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Abstract
The concept of interaction classes (iClasses) for multi-environment trial data was introduced to
address the problem of summarising variety performance across environments in the presence
of variety by environment interaction (VEI). The approach involves the fitting of a factor
analytic linear mixed model (FALMM), with the resultant estimates of factor loadings being
used to form groups of environments (iClasses) that discriminate varieties with different patterns
of VEI. It is then meaningful to summarise variety performance across environments within
iClasses. The iClass methodology was developed with respect to a FALMM in which the
genetic effects for different varieties were assumed independent. This was done for pedagogical
reasons but it was pointed out that the accuracy of variety selection is greatly enhanced by
considering the genetic relatedness of varieties, either via ancestral or genomic information.
The focus of the current paper is therefore to extend the iClass approach for FALMMs which
incorporate such information. In addition a measure of stability of variety performance across
iClasses is defined. The utility of the approach for variety selection is illustrated using a
multi-environment trial dataset from the lentil breeding program operated by Agriculture
Victoria.

Introduction1

The analysis of multi-environment trial (MET) data is a fundamental and recurring task2

for the selection of superior varieties in a plant breeding program. Smith, Cullis, and3

Thompson 2005 provided a comprehensive review of statistical methods for MET data4

and this still covers the most popular methods currently used. The methods can be broadly5

classified into linear mixed model (LMM) and biplot analyses. LMMs are a widely used6

class of statistical models that include both fixed and random effects and accommodate a7

range of variance structures to allow for heterogeneity and correlation. Early applications8

for MET data include Patterson et al. 1977 and Patterson and Silvey 1980, who used LMMs9

that included main effects for varieties and environments, and variety by environment10

interaction (VEI) effects. The variance structures for random effects had simple component11

forms, commensurate with the assumption of independent effects with homogeneous12

variance. Since the late 1990s, several research groups have developed and recommended13

LMM that incorporate factor analytic (FA) structures for the variety effects in different14

environments. This allows for a very general pattern of genetic variance and covariance15

heterogeneity. Henceforth, this model will be referred to as a factor analytic linear mixed16

model (FALMM). Key papers authored by advocates of these models include Gogel,17

Cullis, and Verbyla 1995, Piepho 1997, Piepho 1998a, Smith, Cullis, and Thompson 2001,18

Smith et al. 2021b, Burgueno et al. 2011 and Meyer 2009. Biplot approaches involve the19

application of a singular value decomposition to a two-way table indexed by varieties20

and environments, followed by a biplot graphical representation of the first two principal21

components. This approach was popularised for MET data under the banner of AMMI22

(Additive Main effects and Multiplicative Interaction models, Gauch 1992) and the most23

common current method of this type is the GGE-biplot method (see, for example, Yan24

and Kang 2002 and Yan, Nilsen, and Beattie 2023).25

The analysis process for METs should be no different from any other data analysis26

in that it should consist of two main activities. Lee, Nelder, and Pawitan 2006 discuss27

this in detail and reference Lane and Nelder 1982 when they state that “the first (activity)28

is model selection, which aims to find parsimonious well-fitting models for the basic29

responses being measured, and the second is model prediction, where the output from the30
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primary analysis is used to derive summarizing quantities of interest together with their31

uncertainties.” It is well known that for the purposes of variety selection, a “well-fitting”32

MET model must accommodate a range of sources of variation associated with both genetic33

and non-genetic effects and field plot errors. It is crucial that the model appropriately34

accommodates VEI and that it allows inclusion of information on the genetic relatedness35

of varieties, either via ancestral or genomic data (Oakey et al. 2006; Oakey et al. 2007).36

Non-genetic effects associated with experimental designs should be included and the37

model should allow for error variance heterogeneity between environments and spatial38

correlation within environments. Accommodating all of these sources appropriately in39

the model will improve the accuracy of “output from the primary analysis”. The FALMM,40

in particular the model proposed by Smith, Cullis, and Thompson 2001 and extended for41

genetic relatedness by Oakey et al. 2007, successfully achieves this aim. This is, therefore,42

the model used in the current paper.43

The output from the primary analysis must be summarised in a manner that facilitates44

variety selection. In the presence of VEI, in particular crossover VEI which is synonymous45

with changes in variety rankings, it makes no sense to base selection on the standard46

concept of variety main effects or some analogous measure of overall performance across47

all environments in the MET. Instead, variety performance needs to be summarised48

for “meaningful” groups of environments. Within the framework of a FALMM, Smith49

et al. 2021b addressed this using the fundamental parameters in the FA model, namely50

the factor loadings, to form groups of environments. Given that the factor loadings51

represent the latent environmental covariates that are driving the VEI, these groups52

discriminate varieties with differential responses and thence differential patterns of VEI.53

They are therefore called interaction classes (iClasses). Smith et al. 2021b defined overall54

variety performance for each iClass by averaging variety predictions across the associated55

environments. This facilitates selection of the best varieties within each iClass so addresses56

the “what wins where” question, which has become a widely used catchphrase in the57

biplot literature. This question should be extended to include “... and by how much” as58

it is important to have a prediction of variety differences on the scale of the trait under59

consideration, together with a measure of uncertainty. This is an integral part of iClass60

overall performance which is reported in the units of measurement (for example, t/ha for61

grain yield).62

Smith et al. 2021b developed the concept of iClasses within the framework of FALMMs63

in which the genetic effects for different varieties were assumed independent. They did64

this for ease of demonstration but stressed that, in general, the analysis of plant breeding65

METs will benefit greatly from the inclusion of information on the genetic relatedness of66

varieties. This can be achieved with the use of a relationship matrix which may be based67

on ancestral (pedigree) or genomic (marker) information. In the case of in-bred crops68

the genetic effects in the FALMM are partitioned into additive (with a variance structure69

that involves the relationship matrix) and non-additive effects. As commented by Oakey70

et al. 2006, such a partitioning means that “a single analysis will allow both the selection71

of potential parents for future breeding programs using additive effects and promising72

commercial lines combining both additive and non-additive effects, i.e. the overall or total73

genetic effect.” The FALMM with both additive and non-additive genetic effects involves74

two separate FA models, one for each set of effects (see Oakey et al. 2007; Beeck et al. 2010;75

Smith and Cullis 2018; Tolhurst et al. 2019). iClass methodology that can be applied in76

this setting is the focus of the current paper. Parental selection involves a straight-forward77

application of the concepts in Smith et al. 2021b to the FA model for the additive effects78

alone, whereas the selection of varieties based on total (additive plus non-additive) effects79

requires an extension that incorporates both the additive and non-additive FA models.80

Many authors have noted that, in addition to knowing “what wins where”, it is also81

important to characterise the stability of variety performance across environments. A sem-82

inal review paper is that of Lin, Binns, and Leftkovitch 1986, who noted that “the concept83

of stability is by no means unambiguous”. They provided a helpful table that summarised84

nine commonly used measures and highlighted the differences in interpretations. Many of85

these methods are popular today, the most widely used being associated with regressions of86

the observed data for a variety on to an environmental index defined using the mean of all87
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observations for the environment. Key references for this type of measure are Finlay and88

Wilkinson 1963, Eberhart and Russell 1966 and Digby 1979. Oman 1991, Gogel, Cullis,89

and Verbyla 1995 and Piepho 1997 considered mixed model versions of this approach.90

Piepho 1998b provided a comprehensive review of stability measures (including those in91

Lin, Binns, and Leftkovitch 1986) and showed how each relates to an underlying statistical92

model. He made a pivotal point, namely that “Usefulness of any measure of stability93

depends crucially on how well the underlying model approximates the real data.” Of the94

commonly used stability measures, arguably the best fitting model is the regression on the95

environmental mean model. However, it is well known that this rarely provides a “good96

approximation to the data” since it typically only explains a very small proportion of VEI.97

In contrast, the FALMM routinely provides a good fit for MET data so is a prudent choice98

of model on which to build a stability measure. Based on this model, Smith and Cullis99

2018 proposed a stability measure that has a similar flavour to the regression approaches,100

but involves the latent regression implicit in an FA model. Specifically, for each variety,101

the stability measure is the root mean square deviation of the predicted effects from the102

fitted values for the latent regression associated with the first (most important) factor. The103

assumption is that the estimated loadings for the first factor are all positive so it represents104

the scale (non cross-over) component of VEI and hence the deviations reflect cross-over105

