taken over those
environments. Using equation (12), the iClassOP in equation (14) can be expressed as

k
Bgiw = Zj\twfit (15)
=1

where A = Zje w M/nw is the mean of the REML estimates of the loadings for factor

for all environments in iClass w.

The fact that Bg,',' = th;l Asifir, means that the only random effects associated with the
CVEs are the factor scores. This has important implications for the model-based reliability
of E’gy- In particular, for any given variety, this reliability is unaffected by the presence or
absence of that variety in the environment. In fact, if k = 1, the model-based reliabilities
of Bgi,- for variety i are identical for all environments (j = 1... p) in the MET dataset. This
has flow-on implications for the reliabilities of iClassOP for any given variety since they
are therefore unaffected by the number of environments (including zero) in which the
variety is present in that iClass.

Interaction classes: variety stability

Smith et al. 2021b provided the framework for computing iClass overall performance but
did not explicitly discuss the concept of stability of variety performance. Their interaction
plot enables an investigation of variety stability across iClasses but this is limited to the
small number of varieties that can be sensibly displayed on a single plot and is purely a
graphical tool. An explicit measure that captures this stability is developed in this paper.
The first step involves the choice of iClasses across which stability is to be investigated.
This is determined by the breeder and may involve exclusion of iClasses that do not
align with their specific selection criteria. The number of iClasses chosen for the stability
measure will be denoted by ¢ and the associated number of environments by p*(< p).
Stability is then investigated for variety i using a one-way analysis of variance (AOV) of
the B, values for those environments and with the “treatments” being the ¢ iClasses. In
the AOV table for variety i the “Between treatment (iClass)” degrees of freedom are c— 1
and the sum of squares is given by

2

Cc c I\’
SSp; = Z nw (Bgiw - Bg,;)z = Z nw Zf;t (th —Xt.) (16)
w=1 w=1 =1

where Bg{_ = > =1 icw Bgij/p*, which is the grand mean of the CVEs, and AL =

YD icw 5\;,'/ p*, which is the mean of all loadings for a factor. The between treatment
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mean square, namely SSp./(c — 1), then measures the variation in treatment means of Bgi,'
(which by definition are the iClassOP), around the grand mean of Bgij‘ This provide‘s
a natural and meaningful measure of the stability of the variety’s performance across
relevant iClasses. The “Within treatment (iClass)” degrees of freedom are p* — c and the
sum of squares is given by

2

S5, = 30 3 (B -Be) =Y zm, 9

w=ljew w=ljew \ =1

The AOV variance ratio, namely [SSp,/(c - 1)]/[SSyy,/(p* - )], measures the magnitude of
variation in CVEs between environments in different iClasses relative to that between
environments in the same iClass. As such, when considered collectively across varieties, the
variance ratios provide an indication of the effectiveness of the grouping of environments
encapsulated in iClass formation. To eliminate issues in summarising variance ratios
with large differences in scale it is proposed to consider p—values obtained using the
approximation of an F-distribution on ¢ -1 and p* — ¢ degrees of freedom, since the
p—values are bounded both above and below.

In this paper the option of using only the first &* < k ordered factors to form iClasses
is considered. Note that, irrespective of the number of factors used to define iClasses, all k
factors are used to form Bql and thence iClassOP (equation (15)). The use of k* < k factors
may be necessary when high order models have been fitted so that the use of all k factors to
define iClasses may lead to poor membership, that is, small values of n¢,. It may also lead to
pairs of iClasses in which differences in variety responses are not sufficiently large to be of
importance to the breeder. In such cases, iClasses may be “merged” or more generally only
the first few factors may be used to define the iClasses. Such decisions should be driven
by the breeder. The individual variety AOV described above may aid in this decision,
since the use of too few factors in defining iClasses may lead to a preponderance of large
p-values, suggesting that variation in CVEs between environments within an iClass is too
large compared with variation between environments in different iClasses.

