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SM-1 Full regression tables and summary statistics

(1) (2) (3) (4) (5) (6) (7) (8)
TradeParis 1.01** 0.89*

(0.31) (0.36)
TradeEITEParis 0.72** 0.74**

(0.18) (0.22)
TradeCompetitionParis 0.82* 0.85*

(0.36) (0.37)
TradeCompetition, EITEParis 0.67** 0.67**

(0.22) (0.24)
Trade openness 2.39 0.74 6.74 0.98

(9.92) (9.60) (9.52) (9.88)
Industry −0.62 −0.65 −0.67 −0.81

(0.71) (0.69) (0.71) (0.70)
Renewable electricity 0.78 −0.10 2.22+ 1.60

(1.20) (1.24) (1.12) (1.11)
Fossil rents 3.72 −2.11 5.07 2.27

(8.86) (8.93) (8.87) (8.83)
Paris target 0.71** 0.70** 0.66** 0.65** 0.77** 0.72** 0.74** 0.70**

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
(Intercept) 9.58 6.05 13.46* 27.92 24.16+ −5.08 18.17* 21.65

(5.82) (48.23) (6.01) (47.89) (12.40) (47.03) (7.99) (49.32)
Controls No Yes No Yes No Yes No Yes
Observations 112 112 112 112 112 112 112 112
𝑅2 0.50 0.51 0.52 0.53 0.48 0.51 0.50 0.52

Table SM-1: Full regression results from models in table 1. Outcome variable is emissions change in 2021
NDC as a percentage of 2010 emissions levels, re-scaled so that positive values are emissions cuts. OLS
regression models with standard errors in parentheses. + p < 0.1, * p < 0.05, ** p < 0.01
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(1) (2) (3) (4) (5) (6) (7)
IOsParis 4.27** 4.25** 3.26* 3.34* 2.40 3.85** 3.41**

(1.11) (1.39) (1.49) (1.66) (1.58) (1.15) (1.22)
TradeParis 0.41 0.43

(0.41) (0.43)
TradeEITEParis 0.43

(0.26)
TradeCompetitionParis 0.48

(0.36)
TradeCompetition, EITEParis 0.39

(0.24)
Trade exposure 0.51 −1.30

(9.78) (9.94)
Industry −0.56 −0.55

(0.70) (0.70)
Renewable electricity 0.06 −0.08

(1.25) (1.26)
Fossil rents 5.54 4.72

(8.71) (8.75)
Paris target 0.70** 0.70** 0.69** 0.69** 0.66** 0.70** 0.69**

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
(Intercept) 127.68** 135.59+ 101.77* 121.79 79.99+ 130.13** 113.06**

(33.93) (73.27) (42.46) (74.55) (44.26) (33.86) (34.84)
Controls No Yes No Yes No No No
Observations 112 112 112 112 112 112 112
𝑅2 0.52 0.52 0.53 0.53 0.53 0.53 0.53

Table SM-2: Full regression results from models in table 2. Outcome variable is emissions change in 2021
NDC as a percentage of 2010 emissions levels, re-scaled so that positive values are emissions cuts. OLS
regression models with standard errors in parentheses. + p < 0.1, * p < 0.05, ** p < 0.01
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Variable N Mean Std. Dev. Min. Median Max

Glasgow target 112 -11.7 69.1 -213.2 16.3 53.6
Paris target 112 -13.3 59.7 -162.2 3.5 59.9

IOsParis 112 -30.5 4.3 -35.8 -31.8 -23.6
TradeParis 112 -11.7 15.6 -47.0 -10.9 11.5
TradeEITEParis 112 -22.8 26.8 -72.6 -22.9 16.8
TradeCompetitionParis 112 -31.5 13.1 -55.8 -31.5 -9.0
TradeCompetition, EITEParis 112 -30.0 21.7 -71.6 -25.6 0.8

Table SM-3: Summary statistics for observations in the main models (no missing target data)

Glasgow Paris IOParis TradeParis TradeEITEParis

Glasgow target 1.000 0.675 0.421 0.390 0.495
Paris target 0.675 1.000 0.259 0.264 0.378
IOParis 0.421 0.259 1.000 0.688 0.738
TradeParis 0.390 0.264 0.688 1.000 0.844
TradeEITEParis 0.495 0.378 0.738 0.844 1.000

Table SM-4: Correlation matrix
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SM-2 Measurement

SM-2.1 Climate targets

M1 Some countries did not submit NDCs with mitigation targets, leading them to have missing
values in the dataset. Since these targets are unlikely to be missing at random, in table SM-5,
I multiply impute these missing values and re-estimate the relationship. I find the same
results.