VEI. This measure is sub-optimal, however, in the sense that it restricts attention to the first106

factor only, so ignores the latent regressions on the higher order factors which typically107

account for a non-ignorable amount of VEI. In the current paper, therefore, a stability108

measure is proposed that captures the VEI associated with all the factors in the FALMM109

(or as many as the breeder wishes to use) and has no requirement about positive signs for110

the estimated loadings in the first factor. The measure can be visualised in the interaction111

plots of Smith et al. 2021b which depict the overall performance of a small user-defined112

set of varieties across iClasses. Due to the manner in which iClasses are formed, there is113

a natural ordering on this plot, with the major sources of VEI being contrasted across114

iClasses on opposite sides of the plot. This allows a visual inspection of VEI, or equivalently,115

stability of performance across iClasses, for the nominated varieties. Stability is therefore116

indicated by the relative magnitude of the peaks and troughs across the interaction plot.117

In the current paper a numerical measure that quantifies this form of stability is developed.118

It is easily computed in conjunction with iClass overall performance for all varieties in the119

MET dataset. As such it may be useful as an additional trait for selection.120

The main goals of this paper are to extend the iClass methodology introduced in Smith121

et al. 2021b for analyses that include information on the genetic relatedness of varieties and122

to present a new measure of stability of variety performance. The utility of the methods123

is demonstrated using a motivating example from an Australian lentil breeding program.124

Materials and methods125

The motivating example considered in this paper was provided by the Agriculture Victoria126

lentil breeding program. This program involves five stages of variety testing, labelled as L0,127

L1, L2, L3 and L4. Using the techniques of Smith et al. 2021a, a dataset was constructed128

to facilitate selections for stages L0, L1, L2 and L3 in 2023. In this paper the analysis is129

conducted for this entire dataset, but in the interests of brevity, the iClass methodology is130

applied for one set of selections only. The L3 selections have been chosen for this purpose,131

partly because these comprise the smallest number of varieties so the methodology is most132

easily demonstrated and partly because these are the final decisions prior to commercial133

release so have immediate ramifications for both the breeding program and growers.134

Overall, the dataset contains 160 trials grown in 90 environments and a total of 10356135

unique varieties. In this paper a “trial” refers to the physical collection of field plots136

onto which a valid experimental design is imposed. An “environment” is defined by the137

geographic location and year of planting of a trial. Of the 90 environments in the MET138

dataset, 43 encompassed multiple trials due to the presence of trials for different stages139

at the same location. All trials in an environment were managed in the same way and140

had the same plot dimensions. The number of varieties per trial ranged from 36 to 2487141

and the number of plots from 108 to 3024. In 70 trials, partially replicated designs (Cullis142
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et al. 2020) were employed in which some varieties were tested without replication (that143

is, a single plot for each) and others were tested using two replicate plots. In the remaining144

trials, there was near complete replication with either two or three replicates of most145

varieties.146

The distribution of trials across stages and years is shown in Table 1. Note that, prior147

to 2023, varieties in different stages of testing were grown in separate trials, whereas in148

2023, varieties from stages L1, L2 and L3 were grown together in the same trial. The149

inclusion of the L4 trials from 2018, 2019 and 2020 warrants discussion. These were150

included in accordance with one of the key philosophies of Smith et al. 2021a, namely to151

maximise the amount of observed data for the varieties under consideration for selection.152

The varieties impacted by the inclusion of the L4 trials were five 2023 L3 varieties under153

consideration for commercial release. Inclusion of the L4 trials provided an additional two154

years of data for each of these varieties and between 22 and 26 additional environments.155

It is acknowledged that the inclusion of these trials, some of which were the smallest in156

the dataset with only 36 varieties, must be investigated in terms of any potential negative157

impact on the estimation of genetic variance parameters. This is fully explored in the158

Supplementary Material, Section 1, where it is shown that the impact is likely to be159

negligible, with any associated losses in the reliability of variety predictions being far160

outweighed by the benefits of including the additional data. Supplementary Material,161

Section 1 demonstrates the statistical benefits of including the L4 trials. It should also be162

noted there are substantial benefits in terms of grower confidence, since, in general, L4163

trials are grown in more locations than earlier stage trials and the inclusion of the L4 trials164

in the current dataset provided an additional 14 location/year combinations (environments)165

for variety comparisons.166

Table 1. Multi-environment trial dataset for L0, L1, L2 and L3 stage selection decisions in 2023:
number of trials included from each stage and year. Note that, prior to 2023, the entries in different
stages were grown in separate trials whereas in 2023, the L1, L2 and L3 entries were grown together in
the same trial.

Year
Stage 2017 2018 2019 2020 2021 2022 2023

L0 2 2 2 1 2 2 2
L1 3 4 3 3 5 5 ↑
L2 6 6 7 7 10 10 14
L3 0 0 0 9 16 13 ↓
L4 0 12 10 4 0 0 0

In the current paper, genetic relatedness is included in the analysis via pedigree records167

on 11330 varieties (that is, all varieties with phenotypic data together with 974 ancestors).168

A numerator relationship matrix (NRM), denoted by A, was created from these pedigree169

records.170

Statistical methods171

The MET dataset is assumed to comprise p environments with nj denoting the number172

of plots for environment j (= 1 . . . p). Let yj denote the nj–vector of data for the jth173

environment and y denote the n–vector of data combined across all environments in the174

MET. Thus y = (y⊤
1 , y⊤

2 , . . . , y⊤
p )⊤ and n =

∑p
j=1 nj. The linear mixed model for y can be175

written as176

y = Xτ + Zgug + Zpup + e (1)

where τ is a vector of fixed effects with associated design matrix X; ug is the vector of177

random genetic effects with associated design matrix Zg; up is a vector of random non-178

genetic (or peripheral) effects with associated design matrix Zp and e = (e⊤1 , e⊤2 , . . . , e⊤p )⊤ is179

the combined vector of errors from all environments. The vector of fixed effects includes180

mean parameters for individual environments. The vector of random peripheral effects181

includes effects associated with the designs of individual trials within environments. The182
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variance matrix for up is typically given by Gp = ⊕p
j=1Gpj where Gpj = var

(
upj

)
and upj183

is the vector of peripheral effects for environment j.184

Variance models for genetic effects185

The random genetic effects, ug, comprise the variety effects nested within environments186

(VE effects). In this paper these effects are partitioned into additive and non-additive187

genetic effects, so for clarity ug will be referred to as the total VE effects. If m denotes the188

total number of unique varieties across all environments, then the vector ug has length mp.189

These are assumed to be ordered as varieties within environments. The total VE effects190

can be partitioned into additive and non-additive VE effects (ua and ue, respectively) as191

follows:192

ug = ua + ue (2)

where it is assumed that193

var
(

ua
ue

)
=

[
Ga ⊗ Gr 0

0 Ge ⊗ Im

]
(3)

where Ga and Ge are p × p symmetric positive semi-definite matrices that will be referred194

to as the between environment additive and non-additive genetic variance matrices,195

respectively. The matrix Gr is an m × m (known) relationship matrix which may either be196

an NRM, denoted A, or a genomic relationship matrix (GRM). Note that for notational197

simplicity, it is assumed that pedigree and/or genomic information is available for all m198

varieties. This is easily relaxed in practice. In the current paper, the motivating example199

involves the use of pedigree information, so the approach is developed in this context, in200

which case Gr = A. Note that A is often expanded to include both the varieties grown in201

the MET together with their ancestors (that were not grown in the MET). This may be202

done both to allow prediction of the additive VE effects for the latter and also to exploit203

the sparsity it induces in the inverse of the NRM. Either way, m is defined to denote the204

number of varieties with pedigree information which will therefore also be the number of205

rows and columns in A. Finally, note that var
(
ug

)
= Ga ⊗ A + Ge ⊗ Im206

Factor analytic models for VE effects207

Given the partitioning of the total VE effects, a separate factor analytic model for each208

set of VE effects is allowed. Thus a factor analytic model of order ka, denoted FAka, is209

assumed for the additive VE effects and an FAke model is assumed for the non-additive210