Results

The analysis commenced with the use of a LMM in which both G, and G, were assumed
to be diagonal matrices. This is analogous to analysing each environment separately and
is often used as a base-line to establish appropriate models for the non-genetic effects and
errors prior to fitting the more complex FA models. Within the base-line model, random
effects for replicate blocks aligned with columns were fitted for all correlation blocks (see
Supplementary Material, Section 2 for a definition), as were random effects for rows and
columns. Random effects for replicate blocks aligned with rows within correlation blocks
were fitted for 32 environments and random effects for correlation blocks were fitted for
57 environments. The only fixed effects fitted were environment main effects. In terms
of the spatial modelling of errors, separable (column by row) autoregressive models of
order one (denoted AR1 x AR1) were used for all environments. The base-line model was
also important for establishing the relative magnitude of the additive VE effects compared
with non-additive. The percentage of estimated genetic variance explained by the additive
effects for individual environments (see equation (19) in the Appendix), was substantial,
with a median of 82%. This information is of use in the FA modelling process in the sense
of indicating that the order of FA models will need to be higher for the additive VE effects
compared with non-additive.

The non-genetic and error models identified from the fit of the base-line model were
carried through (and re-estimated) to the LMMs with FA forms for G, and G,. The
models fitted comprised FA models of increasing order from one to four for the additive
effects (so k; = 1...4) and an FA model of order one for the non-additive effects (so k, = 1).
A summary of the model fits is provided in Table 2. This table includes all the FA models
and the base-line model with diagonal forms for G, and G, (model M2). Model M1 was
fitted in order to assess the impact of using information on genetic relatedness. This model
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has a diagonal form for G, but there is no G,. The residual log-likelihoods in Table 2
are expressed as deviations from this model. The benefits in using pedigree information
are substantial, with an increase in residual log-likelihood of 4089 (for an additional 90
variance parameters) for model M2 over M1. The addition of genetic covariances between
environments is also clearly important, with an increase in residual log-likelihood of 4279
for model M3 over M2 (for an additional 180 variance parameters). Amongst the FA
models, the residual log-likelihoods increased as k, was increased, as did the total variance
accounted for. Use of the Akaike Information Criteria (AIC) showed that of the models
fitted, the final model provided the best fit. The AIC values decline from model M1 to
M6 but the rate of decline slows dramatically as the higher models are considered so it
is clear that continuing to fit higher order models will result in smaller gains in terms
of goodness-of-fit. Care must be taken when using the AIC to determine the order of
FA model as there is a tendency for AIC to keep favouring higher order models, the
upper limit of which is the most general model, known as the unstructured (US) model.
A key issue is that the driver for the choice of FA model in a MET context should be
to maximise the reliability of variety predictions rather than the goodness-of-fit of the
model. Kelly et al. 2007 showed in a series of simulations for datasets with 7 and 10
environments that FA models of order one or two were generally the preferred model
in terms of prediction reliability compared with the US model, even for a number of
datasets where the underlying variance structure was generated from a US model. The
inferior performance of the US model was associated with instability in variance parameter
estimation, due mainly to the large number of variance parameters. The implication is that
high order FA models that contain many variance parameters may be similarly affected.
This is an unresolved issue but, given the complexity of the lentil dataset, a conservative
position was taken to cease the model fitting process at model M6, with k, = 4 and k, = 1.
This has been chosen as the basis for demonstrating the iClass methodology.

The first additive factor contained estimated loadings that all had the same sign (a 90/0
split of positive and negative values) so represents general yielding ability. The third and
fourth additive factors and the single non-additive factor contained approximately equal
mixtures of positive and negative values (splits of 38/52, 54/36 and 48/42 respectively) so
are termed “bi-polar” and thence represent contrasts between environments. The second
additive factor is of particular interest. The majority of estimated loadings had the same
sign (a 9/81 split of positive and negative) so the negative loadings will add to the general
yielding ability but the contrast of positive and negative was found to have an important
biological explanation that was revealed using iClass interaction plots (see later).

Table 2. Summary of model fits when factor analytic models of order k, and k. used for additive and
non-additive (independent) variety effects, respectively. Note that an order of zero means no factors
were fitted so corresponds to a diagonal variance structure; the missing order for k, means that additive
variety effects were not included in the model. The residual log-likelihoods and Akaike Information
Criteria are provided as differences from model M1. The number of genetic variance parameters are
given for each model. For all models with non-zero k, and k,, the final columns in the table show the
percentage of additive genetic variance accounted for by k, additive factors; percentage of non-additive
genetic variance accounted for by k., = 1 non-additive factor; percentage of total genetic variance
accounted for by all k =k, + k, factors.