VE effects. Note that the orders of the two models, that is, ka and ke may (are likely to) be211

different. The FA models for the VE effects can be written as212

ua = (Λa ⊗ Im) f a + δa = βa + δa
ue = (Λe ⊗ Im) f e + δe = βe + δe (4)

where Λa is the p × ka matrix of environment loadings for the individual additive factors;213

f a is the associated mka–vector of variety scores (ordered as varieties within factors) and δa214

is the mp–vector of additive lack of fit effects which are also known as the additive specific215

VE (SVE) effects. The additive common VE (CVE) effects are given by βa = (Λa ⊗ Im) f a.216

The FA model for non-additive VE effects involves Λe, which is the p × ke matrix217

of environment loadings for the individual non-additive factors; f e is the associated218

mke–vector of variety scores and δe is the mp–vector of non-additive SVE effects. The219

non-additive CVE effects are given by βe = (Λe ⊗ Im) f e.220

This then provides a model for the total VE effects of the form221

ug = (Λa ⊗ Im) f a + δa + (Λe ⊗ Im) f e + δe

= βg + δg (5)

where βg = βa +βe and δg = δa +δe are defined to be the total CVE and total SVE effects,222

respectively.223
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In the FA models it is assumed that224

var
(

f a
f e

)
=

[
Da ⊗ A 0

0 De ⊗ Im

]
(6)

where Da and De are ka × ka and ke × ke symmetric positive definite matrices that will be225

referred to as the additive and non-additive factor score variance matrices, respectively.226

Additionally, it is assumed that227

var
(

δa
δe

)
=

[
Ψa ⊗ A 0

0 Ψe ⊗ Im

]
(7)

where Ψa and Ψe are p × p diagonal matrices with elements referred to as the additive228

and non-additive specific variances, respectively.229

The variance assumptions in equations (6) and (7) lead to230

var
(

βa
βe

)
=

[
ΛaDaΛ⊤

a ⊗ A 0
0 ΛeDeΛ⊤

e ⊗ Im

]
(8)

var
(

ua
ue

)
=

[
(ΛaDaΛ⊤

a + Ψa) ⊗ A 0
0 (ΛeDeΛ⊤

e + Ψe) ⊗ Im

]
(9)

so that the between environment additive and non-additive genetic variance matrices are231

given by Ga = ΛaDaΛ⊤
a + Ψa and Ge = ΛeDeΛ⊤

e + Ψe, respectively.232

Smith et al. 2021b discussed the need to apply constraints in an FA model in order to233

ensure a unique solution. Their approach is adopted here and the same form of constraints234

for both the additive and non-additive FA models is imposed. Thus it is assumed that235

the additive factor scores are independent so that Da is a diagonal (non-identity) matrix236

with elements dar (r = 1 . . . ka) and furthermore these are written in decreasing order of237

magnitude. It is also assumed that Λ⊤
aΛa is an identity matrix (that is, the columns of Λa238

are orthonormal vectors). Similarly it is assumed that the non-additive factor scores are239

independent so that De is a diagonal (non-identity) matrix with elements des (s = 1 . . . ke)240

and these are written in decreasing order of magnitude. It is also assumed that Λ⊤
eΛe is an241

identity matrix. These constraints allow for a meaningful interpretation of loadings and242

scores (Smith and Cullis 2018; Smith et al. 2021b). The constraints used for estimation243

will be discussed in the section “Model fitting and estimation”.244

It is instructive to express the model for the total VE effects in expanded form as245

follows: write Λa =
[
λa1 , . . . ,λaka

]
where λar is the p–vector of environment loadings246

for additive factor r and write f a = (f⊤
a1

, . . . , f⊤
aka

)⊤ where f ar
is the m–vector of variety247

scores for additive factor r. Analogous definitions are used for the loadings and scores for248

the non-additive factors. The model in equation (5) can then be written as249

ug = (λa1 ⊗ Im) f a1
+ (λa2 ⊗ Im) f a2

+ . . . +
(
λaka

⊗ Im
)
f aka

+

(λe1 ⊗ Im) f e1
+ (λe2 ⊗ Im) f e2

+ . . . +
(
λeke

⊗ Im
)
f eke

+ δg (10)

which has the appearance of a multiple regression with k = ka + ke terms in which the250

covariates are the loadings (λar and λes) and there are separate slopes for individual varieties251

which are given by the variety scores (f ar and f es).252

The percentage of variance accounted for by each factor in the overall model of253

equation (10) can be obtained using the results in the Appendix. Thus the percentages of254

variance accounted for by additive factor r (= 1 . . . ka) and non-additive factor s (= 1 . . . ke)255

are given by256

Var = 100 × ādar /tr (āGa + Ge)
Ves = 100 × des /tr (āGa + Ge) (11)

where ā is (typically) the mean of the diagonal elements of A for those varieties that257

were grown in the MET or alternatively the subset under consideration for selection. By258
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definition the additive factor score variances are in decreasing order so that Va1 > Va2 >259

. . . > Vaka
. Similarly the non-additive factor score variances are in decreasing order so that260

Ve1 > Ve2 > . . . > Veke
. However the overall ordering of factors (that is, across additive261

and non-additive) is data dependent.262

Variance models for errors263

The reader is referred to the Supplementary Material, Section 2.264

Model fitting and estimation265

Every model in this paper was fitted using DWReml which is a package within the266

R statistical software (R Core Team 2022). DWReml fits the linear mixed model and267

estimates variance parameters using residual maximum likelihood (REML) (Patterson and268

Thompson 1971) and the average information algorithm and a supernodal sparse linear269

solver. The models could also have been fitted using the commercially available software270

ASReml-R (Butler et al. 2017). The models required a NRM and this was created from271

pedigree records using pedicure which is a package within the R statistical software (R272

Core Team 2022) that provides tools for pedigrees and genetic marker matrices. Both273

DWReml and pedicure were developed by David Butler and Brian Cullis. Beta versions274

are freely available from Brian Cullis (bcullis@uow.edu.au) on request.275

The FA variance models were fitted as in Smith and Cullis 2018, that is, by splitting276

the VE effects into the common and specific VE effects, each with their own variance277

structure. Thus, for the additive VE effects the two variance models were var (βa) and278

var (δa) as given in equations (8) and (7). The two variance models for the non-additive279

VE effects were var (βe) and var (δe) as given in equations (8) and (7).280

As discussed in Smith et al. 2021b, model fitting using the constraints on loadings and281

factor score variances as outlined in the section “Factor analytic models for VE effects”282

is difficult and both DWReml and ASReml-R (Butler et al. 2017) use simpler constraints.283

These involve setting Da = Ika and De = Ike . Additionally if ka > 1, then all the elements284

in the upper triangle of Λa are set to zero. If ke > 1 the same constraints are applied to the285

non-additive loadings. The original forms of the loading and score variance matrices can286

be reconstructed using a rotation based on a singular value decomposition of the associated287

loading matrix. The reader is referred to Smith et al. 2021b for full details.288

Note that two separate rotations are conducted, corresponding to the additive and289

non-additive factor models. This is to be contrasted with the approach proposed in Smith290

and Cullis 2018 in which the columns in the additive and non-additive loading matrices291

are combined to form an overall matrix of loadings to which a single rotation is applied.292

The authors claimed this provides a “special factor analytic form” for the total VE effects.293

However, the two models are not compatible, because the factor scores in the additive294

model have a variance structure that involves a relationship matrix whereas the factor295

scores in the non-additive model are independent. The single rotation then mixes the296

variance structures in a manner that is both unclear and results in scores that are correlated297

across factors. The separate rotations used in the current paper ensure that the joint factor298

score variance matrix remains as in equation (6), so that in terms of the regression implicit299

in equation (10), the slopes (scores) for an individual variety are independent (uncorrelated)300

across all k terms. This allows for uncomplicated interpretations of the variety scores.301

Furthermore, the use of two separate rotations is consistent with the fundamental reason302

for the rotations, namely to move away from the computationally convenient constraints303

imposed for uniqueness. The constraints only apply within an individual factor analytic304

model so that two separate rotations are required, corresponding to the additive and305

non-additive loading matrices. In this context it is helpful to consider that in the simplest306

case where each of the two factor models comprises a single factor, there is no need for307

any rotation.308

The model fit provides REML estimates of all variance parameters and empirical best309

linear unbiased predictions (EBLUPs) of all random effects.310
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Variety selection using interaction classes311

In cases where the aim is selection based on additive effects alone, the iClass approach of312

Smith et al. 2021b can be directly applied to the FA model for the additive VE effects.313

For example in the analysis of data for inbred crops, such as lentils, there may be interest314

in using the additive effects for the selection of potential new parental lines. The iClass315

technique of Smith et al. 2021b applied to additive VE effects could also be used in cases316

where the LMM does not include non-additive effects, such as the analysis of out-crossing317

species.318

The extension of Smith et al. 2021b considered here relates to the selection of superior319

varieties in terms of their total (additive plus non-additive) VE effects. iClasses for this320

purpose can be formed by first ordering all k = ka + ke factors in terms of their percentage321

variance accounted for, namely using Var and Ves of equation (11). As discussed in the322

section “Factor analytic models for VE effects”, the factors are already in order of variance323

accounted for within their respective FA models, but the ordering across additive and324

non-additive factors may result in a mixing of the two types. The factor loadings ordered325

in this way are denoted by λt (t = 1 . . . k). The corresponding vectors of factor scores are326

denoted by f t.327

At this point it is instructive to clarify the logic behind the iClass concept introduced328

in Smith et al. 2021b. The key is to use the regression interpretation of an FA model for329

VE effects. In the current paper in which there is a separate FA model for the additive and330

non-additive VE effects, the regression interpretation stems from equation (10). Using the331

notation just defined for indexing factors across additive and non-additive terms, the fitted332

values from this regression for variety i in environment j are given by333

β̃gij = λ̂1j f̃i1 + λ̂2j f̃i2 + . . . λ̂kj f̃ik (12)

where the hat symbol above a variance parameter indicates the REML estimate of the334

parameter and the tilde symbol above a random effect indicates the EBLUP of the effect. A335

visual assessment of the contribution of an individual factor (term in the regression) to the336

overall fitted value aids in the explanation of iClasses. A hypothetical example comprising337

k = 3 factors fitted to p = 9 environments is considered. Figure 1 shows, for three varieties338

(v1, v2 and v3), the fitted values for each factor (that is, λ̂tj f̃it) plotted against the covariate339

(the rotated estimated environment loadings, λ̂tj for the factor). The slopes of the lines are340

the EBLUPs of the variety scores (f̃1t, f̃2t and f̃3t) for the factor.341

In this example, the first factor contains all positive estimated loadings and it is clear342

from Figure 1 (a) that there are no cross-over interactions of varieties for any environments.343

Thus in terms of the fitted values for the first factor, variety v1 always ranks first, followed344

by v2 then v3. The second and third factors are bi-polar, with mixtures of positive and345

negative estimated loadings. Figures 1 (b) and (c) show that, for all environments that346

have the same sign for the estimated loadings (either positive or negative), there is no347

cross-over interaction between varieties in terms of the fitted values for the associated348

factor. Thus for the second factor (see Figure 1 (b)) variety v2 ranks first, v3 second and v1349

last for all environments with a positive estimated loading (e4 and e1) and variety v1 ranks350

first, v3 second and v2 last for all environments with negative loadings (the remainder).351

Clearly the cross-overs (rank changes) occur at the origin (indicated by a dashed vertical352

line). Thus for any pair of environments that differ in the signs of their estimated loadings353

(so positive versus negative) there are changes in variety rankings. These two, but dual,354

phenomenon provide the motivation for using the signs of estimated loadings to allocate355

environments into iClasses.356

Specifically, an as in Smith et al. 2021b, the REML estimates of the (ordered) loadings357

are mapped to categorical variables which reflect the signs of the estimates. Formally,358

for the tth factor loading, the variable St is defined and has only two possible values for359

environment j (j = 1 . . . p):360

Stj = sign(λ̂tj) =

{
“p” (positive) if λ̂tj > 0
“n” (negative) if λ̂tj < 0

(13)
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Figure 1. Factor analytic regression model for hypothetical example: fitted values for three varieties
(v1, v2 and v3) from model with three factors and nine environments. Fitted values (represented as
points) are plotted against estimated factor loadings for individual factors (panels (a), (b) and (c)).
The slopes of the regression lines are the empirical best linear unbiased predictions of factor scores for
each variety. The residual maximum likelihood estimates of the (rotated) loadings are shown along the
bottom axis and the associated environments are labelled along the top axis.
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iClasses are then formed from all possible combinations of the values (“p” or “n”) of the361

categorical variables St. Thus, for example, if the total number of additive and non-additive362

factors is k = 3, there is a maximum of 23 = 8 possible iClasses with the set of labels given363

by Ω = {ppp, ppn, pnp, pnn, npp, npn, nnp, nnn}. Not all of the iClasses may be present364

in the data. In the hypothetical example only four of the possible eight iClasses are present,365

namely ppp (comprising environment e4), ppn (environment e1), pnp (environments e2,366

e3 and e7) and pnn (environments e5, e6, e8 and e9). It is important to note that the367

ordering of the characters that form the labels corresponds to the order of importance368

(in terms of percentage variance accounted for) of the factors (across both additive and369

non-additive factors).370

Interaction classes: variety performance371

Overall variety performance measures for individual iClasses (iClassOP) can then be372

computed. The iClassOP for variety i in iClass ω (ω ∈ Ω) is given by373

β̄giω =
∑
j∈ω

β̃gij /nω (14)

where nω is the number of environments in iClass ω and the sum is taken over those374

environments. Using equation (12), the iClassOP in equation (14) can be expressed as375

β̄giω =
k∑

t=1
λ̄tω f̃it (15)

where λ̄tω =
∑

j∈ω λ̂tj/nω is the mean of the REML estimates of the loadings for factor t376

for all environments in iClass ω.377

The fact that β̃gij =
∑k

t=1 λ̂tj f̃it, means that the only random effects associated with the378

CVEs are the factor scores. This has important implications for the model-based reliability379

of β̃gij . In particular, for any given variety, this reliability is unaffected by the presence or380

absence of that variety in the environment. In fact, if k = 1, the model-based reliabilities381

of β̃gij for variety i are identical for all environments (j = 1 . . . p) in the MET dataset. This382

has flow-on implications for the reliabilities of iClassOP for any given variety since they383

are therefore unaffected by the number of environments (including zero) in which the384

variety is present in that iClass.385

Interaction classes: variety stability386

Smith et al. 2021b provided the framework for computing iClass overall performance but387

did not explicitly discuss the concept of stability of variety performance. Their interaction388

plot enables an investigation of variety stability across iClasses but this is limited to the389

small number of varieties that can be sensibly displayed on a single plot and is purely a390

graphical tool. An explicit measure that captures this stability is developed in this paper.391

The first step involves the choice of iClasses across which stability is to be investigated.392

This is determined by the breeder and may involve exclusion of iClasses that do not393

align with their specific selection criteria. The number of iClasses chosen for the stability394

measure will be denoted by c and the associated number of environments by p∗(≤ p).395

Stability is then investigated for variety i using a one-way analysis of variance (AOV) of396

the β̃gij values for those environments and with the “treatments” being the c iClasses. In397

the AOV table for variety i the “Between treatment (iClass)” degrees of freedom are c – 1398

and the sum of squares is given by399

SSBi =
c∑

ω=1
nω

(
β̄giω – β̄gi.

)2 =
c∑

ω=1
nω

 k∑
t=1

f̃it
(
λ̄tω – λ̄t.