Residual Genetic  Genetic variance accounted for

Model ka ke loglik AIC  parameters VAFa VAFe VAFt
M1 0 0 0 90
M2 0 0 4089 -7995 180

M3 1 1 8368 -16554 360 60.2 58.4 59.8

M4 2 1 9031 -17879 449 80.1 23.5 71.8

M5 3 1 9278 -18373 537 85.4 23.9 76.6

M6 4 1 9568 -18954 624 88.3 23.6 79.4

One of the aims of this analysis was the selection of L3 varieties tested in 2023 for
ultimate commercial use. This requires consideration of the total of the additive and
non-additive VE effects. Formation of iClasses for this purpose first requires ordering all
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five factors fitted in the model on the basis of the percentage of total genetic variance they
account for. Using equation (11) and a value of a corresponding to the 125 L3 varieties, the
percentage of total genetic variance accounted for by all five factors was 79.4%, with the
individual additive factors contributing 45.4%, 20.7%, 6.1% and 3.9% and the non-additive
factor contributing 3.3%. Thus, in this analysis, the ordering corresponded to additive
factors one to four, followed by the single non-additive factor. The use of all five factors
results in 13 iClasses, with labels and numbers of environments as given in the top half of
Table 3. Also considered here is the use of only the four most important factors, which
results in 8 iClasses as given in the bottom half of Table 3. The process of forming these
iClasses is demonstrated in Table 4 which contains the rotated REML estimates of the
loadings for the four additive factors and the REML estimates of the loadings for the single
non-additive factor for a subset of 23 environments. The environments were chosen to
cover all the iClasses formed using five factors, with two randomly chosen environments
within each iClass (apart from the final three iClasses, each of which only contained one
environment). This illustrates the patterns of the signs of the REML estimates of the
loadings across factors which are used to define iClasses.

Table 3. Number of environments in each interaction class for classes based on all 5 factors (top half
of table) and classes based on the first 4 factors in order of percentage variance accounted for (bottom
half of table).
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Recall that the estimated loadings for the second additive factor showed an uneven split
of 9 positive values against 81 negatives. The estimated loadings for the first two additive
factors are plotted against each other in Figure 2 and the 9 environments with positive
loadings in the second factor have been labelled. The majority of these correspond to
environments in 2022 which was an exceptionally wet year with conditions potentially
leading to high disease pressure. The breeder was concerned that there may have been
outbreaks of Botrytis Grey Mould (BGM) in these environments. To investigate this, an
iClass interaction plot was constructed for three probe varieties, namely one variety (PBA
BOLT) that is known to be susceptible to BGM and two varieties (ALB TERRIER and
PBA JUMBO?) that are tolerant. The resultant plot in Figure 3 clearly demonstrates
the existence of high levels of BGM in the iClasses corresponding to positive estimated
loadings in the second additive factor. Henceforth, these iClasses will be termed “BGM
iClasses”. The yield losses for the susceptible probe variety for the BGM iClasses as shown
in Figure 3 were extreme (up to 3 t/ha). It was therefore recognised that the associated
trials had essentially become disease tolerance trials and the breeder requested to exclude
these results for the purposes of selection for general yielding ability. There was no need
to re-do the analysis, however, as this can all be accommodated using iClasses.

It is instructive to summarise the estimated genetic correlations between environments
on an iClass basis. Given that variety iClassOP is based on the common VE effects, the
estimated covariance matrix which excludes the contributions from the specific variances
is considered. This can then be converted to a correlation matrix. Figure 4 (a) contains
a heatmap of these estimated correlations, summarised on the basis of interaction classes
using five factors. The most obvious feature of this heatmap is the low genetic correlation
between environments in BGM compared with non-BGM iClasses. The heatmap also
shows there are strong correlations between all pairs of environments within an iClass.
In contrast, the means of the pairwise estimated correlations involving environments in
different iClasses are often quite low, indicating crossover interaction (even within the
non-BGM iClasses). The analogous heatmap for iClasses based on the first four factors
only is given in Figure 4 (b). One may be tempted to use these heatmaps to make the
choice between using the first four or all five factors when forming iClasses. On this basis,
it may appear that the use of interaction classes based on four factors might be reasonable,
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Table 4. Summary of information used to define interaction classes for a subset of 23 environments:
rotated residual maximum likelihood estimates of loadings (x1000) for each factor, ordered on variance
accounted for (additive factors 1, 2 3 and 4, non-additive factor 1); interaction classes based on all five
factors and first four factors. The 23 environments cover all 13 interaction classes when five factors
used, with two randomly chosen environments within each class (apart from the final three classes,
each of which only contained one environment).