)2

(16)

where β̄gi. =
∑c

ω=1
∑

j∈ω β̃gij /p∗, which is the grand mean of the CVEs, and λ̄t. =400 ∑c
ω=1

∑
j∈ω λ̂tj/p∗, which is the mean of all loadings for a factor. The between treatment401
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mean square, namely SSBi /(c – 1), then measures the variation in treatment means of β̃gij402

(which by definition are the iClassOP), around the grand mean of β̃gij . This provides403

a natural and meaningful measure of the stability of the variety’s performance across404

relevant iClasses. The “Within treatment (iClass)” degrees of freedom are p∗ – c and the405

sum of squares is given by406

SSWi =
c∑

ω=1

∑
j∈ω

(
β̃gij – β̄giω

)2
=

c∑
ω=1

∑
j∈ω

 k∑
t=1

f̃it
(
λ̂tj – λ̄tω

)2

(17)

The AOV variance ratio, namely [SSBi /(c – 1)]/[SSWi /(p
∗ – c)], measures the magnitude of407

variation in CVEs between environments in different iClasses relative to that between408

environments in the same iClass. As such, when considered collectively across varieties, the409

variance ratios provide an indication of the effectiveness of the grouping of environments410

encapsulated in iClass formation. To eliminate issues in summarising variance ratios411

with large differences in scale it is proposed to consider p–values obtained using the412

approximation of an F-distribution on c – 1 and p∗ – c degrees of freedom, since the413

p–values are bounded both above and below.414

In this paper the option of using only the first k∗ < k ordered factors to form iClasses415

is considered. Note that, irrespective of the number of factors used to define iClasses, all k416

factors are used to form β̃gij and thence iClassOP (equation (15)). The use of k∗ < k factors417

may be necessary when high order models have been fitted so that the use of all k factors to418

define iClasses may lead to poor membership, that is, small values of nω. It may also lead to419

pairs of iClasses in which differences in variety responses are not sufficiently large to be of420

importance to the breeder. In such cases, iClasses may be “merged” or more generally only421

the first few factors may be used to define the iClasses. Such decisions should be driven422

by the breeder. The individual variety AOV described above may aid in this decision,423

since the use of too few factors in defining iClasses may lead to a preponderance of large424

p–values, suggesting that variation in CVEs between environments within an iClass is too425

large compared with variation between environments in different iClasses.426

Results427

The analysis commenced with the use of a LMM in which both Ga and Ge were assumed428

to be diagonal matrices. This is analogous to analysing each environment separately and429

is often used as a base-line to establish appropriate models for the non-genetic effects and430

errors prior to fitting the more complex FA models. Within the base-line model, random431

effects for replicate blocks aligned with columns were fitted for all correlation blocks (see432

Supplementary Material, Section 2 for a definition), as were random effects for rows and433

columns. Random effects for replicate blocks aligned with rows within correlation blocks434

were fitted for 32 environments and random effects for correlation blocks were fitted for435

57 environments. The only fixed effects fitted were environment main effects. In terms436

of the spatial modelling of errors, separable (column by row) autoregressive models of437

order one (denoted AR1 x AR1) were used for all environments. The base-line model was438

also important for establishing the relative magnitude of the additive VE effects compared439

with non-additive. The percentage of estimated genetic variance explained by the additive440

effects for individual environments (see equation (19) in the Appendix), was substantial,441

with a median of 82%. This information is of use in the FA modelling process in the sense442

of indicating that the order of FA models will need to be higher for the additive VE effects443

compared with non-additive.444

The non-genetic and error models identified from the fit of the base-line model were445

carried through (and re-estimated) to the LMMs with FA forms for Ga and Ge. The446

models fitted comprised FA models of increasing order from one to four for the additive447

effects (so ka = 1 . . . 4) and an FA model of order one for the non-additive effects (so ke = 1).448

A summary of the model fits is provided in Table 2. This table includes all the FA models449

and the base-line model with diagonal forms for Ga and Ge (model M2). Model M1 was450

fitted in order to assess the impact of using information on genetic relatedness. This model451
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has a diagonal form for Ge but there is no Ga. The residual log-likelihoods in Table 2452

are expressed as deviations from this model. The benefits in using pedigree information453

are substantial, with an increase in residual log-likelihood of 4089 (for an additional 90454

variance parameters) for model M2 over M1. The addition of genetic covariances between455

environments is also clearly important, with an increase in residual log-likelihood of 4279456

for model M3 over M2 (for an additional 180 variance parameters). Amongst the FA457

models, the residual log-likelihoods increased as ka was increased, as did the total variance458

accounted for. Use of the Akaike Information Criteria (AIC) showed that of the models459

fitted, the final model provided the best fit. The AIC values decline from model M1 to460

M6 but the rate of decline slows dramatically as the higher models are considered so it461

is clear that continuing to fit higher order models will result in smaller gains in terms462

of goodness-of-fit. Care must be taken when using the AIC to determine the order of463

FA model as there is a tendency for AIC to keep favouring higher order models, the464

upper limit of which is the most general model, known as the unstructured (US) model.465

A key issue is that the driver for the choice of FA model in a MET context should be466

to maximise the reliability of variety predictions rather than the goodness-of-fit of the467

model. Kelly et al. 2007 showed in a series of simulations for datasets with 7 and 10468

environments that FA models of order one or two were generally the preferred model469

in terms of prediction reliability compared with the US model, even for a number of470

datasets where the underlying variance structure was generated from a US model. The471

inferior performance of the US model was associated with instability in variance parameter472

estimation, due mainly to the large number of variance parameters. The implication is that473

high order FA models that contain many variance parameters may be similarly affected.474

This is an unresolved issue but, given the complexity of the lentil dataset, a conservative475

position was taken to cease the model fitting process at model M6, with ka = 4 and ke = 1.476

This has been chosen as the basis for demonstrating the iClass methodology.477

The first additive factor contained estimated loadings that all had the same sign (a 90/0478

split of positive and negative values) so represents general yielding ability. The third and479

fourth additive factors and the single non-additive factor contained approximately equal480

mixtures of positive and negative values (splits of 38/52, 54/36 and 48/42 respectively) so481

are termed “bi-polar” and thence represent contrasts between environments. The second482

additive factor is of particular interest. The majority of estimated loadings had the same483

sign (a 9/81 split of positive and negative) so the negative loadings will add to the general484

yielding ability but the contrast of positive and negative was found to have an important485

biological explanation that was revealed using iClass interaction plots (see later).486

Table 2. Summary of model fits when factor analytic models of order ka and ke used for additive and
non-additive (independent) variety effects, respectively. Note that an order of zero means no factors
were fitted so corresponds to a diagonal variance structure; the missing order for ka means that additive
variety effects were not included in the model. The residual log-likelihoods and Akaike Information
Criteria are provided as differences from model M1. The number of genetic variance parameters are
given for each model. For all models with non-zero ka and ke, the final columns in the table show the
percentage of additive genetic variance accounted for by ka additive factors; percentage of non-additive
genetic variance accounted for by ke = 1 non-additive factor; percentage of total genetic variance
accounted for by all k = ka + ke factors.

Residual Genetic Genetic variance accounted for
Model ka ke loglik AIC parameters VAFa VAFe VAFt

M1 0 0 0 90
M2 0 0 4089 -7995 180
M3 1 1 8368 -16554 360 60.2 58.4 59.8
M4 2 1 9031 -17879 449 80.1 23.5 71.8
M5 3 1 9278 -18373 537 85.4 23.9 76.6
M6 4 1 9568 -18954 624 88.3 23.6 79.4

One of the aims of this analysis was the selection of L3 varieties tested in 2023 for487

ultimate commercial use. This requires consideration of the total of the additive and488

non-additive VE effects. Formation of iClasses for this purpose first requires ordering all489
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five factors fitted in the model on the basis of the percentage of total genetic variance they490

account for. Using equation (11) and a value of ā corresponding to the 125 L3 varieties, the491

percentage of total genetic variance accounted for by all five factors was 79.4%, with the492

individual additive factors contributing 45.4%, 20.7%, 6.1% and 3.9% and the non-additive493

factor contributing 3.3%. Thus, in this analysis, the ordering corresponded to additive494

factors one to four, followed by the single non-additive factor. The use of all five factors495

results in 13 iClasses, with labels and numbers of environments as given in the top half of496

Table 3. Also considered here is the use of only the four most important factors, which497

results in 8 iClasses as given in the bottom half of Table 3. The process of forming these498

iClasses is demonstrated in Table 4 which contains the rotated REML estimates of the499

loadings for the four additive factors and the REML estimates of the loadings for the single500

non-additive factor for a subset of 23 environments. The environments were chosen to501

cover all the iClasses formed using five factors, with two randomly chosen environments502

within each iClass (apart from the final three iClasses, each of which only contained one503

environment). This illustrates the patterns of the signs of the REML estimates of the504

loadings across factors which are used to define iClasses.505

Table 3. Number of environments in each interaction class for classes based on all 5 factors (top half
of table) and classes based on the first 4 factors in order of percentage variance accounted for (bottom
half of table).

pnnnn pnnnp pnnpn pnnpp pnpnn pnpnp pnppn pnppp ppnnn ppnpn pppnp ppppn ppppp

8 7 9 22 10 8 8 9 2 4 1 1 1
pnnn pnnp pnpn pnpp ppnn ppnp pppn pppp

15 31 18 17 2 4 1 2

Recall that the estimated loadings for the second additive factor showed an uneven split506

of 9 positive values against 81 negatives. The estimated loadings for the first two additive507

factors are plotted against each other in Figure 2 and the 9 environments with positive508

loadings in the second factor have been labelled. The majority of these correspond to509

environments in 2022 which was an exceptionally wet year with conditions potentially510

leading to high disease pressure. The breeder was concerned that there may have been511

outbreaks of Botrytis Grey Mould (BGM) in these environments. To investigate this, an512

iClass interaction plot was constructed for three probe varieties, namely one variety (PBA513

BOLT) that is known to be susceptible to BGM and two varieties (ALB TERRIER and514

PBA JUMBO2) that are tolerant. The resultant plot in Figure 3 clearly demonstrates515

the existence of high levels of BGM in the iClasses corresponding to positive estimated516

loadings in the second additive factor. Henceforth, these iClasses will be termed “BGM517

iClasses”. The yield losses for the susceptible probe variety for the BGM iClasses as shown518

in Figure 3 were extreme (up to 3 t/ha). It was therefore recognised that the associated519

trials had essentially become disease tolerance trials and the breeder requested to exclude520

these results for the purposes of selection for general yielding ability. There was no need521

to re-do the analysis, however, as this can all be accommodated using iClasses.522

It is instructive to summarise the estimated genetic correlations between environments523

on an iClass basis. Given that variety iClassOP is based on the common VE effects, the524

estimated covariance matrix which excludes the contributions from the specific variances525

is considered. This can then be converted to a correlation matrix. Figure 4 (a) contains526

a heatmap of these estimated correlations, summarised on the basis of interaction classes527

using five factors. The most obvious feature of this heatmap is the low genetic correlation528

between environments in BGM compared with non-BGM iClasses. The heatmap also529

shows there are strong correlations between all pairs of environments within an iClass.530

In contrast, the means of the pairwise estimated correlations involving environments in531

different iClasses are often quite low, indicating crossover interaction (even within the532

non-BGM iClasses). The analogous heatmap for iClasses based on the first four factors533

only is given in Figure 4 (b). One may be tempted to use these heatmaps to make the534

choice between using the first four or all five factors when forming iClasses. On this basis,535

it may appear that the use of interaction classes based on four factors might be reasonable,536
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Table 4. Summary of information used to define interaction classes for a subset of 23 environments:
rotated residual maximum likelihood estimates of loadings (×1000) for each factor, ordered on variance
accounted for (additive factors 1, 2 3 and 4, non-additive factor 1); interaction classes based on all five
factors and first four factors. The 23 environments cover all 13 interaction classes when five factors
used, with two randomly chosen environments within each class (apart from the final three classes,
each of which only contained one environment).

Environment add1 add2 add3 add4 non-add1 iClass5 iClass4
KADINA17 18 -62 -77 -2 -39 pnnnn pnnn
MALLALA20 53 -39 -15 -145 -45 pnnnn pnnn
CURYO19 102 -139 -38 -11 174 pnnnp pnnn
HORSHAM23 57 -147 -20 -217 73 pnnnp pnnn
CURYO17 55 -100 -18 177 -29 pnnpn pnnp
SNOWTOWN18 28 -54 -30 48 -65 pnnpn pnnp
KONDININ23 30 -43 -87 176 135 pnnpp pnnp
MR21 69 -39 -76 10 4 pnnpp pnnp
KADINA18 25 -69 16 -24 -108 pnpnn pnpn
ML21 50 -46 2 -58 -22 pnpnn pnpn
MG21 33 -75 10 -148 92 pnpnp pnpn
SEALAKE23 33 -91 178 -5 122 pnpnp pnpn
CD22 50 -66 135 72 -83 pnppn pnpp
LM21 15 -42 55 32 -105 pnppn pnpp
AR22 225 -155 291 171 192 pnppp pnpp
GRASS PATCH18 30 -88 223 107 251 pnppp pnpp
ML22 268 208 -67 -175 -24 ppnnn ppnn
SN22 162 76 -56 -391 -44 ppnnn ppnn
BE22 292 183 -144 44 -18 ppnpn ppnp
SCADDAN19 15 10 -15 47 -92 ppnpn ppnp
HO22 274 94 49 -134 94 pppnp pppn
MH22 335 367 196 54 -210 ppppn pppp
CM22 113 53 20 125 90 ppppp pppp

with the mean within iClass correlations ranging from 0.72 up to 0.82 (compared with537

0.78 up to 0.88 using interaction classes based on five factors). However, it is important to538

recognise that genetic correlations as a measure of VEI are based on all the varieties in539

the data-set so may not be sufficiently specific for the varieties under consideration for540

selection. This issue is discussed further later.541

In terms of variety selection it is instructive to first consider the variety scores since542

these reflect their responses to the environmental covariates implied by the factor loadings.543

The aim in this section is selection amongst the 125 L3 varieties grown in 2023. Figure 5544

plots the EBLUPs of the scores for the first additive factor against the remaining factors545

for these varieties. The varieties labelled on this figure correspond to six test lines (Test1546

to Test6) and five commercial lines originating from this breeding program. Of the latter,547

ALB TERRIER is the most recent variety. Each of the commercial varieties appeared in at548

least 75 environments in the data-set and in every year. The other labelled variety (ExtChk)549

is an important new commercial variety originating outside this breeding program and550

whose parentage was unavailable for the purposes of this analysis. It was only grown551

in 14 environments in this data-set, all of which were in 2023. Given the nature of the552

environment loadings for the first two additive factors (as previously discussed) it is clear553

that varieties with large positive scores for the first factor and large negative scores for the554

second factor will likely yield well across a range of non-BGM environments. Therefore555

the majority of labelled test lines and the newer commercial variety look superior to the556

older commercial varieties. Test3 and Test4 look particularly promising and Test1 may557

also be but via a different mechanism. The large response of ExtChk to the last factor (the558

non-additive factor) is noteworthy and will be discussed later. Similarly, the behaviour of559

the two varieties ALB TERRIER and PBA HURRICANE XT (coloured red on the plots)560
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Figure 2. Rotated residual maximum likelihood estimates of loadings for first and second additive
factors. Environments with positive estimated loadings in the second factor have been labelled.

will be explored later.561

Whilst the score plots are extremely helpful in flagging varieties that have large562

responses to the factors, for the purposes of selection the totality of all these responses is563

required. Therefore the first step is to use the variety stability measure introduced in the564

Statistical Methods section. This is calculated for iClasses defined using all five factors and565

also using the first four only. It was of interest to examine stability for the non-BGM566

iClasses only, so the AOVs had either 8 levels for the treatment factor (when interaction567

classes based on five factors used) or 4 levels (when interaction classes based on four factors568

used). Figure 6 contains plots of the key information from the AOVs for each variety,569

namely the grand mean of the CVEs for non-BGM environments (on the y-axis), the570

square root of the between iClass mean square (on the x-axis) and the p-value for the571

ratio of the between to within iClass mean square (colour of the points). It is important to572

recognise that, because the CVEs are effects (not means), they are on the scale of the trait573

being analysed (here t/ha) but can be positive or negative. Thus, for example, a variety574

with a near zero CVE for an environment has an “average” yield in that environment,575

whilst a variety with a large positive/negative CVE has above/below average yields for576

the environment. An analogous interpretation therefore follows through for both the577

grand means and iClassOP, each of which involve a simple arithmetic averaging across578

environments. Figure 6 only includes L3 varieties, which one would expect to have above579

average yields relative to the entire population of varieties included in the MET. Thus all580

of the grand means are positive.581

A clear distinction between the two panels in Figure 6 is that when iClasses are defined582

using only the first four factors, many of the p-values are greater than 0.05 so that the583

within iClass mean square is arguably too large compared with the between iClass mean584

square. When all five factors are used, the majority (88) of p-values are less than 0.001.585