Environment addl add2 add3 add4 non-addl | iClass5 iClass4
KADINA17 18 -62 =77 -2 -39 pnnnn pnnn
MALLALA20 53 -39 -15 -145 -45 pnnnn pnnn
CURYO19 102 -139 -38 -11 174 pnnnp pnnn
HORSHAM23 57  -147 -20  -217 73 pnnnp pnnn
CURYO17 55 -100 -18 177 -29 pnnpn pnnp
SNOWTOWN18 28 -54 -30 48 -65 pnnpn pnnp
KONDININ23 30 -43 -87 176 135 pnnpp pnnp
MR21 69 -39 -76 10 4 pnnpp pnnp
KADINA18 25 -69 16 -24 -108 pnpnn pnpn
ML21 50 -46 2 -58 -22 pnpnn pnpn
MG21 33 -75 10 -148 92 pnpnp pnpn
SEALAKE23 33 -91 178 -5 122 pnpnp pnpn
CD22 50 -66 135 72 -83 pnppn pnpp
LM21 15 -42 55 32 -105 pnppn pnpp
AR22 225  -155 201 171 192 pnppp pnpp
GRASS PATCH18 30 -88 223 107 251 pnppp pnpp
ML22 268 208 -67  -175 -24 ppnnn ppnn
SN22 162 76 -56  -391 -44 ppnnn ppnn
BE22 292 183 -144 44 -18 ppnpn ppnp
SCADDAN19 15 10 -15 47 -92 ppnpn ppnp
HO22 274 94 49 -134 94 pppnp pppn
MH22 335 367 196 54 -210 ppppn PPPP
CM22 113 53 20 125 90 pPPPPP ppPPP

with the mean within iClass correlations ranging from 0.72 up to 0.82 (compared with
0.78 up to 0.88 using interaction classes based on five factors). However, it is important to
recognise that genetic correlations as a measure of VEI are based on all the varieties in
the data-set so may not be sufficiently specific for the varieties under consideration for
selection. This issue is discussed further later.

In terms of variety selection it is instructive to first consider the variety scores since
these reflect their responses to the environmental covariates implied by the factor loadings.
The aim in this section is selection amongst the 125 L3 varieties grown in 2023. Figure 5
plots the EBLUPs of the scores for the first additive factor against the remaining factors
for these varieties. The varieties labelled on this figure correspond to six test lines (Test1
to Test6) and five commercial lines originating from this breeding program. Of the latter,
ALB TERRIER is the most recent variety. Each of the commercial varieties appeared in at
least 75 environments in the data-set and in every year. The other labelled variety (ExtChk)
is an important new commercial variety originating outside this breeding program and
whose parentage was unavailable for the purposes of this analysis. It was only grown
in 14 environments in this data-set, all of which were in 2023. Given the nature of the
environment loadings for the first two additive factors (as previously discussed) it is clear
that varieties with large positive scores for the first factor and large negative scores for the
second factor will likely yield well across a range of non-BGM environments. Therefore
the majority of labelled test lines and the newer commercial variety look superior to the
older commercial varieties. Test3 and Test4 look particularly promising and Test1 may
also be but via a different mechanism. The large response of ExtChk to the last factor (the
non-additive factor) is noteworthy and will be discussed later. Similarly, the behaviour of
the two varieties ALB TERRIER and PBA HURRICANE XT (coloured red on the plots)
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Figure 2. Rotated residual maximum likelihood estimates of loadings for first and second additive
factors. Environments with positive estimated loadings in the second factor have been labelled.

will be explored later.

Whilst the score plots are extremely helpful in flagging varieties that have large
responses to the factors, for the purposes of selection the totality of all these responses is
required. Therefore the first step is to use the variety stability measure introduced in the
Statistical Methods section. This is calculated for iClasses defined using all five factors and
also using the first four only. It was of interest to examine stability for the non-BGM
iClasses only, so the AOVs had either 8 levels for the treatment factor (when interaction
classes based on five factors used) or 4 levels (when interaction classes based on four factors
used). Figure 6 contains plots of the key information from the AOVs for each variety,
namely the grand mean of the CVEs for non-BGM environments (on the y-axis), the
square root of the between iClass mean square (on the x-axis) and the p-value for the
ratio of the between to within iClass mean square (colour of the points). It is important to
recognise that, because the CVEs are effects (not means), they are on the scale of the trait
being analysed (here t/ha) but can be positive or negative. Thus, for example, a variety
with a near zero CVE for an environment has an “average” yield in that environment,
whilst a variety with a large positive/negative CVE has above/below average yields for
the environment. An analogous interpretation therefore follows through for both the
grand means and iClassOP, each of which involve a simple arithmetic averaging across
environments. Figure 6 only includes L3 varieties, which one would expect to have above
average yields relative to the entire population of varieties included in the MET. Thus all
of the grand means are positive.

A clear distinction between the two panels in Figure 6 is that when iClasses are defined
using only the first four factors, many of the p-values are greater than 0.05 so that the
within iClass mean square is arguably too large compared with the between iClass mean
square. When all five factors are used, the majority (88) of p-values are less than 0.001.
A full cross-tabulation of the p-values for iClasses defined using four or five factors is
provided in Table 5. On the basis of this information it was decided to use iClasses based
on all five factors to make selection decisions for the 125 L3 varieties. Note that, for other
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iClass: number of environments and mean yield
8 7 9 22 10 8 8 9 2 4 1 1
1]43 2'|65 1'|46 1'|47 1'|28 1'|96 0.197 2}00 3'.48 1.[80 3'|54 2'|47 2'|23

iClassOP (t/ha)
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iClass

Variety -® ALB TERRIER -@ PBA BOLT -® PBA JUMBO2

Figure 3. Plot of interaction class overall performance (t/ha) for three varieties that are probes for
presence of the disease Botrytis Grey Mould. The variety PBA BOLT is a susceptile variety whereas
ALB TERRIER and PBA JUMBO?2 are tolerant varieties. The number of environments in each iClass
and their associated mean yield (t/ha) is given along the top axis. The dashed horizontal lines are the
grand means of the common variety by environment effects across all environments for these varieties.
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Figure 4. Estimated genetic correlations for total common variety by environment effects for all pairs of
environments summarised on an interaction class basis for (a) classes based on all five factors and (b)
classes based on first four factors. The value listed in each cell is the mean of all pairwise estimated
correlations between environments in the interaction class. The interaction class labels include the
associated numbers of environments in parentheses. The colour scale corresponds to the mean values.

decisions, for example for the L0, L1 or L2 varieties, the associated stability plots may
reveal a different story and it may be reasonable to use iClasses based on the first four
factors alone. Clearly this would simplify selection as it is then only necessary to examine
four rather than eight iClasses. The key message is that it is not necessary to use the
same sets of iClasses for all selection decisions. The stability plot in Figure 6 (a) shows
that most of the test lines are less stable than the commercial varieties. This is consistent
with the change in the aims of the breeding program which have moved away from
breeding for broad adaptation to targeting specific environmental types. Also note that the
grand means on the y-axis in the stability plot provide a naive measure of overall variety
performance (in t/ha) across all environments considered (in this case the 81 non-BGM
environments). Figure 6 (a) shows that many of the test lines have higher grand means
than the commercial varieties. However, it is not intended that these grand means be
used as a trait for selection, as they ignore VEI, but rather to assist in choosing varieties to
investigate thoroughly using interaction plots.

Table 5. Stability across interaction classes (excluding those linked to the disease Botrytis Grey Mould)
for the 125 L3 varieties grown in 2023: p-values of variance ratios (ratio of between to within interaction
class mean square) from analyses of variance tabulated for interaction classes defined using first four
factors and all five factors.

iClasses iClasses using 4 factors

using 5 factors <.001 .001-.01 .01-.05 .05-.5 >.5 | total
<.001 4 7 10 67 0 88
.001-.01 0 2 25 0 29
.01-.05 0 0 6 0