A full cross-tabulation of the p-values for iClasses defined using four or five factors is586

provided in Table 5. On the basis of this information it was decided to use iClasses based587

on all five factors to make selection decisions for the 125 L3 varieties. Note that, for other588
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Figure 3. Plot of interaction class overall performance (t/ha) for three varieties that are probes for
presence of the disease Botrytis Grey Mould. The variety PBA BOLT is a susceptile variety whereas
ALB TERRIER and PBA JUMBO2 are tolerant varieties. The number of environments in each iClass
and their associated mean yield (t/ha) is given along the top axis. The dashed horizontal lines are the
grand means of the common variety by environment effects across all environments for these varieties.
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Figure 4. Estimated genetic correlations for total common variety by environment effects for all pairs of
environments summarised on an interaction class basis for (a) classes based on all five factors and (b)
classes based on first four factors. The value listed in each cell is the mean of all pairwise estimated
correlations between environments in the interaction class. The interaction class labels include the
associated numbers of environments in parentheses. The colour scale corresponds to the mean values.

decisions, for example for the L0, L1 or L2 varieties, the associated stability plots may589

reveal a different story and it may be reasonable to use iClasses based on the first four590

factors alone. Clearly this would simplify selection as it is then only necessary to examine591

four rather than eight iClasses. The key message is that it is not necessary to use the592

same sets of iClasses for all selection decisions. The stability plot in Figure 6 (a) shows593

that most of the test lines are less stable than the commercial varieties. This is consistent594

with the change in the aims of the breeding program which have moved away from595

breeding for broad adaptation to targeting specific environmental types. Also note that the596

grand means on the y-axis in the stability plot provide a naive measure of overall variety597

performance (in t/ha) across all environments considered (in this case the 81 non-BGM598

environments). Figure 6 (a) shows that many of the test lines have higher grand means599

than the commercial varieties. However, it is not intended that these grand means be600

used as a trait for selection, as they ignore VEI, but rather to assist in choosing varieties to601

investigate thoroughly using interaction plots.602

Table 5. Stability across interaction classes (excluding those linked to the disease Botrytis Grey Mould)
for the 125 L3 varieties grown in 2023: p-values of variance ratios (ratio of between to within interaction
class mean square) from analyses of variance tabulated for interaction classes defined using first four
factors and all five factors.

iClasses iClasses using 4 factors
using 5 factors <.001 .001-.01 .01-.05 .05-.5 >.5 total
<.001 4 7 10 67 0 88
.001-.01 0 2 2 25 0 29
.01-.05 0 0 0 6 0 6
.05-.5 0 0 0 2 0 2
>.5 0 0 0 0 0 0
total 4 9 12 100 0 125
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Figure 5. Empirical best linear unbiased predictions of additive factor scores for the 125 L3 varieties
grown in 2023. Varieties of interest have been labelled with their names and two key varieties have
been plotted in red. In each panel the y-axis corresponds to the first factor and the x-axis to the second,
third and fourth additive factors for (a), (b) and (c) and the non-additive factor for (d).
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Figure 6. Stability across interaction classes (excluding those linked to the disease Botrytis Grey Mould)
for the 125 L3 varieties grown in 2023: interaction classes defined using (a) all five factors and (b) first
four factors. The y-axis in each plot is the grand mean of the common variety by environment effects
(for each variety) across environments and the x-axis is the square root of the between interaction class
mean square from the one-way analysis of variance on those effects. Points are coloured according to
the p-value for the variance ratio from the analysis of variance. Varieties of interest have been labelled
with their names.
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Both iClassOP and stability can be visually assessed in the interaction plots introduced603

in Smith et al. 2021b which display iClassOP for a chosen set of varieties across iClasses.604

Two such plots are given in Figure 7. As previously discussed, iClassOP for a variety can be605

positive or negative. All the values in Figure 7 are positive, indicating above average yields606

for these varieties in all iClasses. As an aid to interpretation, the mean of the environment607

mean yields for each iClass is given on the top axis in the interaction plots. Thus absolute608

yields for a variety within an iClass (within this MET) can be approximated be adding609

these means to iClassOP.610

Figure 7 (a) contains three test lines that had high grand means and varying levels of611

stability (as depicted in Figure 6 (a)). The second panel contains the commercial variety612

PBA HURRICANE XT, which was released by the Agriculture Victoria lentil breeding613

program in 2014, and the new external commercial variety which was released in 2023.614

To link the two panels, the commercial variety ALB TERRIER (released in 2024 by the615

Agriculture Victoria lentil breeding program) is included on both. Figure 7 (a) shows616

that Test1 and Test3 out-yield ALB TERRIER in all iClasses. Test3 yields particularly617

well, with an advantage of more than 0.2t/ha in three iClasses (pnnnp, pnnpp and pnppp).618

As expected from the stability plot, Test2 is quite unstable, ranking near the bottom of619

the four varieties in most iClasses, but ranking first or second in three iClasses (pnpnp,620

pnppp and pnnnp). Figure 7 (b) shows that whilst the two varieties ExtChk and PBA621

HURRICANE XT had similar grand means, they exhibit substantial cross-over VEI,622

with ExtChk “winning” in all the iClasses with a “p” as the final character, and PBA623

HURRICANE XT winning elsewhere. A more subtle, but equally important feature of624

Figure 7 (b) is the comparison of ALB TERRIER and PBA HURRICANE XT. To aid625

in interpretation, the actual iClassOP values for these varieties are provided in Table 6,626

together with the differences. Also given are the factor scores. Recall that the factors,627

when ordered as in this table, have decreasing variance accounted for so have decreasing628

influence on CVEs and thence iClassOP. All iClasses under consideration have the same629

first two characters, “pn” so that varieties with large positive scores for the first additive630

factor and, to a lesser extent, large negative scores for the second factor, will yield well631

across most iClasses. Thus it would be expected that ALB TERRIER, with a much higher632

score than PBA HURRICANE XT for the first factor would have superior performance633

across most iClasses. This is borne out on Figure 7 (b), but it is clear that the magnitude634

of the superiority of ALB TERRIER changes dramatically across iClasses, with essentially635

no difference between the two varieties in the two iClasses on the far right of the graph.636

This is due mainly to the differences in scores for additive factors three and four, and to a637

lesser extent the non-additive factor (also see Figure 5 in which PBA HURRICANE XT638

appears to the right of ALB TERRIER on panels (b), (c) and (d)). The differences in Table639

6 and the score plots reveal that PBA HURRICANE XT would be boosted relative to640

ALB TERRIER for iClasses with a “p” as the third character, and even more so for iClasses641

with a “p” as third and fourth (and finally fifth) character. Thus moving from left to right642

on Figure 7 (b), the factor scores suggest it would be expected for ALB TERRIER to643

out-yield PBA HURRICANE XT by a substantial amount in iClasses pnnnn and pnnnp,644

to a lesser extent in iClasses pnnpn and pnnpp and also pnpnn and pnpnp. Finally, in645

pnppn and pnppp, PBA HURRICANE XT has “caught up”. This example clearly shows646

how iClassOP encapsulates and combines all of the information in the factor scores.647

Discussion648

Smith et al. 2021b addressed the key issue of variety selection in the presence of variety649

by environment interaction (VEI) within the framework of a factor analytic linear mixed650

model (FALMM). They developed their “iClass” methodology for models in which the651

genetic effects for different varieties were assumed independent. In the current paper this652

has been extended for models that incorporate information on the genetic relatedness of653

varieties. Thus the variety effects in different environments are partitioned into additive654

and non-additive, with a separate FA model for each set of effects. This class of models655

is recommended, and widely used in Australia, for annual selection decisions by plant656

breeding programs. In the example presented in this paper, genetic relatedness was included657
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Figure 7. Plots of interaction class overall performance (t/ha) (excluding classes linked to the disease
Botrytis Grey Mould) for (a) four varieties comprising ALB TERRIER and three test lines and (b) three
varieties comprising ALB TERRIER and two other commercial varieties. The number of environments
in each interaction class and their associated mean yield (t/ha) is given along the top axis. The dashed
horizontal lines are the grand means of the common variety by environment effects for these varieties.
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Table 6. Interaction class overall performance (t/ha) and factor scores for ALB TERRIER and PBA
HURRICANE XT. Also given are the difference between the two varieties (ALB TERRIER - PBA
HURRICANE XT for interaction class overall performance and the reverse order for factor scores.)