.05-.5 0 0 0 0

>.5 0 0 0 0 0

total 4 9 12 100 0 125
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Figure 5. Empirical best linear unbiased predictions of additive factor scores for the 125 L3 varieties
grown in 2023. Varieties of interest have been labelled with their names and two key varieties have
been plotted in red. In each panel the y-axis corresponds to the first factor and the x-axis to the second,
third and fourth additive factors for (a), (b) and (c) and the non-additive factor for (d).
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Figure 6. Stability across interaction classes (excluding those linked to the disease Botrytis Grey Mould)
for the 125 L3 varieties grown in 2023: interaction classes defined using (a) all five factors and (b) first
four factors. The y-axis in each plot is the grand mean of the common variety by environment effects
(for each variety) across environments and the x-axis is the square root of the between interaction class
mean square from the one-way analysis of variance on those effects. Points are coloured according to
the p-value for the variance ratio from the analysis of variance. Varieties of interest have been labelled
with their names.
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Both iClassOP and stability can be visually assessed in the interaction plots introduced
in Smith et al. 2021b which display iClassOP for a chosen set of varieties across iClasses.
Two such plots are given in Figure 7. As previously discussed, iClassOP for a variety can be
positive or negative. All the values in Figure 7 are positive, indicating above average yields
for these varieties in all iClasses. As an aid to interpretation, the mean of the environment
mean yields for each iClass is given on the top axis in the interaction plots. Thus absolute
yields for a variety within an iClass (within this MET) can be approximated be adding
these means to iClassOP.

Figure 7 (a) contains three test lines that had high grand means and varying levels of
stability (as depicted in Figure 6 (a)). The second panel contains the commercial variety
PBA HURRICANE XT, which was released by the Agriculture Victoria lentil breeding
program in 2014, and the new external commercial variety which was released in 2023.
To link the two panels, the commercial variety ALB TERRIER (released in 2024 by the
Agriculture Victoria lentil breeding program) is included on both. Figure 7 (a) shows
that Test1 and Test3 out-yield ALB TERRIER in all iClasses. Test3 yields particularly
well, with an advantage of more than 0.2t/ha in three iClasses (pnnnp, pnnpp and pnppp).
As expected from the stability plot, Test2 is quite unstable, ranking near the bottom of
the four varieties in most iClasses, but ranking first or second in three iClasses (pnpnp,
pnppp and pnnnp). Figure 7 (b) shows that whilst the two varieties ExtChk and PBA
HURRICANE XT had similar grand means, they exhibit substantial cross-over VEI,
with ExtChk “winning” in all the iClasses with a “p” as the final character, and PBA
HURRICANE XT winning elsewhere. A more subtle, but equally important feature of
Figure 7 (b) is the comparison of ALB TERRIER and PBA HURRICANE XT. To aid
in interpretation, the actual iClassOP values for these varieties are provided in Table 6,
together with the differences. Also given are the factor scores. Recall that the factors,
when ordered as in this table, have decreasing variance accounted for so have decreasing
influence on CVEs and thence iClassOP. All iClasses under consideration have the same
first two characters, “pn” so that varieties with large positive scores for the first additive
factor and, to a lesser extent, large negative scores for the second factor, will yield well
across most iClasses. Thus it would be expected that ALB TERRIER, with a much higher
score than PBA HURRICANE XT for the first factor would have superior performance
across most iClasses. This is borne out on Figure 7 (b), but it is clear that the magnitude
of the superiority of ALB TERRIER changes dramatically across iClasses, with essentially
no difference between the two varieties in the two iClasses on the far right of the graph.
This is due mainly to the differences in scores for additive factors three and four, and to a
lesser extent the non-additive factor (also see Figure 5 in which PBA HURRICANE XT
appears to the right of ALB TERRIER on panels (b), (c) and (d)). The differences in Table
6 and the score plots reveal that PBA HURRICANE XT would be boosted relative to
ALB TERRIER for iClasses with a “p” as the third character, and even more so for iClasses
with a “p” as third and fourth (and finally fifth) character. Thus moving from left to right
on Figure 7 (b), the factor scores suggest it would be expected for ALB TERRIER to
out-yield PBA HURRICANE XT by a substantial amount in iClasses pnnnn and pnnnp,
to a lesser extent in iClasses pnnpn and pnnpp and also pnpnn and pnpnp. Finally, in
pnppn and pnppp, PBA HURRICANE XT has “caught up”. This example clearly shows
how iClassOP encapsulates and combines all of the information in the factor scores.

Discussion

Smith et al. 2021b addressed the key issue of variety selection in the presence of variety
by environment interaction (VEI) within the framework of a factor analytic linear mixed
model (FALMM). They developed their “iClass” methodology for models in which the
genetic effects for different varieties were assumed independent. In the current paper this
has been extended for models that incorporate information on the genetic relatedness of
varieties. Thus the variety effects in different environments are partitioned into additive
and non-additive, with a separate FA model for each set of effects. This class of models
is recommended, and widely used in Australia, for annual selection decisions by plant
breeding programs. In the example presented in this paper, genetic relatedness was included
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Figure 7. Plots of interaction class overall performance (t/ha) (excluding classes linked to the disease
Botrytis Grey Mould) for (a) four varieties comprising ALB TERRIER and three test lines and (b) three
varieties comprising ALB TERRIER and two other commercial varieties. The number of environments
in each interaction class and their associated mean yield (t/ha) is given along the top axis. The dashed
horizontal lines are the grand means of the common variety by environment effects for these varieties.
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Table 6. Interaction class overall performance (t/ha) and factor scores for ALB TERRIER and PBA
HURRICANE XT. Also given are the difference between the two varieties (ALB TERRIER - PBA
HURRICANE XT for interaction class overall performance and the reverse order for factor scores.)

iClassOP (t/ha)
pnnnn_ pnnnp _ pnnpn_ pnnpp _ pnpnn_ pnpnp _ pnppn_ pnppp

ALB TERRIER 0.48 0.85 0.50 0.43 0.41 0.51 0.29 0.69
PBA HURRICANE XT 0.24 0.52 0.34 0.32 0.27 0.44 0.29 0.68
TERRIER - HURRICANE 0.24 0.34 0.16 0.10 0.14 0.08 <0.01 0.01

Factor scores non-
addl add2 add3 add4 addl

ALB TERRIER 7.11 -1.39 -0.46 0.02 -0.53
PBA HURRICANE XT 3.53 -2.02 0.50 0.74 0.10
HURRICANE - TERRIER -3.58 -0.64 0.96 0.72 0.62

in the LMM via pedigree information. The resultant improvement in the goodness of fit of
the model, as assessed via the residual log-likelihood, was undeniably substantial. Similar,
or possibly greater gains, may result with the use of genomic information. Either way,
the key message is the importance of using genetic relatedness to improve the accuracy of
variety selection. An associated issue is that when an appropriate MET data-set is used for
analysis (see later), the resultant incompleteness in terms of varieties being grown in the
trials, necessitates the use of genetic relatedness to provide links between environments.

As in Smith et al. 2021b it is stressed here that although the iClass approach involves
the formation of groups of environments for the purpose of obtaining average (or overall)
variety effects, it is not a clustering of environments based on genetic correlations. Given
that genetic correlations reflect relationships between environments based on all varieties,
it is not uncommon for a clustering on this basis to mask individual variety patterns of VEL
Instead of focussing on the environments, the iClass approach focusses attention on the
actual subject of the selection decisions, namely the varieties. Specifically, the iClasses are
formed in such a way that they discriminate varieties with different patterns of VEI This
is achieved using the fact that when a factor is bi-polar, there is cross-over interaction
of varieties (for the fitted values for that factor) between the environments with positive
estimated loadings compared with negative. Hence the formation of iClasses using a
concatenation across factors of the signs of the estimated loadings for each environment.

An issue that is often raised is whether iClasses can be ascribed a meaningful interpre-
tation. Clearly the labelling protocol is designed to illustrate the contrasting groups of
environments (positive versus negative estimated loadings) for each factor used in forming
the iClasses. In the authors’ experience, breeders have often been able to link iClasses to
key environmental variables such as disease prevalence and growing conditions. Current
work focusses on a formal statistical approach to achieve this, with the ultimate aim of
being able to assign a meaningful environmental label to each iClass. In the interim, the
complementary approach based on probe genotypes (see Cooper and Fox 1996, for exam-
ple) has been used successfully for iClass interpretation. This approach can be regarded
as a bioassay in which varieties with known reactions to environmental factors are used
to characterise the environments in a MET. A key example in the current paper was the
use of probe varieties to detect the existence of the disease BGM. Three varieties (one
susceptible and two tolerant) were visualised in an iClass interaction plot, and this led to
the conclusion that iClasses with a “p” as the second character in their label comprised
environments with high levels of BGM. These iClasses were therefore termed “BGM
iClasses” and the breeder consequently requested to exclude them when making selection
decisions for grain yield as they provided more of an assessment of tolerance rather than
general yielding ability.