iClassOP (t/ha)
pnnnn pnnnp pnnpn pnnpp pnpnn pnpnp pnppn pnppp

ALB TERRIER 0.48 0.85 0.50 0.43 0.41 0.51 0.29 0.69
PBA HURRICANE XT 0.24 0.52 0.34 0.32 0.27 0.44 0.29 0.68

TERRIER - HURRICANE 0.24 0.34 0.16 0.10 0.14 0.08 <0.01 0.01
Factor scores non-

add1 add2 add3 add4 add1
ALB TERRIER 7.11 -1.39 -0.46 0.02 -0.53

PBA HURRICANE XT 3.53 -2.02 0.50 0.74 0.10
HURRICANE - TERRIER -3.58 -0.64 0.96 0.72 0.62

in the LMM via pedigree information. The resultant improvement in the goodness of fit of658

the model, as assessed via the residual log-likelihood, was undeniably substantial. Similar,659

or possibly greater gains, may result with the use of genomic information. Either way,660

the key message is the importance of using genetic relatedness to improve the accuracy of661

variety selection. An associated issue is that when an appropriate MET data-set is used for662

analysis (see later), the resultant incompleteness in terms of varieties being grown in the663

trials, necessitates the use of genetic relatedness to provide links between environments.664

As in Smith et al. 2021b it is stressed here that although the iClass approach involves665

the formation of groups of environments for the purpose of obtaining average (or overall)666

variety effects, it is not a clustering of environments based on genetic correlations. Given667

that genetic correlations reflect relationships between environments based on all varieties,668

it is not uncommon for a clustering on this basis to mask individual variety patterns of VEI.669

Instead of focussing on the environments, the iClass approach focusses attention on the670

actual subject of the selection decisions, namely the varieties. Specifically, the iClasses are671

formed in such a way that they discriminate varieties with different patterns of VEI. This672

is achieved using the fact that when a factor is bi-polar, there is cross-over interaction673

of varieties (for the fitted values for that factor) between the environments with positive674

estimated loadings compared with negative. Hence the formation of iClasses using a675

concatenation across factors of the signs of the estimated loadings for each environment.676

An issue that is often raised is whether iClasses can be ascribed a meaningful interpre-677

tation. Clearly the labelling protocol is designed to illustrate the contrasting groups of678

environments (positive versus negative estimated loadings) for each factor used in forming679

the iClasses. In the authors’ experience, breeders have often been able to link iClasses to680

key environmental variables such as disease prevalence and growing conditions. Current681

work focusses on a formal statistical approach to achieve this, with the ultimate aim of682

being able to assign a meaningful environmental label to each iClass. In the interim, the683

complementary approach based on probe genotypes (see Cooper and Fox 1996, for exam-684

ple) has been used successfully for iClass interpretation. This approach can be regarded685

as a bioassay in which varieties with known reactions to environmental factors are used686

to characterise the environments in a MET. A key example in the current paper was the687

use of probe varieties to detect the existence of the disease BGM. Three varieties (one688

susceptible and two tolerant) were visualised in an iClass interaction plot, and this led to689

the conclusion that iClasses with a “p” as the second character in their label comprised690

environments with high levels of BGM. These iClasses were therefore termed “BGM691

iClasses” and the breeder consequently requested to exclude them when making selection692

decisions for grain yield as they provided more of an assessment of tolerance rather than693

general yielding ability.694

As alluded to above, another key requirement for variety selection is the use of a695

suitable MET data-set. As discussed in Smith et al. 2021a the data-set should include696

all trials that provide data on the selection history for the varieties under consideration697

for selection. This typically leads to incomplete (not all varieties in all trials) data-sets698
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with large numbers of environments that span multiple years and stages of selection.699

In the example presented in this paper, the MET data-set comprised 90 environments700

and spanned 7 years. The analysis of these data, as conducted in this paper, would have701

facilitated selection for four stages of selection (L0, L1, L2 and L3) for varieties grown702

in 2023. In the current paper, for reasons of brevity and clarity, only the L3 selection703

decisions were fully explored. The key point here is that it is unsatisfactory to “slice and704

dice” data-sets to achieve, for example, a complete data-set, or to reduce the size in order705

to avoid computational difficulties associated with statistical software. The latter may706

include both memory or time limitations. Linked to this issue is the preponderance in the707

literature of two- (or three-) stage analyses for MET data. It has long been established708

that the one-stage analysis, as presented in this paper, is superior, irrespective of any709

weighting scheme that may be proposed (Gogel 1997; Gogel, Smith, and Cullis 2018).710

Two-stage approaches were historically necessary when individual plot data was not stored711

electronically and when statistical software and/or computer hardware was inadequate.712

As in Smith et al. 2021b, the approach in this paper forms groups of environments,713

called iClasses, on the basis of which meaningful summaries of variety performance for714

the trait of interest (assumed here to be yield) can be obtained. In Smith et al. 2021b the715

summary measure provided was overall yield level (iClassOP) for each variety in each716

iClass. The iClass interaction plot was introduced as a means of displaying this information,717

thence allowing a comparison of varieties in terms of their performance across iClasses. In718

the current paper, a measure of stability of variety performance across iClasses has been719

proposed. This quantifies the fluctuations in iClassOP as visualised on the interaction720

plot. Stability was shown to be useful in its own right as a means for choosing varieties721

of interest to explore in detail using an interaction plot. Additionally it was helpful for722

assessing the appropriateness of using only a subset of the fitted factors (the most important723

factors) to define iClasses. This was found to be particularly important for the motivating724

example.725

Conclusion726

Variety selection in a plant breeding program requires three key statistical inputs, namely727

• a MET data-set that comprises the entire selection history (or as much as possible) of728

the current cohort of varieties729

• a one-stage statistical analysis that accommodates incomplete data, includes information730

on genetic relatedness and encapsulates complex patterns of VEI731

• meaningful summaries of variety predictions from the analysis732

The current paper addresses the final component within the framework of data-sets and733

a method of analysis (the FALMM) that satisfy the first two components. The summaries734

relate to groups of environments called iClasses, the definitions of which are derived from735

the core parameters in the FALMM, namely the factor loadings for environments. The736

summaries of variety performance across iClasses provide growers and stake-holders not737

only with information about “what wins where”, but also about the actual yield advantage738

(in t/ha, for example) of the winners. This can have significant impact on the economics739

of variety choice.740
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Appendix: Percentage variances associated with total VE effects836

It is often of interest to compute various quantities as percentages of total (additive plus non-837

additive) genetic variance. For example, the additive genetic variance for an environment838

as a percentage of total genetic variance for the environment and the variance accounted839

for by individual terms in the factor analytic models as a percentage of the total genetic840

variance.841

In order to compute these percentages it is instructive to consider the variance structure842

for individual varieties so first define ug(i) = (ugi1 , ugi2 , . . . , ugip )⊤ to be the p × 1 vector of843

total VE effects for variety i. Then note that844

var
(
ug(i)

)
= aiiGa + Ge (18)

where aii is the ith diagonal element of the relationship matrix (either NRM or GRM).845

Equation (18) shows that expressions of quantities as a percentage of total genetic variance846

will differ depending on aii so that specific values of interest must be chosen. Often, the847

mean of the diagonal elements of the relationship matrix is used, and this will be denoted848
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by ā. Then, for example, the percentage of additive variance for environment j can be849

computed as850

100 ×
āgajj

āgajj + gejj
(19)

where gajj and gejj are the jth diagonal elements of Ga and Ge respectively. Note that as851

an alternative to using an overall ā value, a separate value for each environment could852

be used. Thus ā in equation (19) could be replaced by āj, where this is the mean of the853

diagonal elements of the relationship matrix corresponding to those varieties grown in854

environment j.855