As alluded to above, another key requirement for variety selection is the use of a
suitable MET data-set. As discussed in Smith et al. 2021a the data-set should include
all trials that provide data on the selection history for the varieties under consideration
for selection. This typically leads to incomplete (not all varieties in all trials) data-sets
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with large numbers of environments that span multiple years and stages of selection.
In the example presented in this paper, the MET data-set comprised 90 environments
and spanned 7 years. The analysis of these data, as conducted in this paper, would have
facilitated selection for four stages of selection (LO, L1, L2 and L3) for varieties grown
in 2023. In the current paper, for reasons of brevity and clarity, only the L3 selection
decisions were fully explored. The key point here is that it is unsatisfactory to “slice and
dice” data-sets to achieve, for example, a complete data-set, or to reduce the size in order
to avoid computational difficulties associated with statistical software. The latter may
include both memory or time limitations. Linked to this issue is the preponderance in the
literature of two- (or three-) stage analyses for MET data. It has long been established
that the one-stage analysis, as presented in this paper, is superior, irrespective of any
weighting scheme that may be proposed (Gogel 1997; Gogel, Smith, and Cullis 2018).
Two-stage approaches were historically necessary when individual plot data was not stored
electronically and when statistical software and/or computer hardware was inadequate.

As in Smith et al. 2021b, the approach in this paper forms groups of environments,
called iClasses, on the basis of which meaningful summaries of variety performance for
the trait of interest (assumed here to be yield) can be obtained. In Smith et al. 2021b the
summary measure provided was overall yield level (iClassOP) for each variety in each
iClass. The iClass interaction plot was introduced as a means of displaying this information,
thence allowing a comparison of varieties in terms of their performance across iClasses. In
the current paper, a measure of stability of variety performance across iClasses has been
proposed. This quantifies the fluctuations in iClassOP as visualised on the interaction
plot. Stability was shown to be useful in its own right as a means for choosing varieties
of interest to explore in detail using an interaction plot. Additionally it was helpful for
assessing the appropriateness of using only a subset of the fitted factors (the most important
factors) to define iClasses. This was found to be particularly important for the motivating
example.

Conclusion
Variety selection in a plant breeding program requires three key statistical inputs, namely

* a MET data-set that comprises the entire selection history (or as much as possible) of
the current cohort of varieties

* aone-stage statistical analysis that accommodates incomplete data, includes information
on genetic relatedness and encapsulates complex patterns of VEI

* meaningful summaries of variety predictions from the analysis

The current paper addresses the final component within the framework of data-sets and
a method of analysis (the FALMM) that satisfy the first two components. The summaries
relate to groups of environments called iClasses, the definitions of which are derived from
the core parameters in the FALMM, namely the factor loadings for environments. The
summaries of variety performance across iClasses provide growers and stake-holders not
only with information about “what wins where”, but also about the actual yield advantage
(in t/ha, for example) of the winners. This can have significant impact on the economics
of variety choice.
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Appendix: Percentage variances associated with total VE effects
It is often of interest to compute various quantities as percentages of total (additive plus non-
additive) genetic variance. For example, the additive genetic variance for an environment
as a percentage of total genetic variance for the environment and the variance accounted
for by individual terms in the factor analytic models as a percentage of the total genetic
variance.

In order to compute these percentages it is instructive to consider the variance structure
for individual varieties so first define Hg(y = (g1 s tgrs - -, gy, )T to be the p x 1 vector of

total VE effects for variety i. Then note that
var (ug(i)) = 4;;G, + G, (18)

where aj; is the i'" diagonal element of the relationship matrix (either NRM or GRM).
Equation (18) shows that expressions of quantities as a percentage of total genetic variance
will differ depending on aj; so that specific values of interest must be chosen. Often, the
mean of the diagonal elements of the relationship matrix is used, and this will be denoted
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by a. Then, for example, the percentage of additive variance for environment j can be
computed as

8 aji

A ajj *g <

100 x

(19)
¢ are the jth diagonal elements of G, and G, respectively. Note that as
an alternative to using an overall a value, a separate value for each environment could
be used. Thus a in equation (19) could be replaced by a;, where this is the mean of the

diagonal elements of the relationship matrix corresponding to those varieties grown in
environment j.

where aj and ¢