M2 Since some countries did not submit NDCs with mitigation targets, this means that their
values as trade partners in constructing the spatial weights are also missing. In the main
results presented in text, I use the imputed values to generate the spatial weights (see previous
item). I now use only the observed (non-imputed) values to generate the spatial weights,
where missing trade partners’ values stay missing and contribute nothing to measuring peers’
trade-weight climate policy. I re-estimate the models and find the same effects as before.

M3, M4 Some countries set very weak mitigation targets in their NDCs, which would allow emissions
to rise 5 or more times by 2030 and still be in compliance with their targets. These outlying
values can have high leverage on the coefficients, so I winsorize targets at the 5th and 95th
percentiles in the main models. Now, I consider the stability of the coefficients by dropping
observations. First, I removed three observations based on their extreme values of their Paris
target (Paraguay) or their Glasgow target (Cote d’Ivoire, Gambia); in re-running the models,
I find the same result (M3). Second, I drop 7 countries based on their Cook’s distance (the
prior three, plus Cambodia, Mali, Niger, and Pakistan); in re-running the models, I find the
same result, which suggests that outlying observations are not driving the results (M4).

M5 Countries choose to index their mitigation targets to measures of GHG emissions including
land-use, land-use change, and forestry (LULUCF) or excluding these emissions. LULUCF
emissions can be highly idiosyncratic year-on-year, as they can be influenced by deforestation
shocks, such as wildfires and land clearing. Countries often prefer to use LULUCF accounting
because forestry can act as a carbon sink and provide low-cost carbon dioxide removals that
aid national inventories. But they are also more difficult to measure than emissions from
other sources, such as electricity generation or transportation, and therefore many analyses
exclude them. As a robustness test, I swap all countries’ mitigation targets to be based on
measures that exclude LULUCF emissions; in re-running the models, I find the same result.
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(1) (2) (3) (4) (5)

IOsParis 5.67** 2.57* 2.09* 3.17**
(1.25) (1.21) (1.01) (1.11)

TradeParis 0.06 0.17 0.13 0.01
(0.30) (0.33) (0.28) (0.30)

IOsParis (don’t impute partner’s target) 7.99**
(2.42)

TradeParis (don’t impute partner’s target) 0.24
(0.54)

Paris target 0.72** 0.81** 0.76**
(0.08) (0.07) (0.06)

Paris target (impute) 0.58**
(0.06)

Paris target (emissions excluding LULUCF) 0.81**
(0.06)

(Intercept) 151.69** 99.48** 81.64* 70.13* 99.07**
(36.88) (31.91) (34.46) (28.77) (31.60)

Observations 192 112 109 105 106
𝑅2 0.45 0.53 0.66 0.67 0.77

Table SM-5: Regressions with different measurement considerations. Outcome variable is emissions
change in 2021 NDC as a percentage of 2010 emissions levels, re-scaled so that positive values are emissions
cuts. OLS regression models with standard errors in parentheses. + p < 0.1, * p < 0.05, ** p < 0.01
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SM-2.2 Climate laws

One consideration with measuring the strength of peers’ climate policy by their Paris mitigation

targets is that, while the targets provide an indication of countries’ directions and paces on mitigation,

targets may be disconnected from enacted policies. As a robustness test, I rebuild the spatial weights

swapping measures of climate targets for the number of climate laws a country has passed, using

the Grantham Institute’s climate laws database. I use two measures: (1) a straight count of national

climate laws, and (2) a count of national climate laws passed between 2016 and 2019. In moving

from targets to laws, some comparability across countries is lost. While targets can be standardized

across countries, the impact of individual laws is more varied. Some laws enact economy-wide

mitigation requirements, but others are more targeted on individual sectors. As such, laws provide

a proxy for policymaking effort, but remain several steps removed from the underlying concept.

In table SM-6, I show six models using these different measures of peers’ climate policy. I find

that IO-weighted measures remain positive and statistically significant. Trade-weighted measures

are not statistically significant.
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(1) (2) (3) (4) (5) (6)

TradeLaws (count) 3.63+ −0.12
(1.93) (2.25)

TradeLaws (post-Paris) 5.14 −0.88
(4.41) (4.49)

IOLaws (count) 25.95** 26.22**
(7.25) (8.80)

IOLaws (post-Paris) 72.83** 74.28**
(18.78) (20.26)

Paris target 0.76** 0.77** 0.70** 0.69** 0.70** 0.69**
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

(Intercept) −62.63+ −28.98 −284.81** −243.29** −285.67** −243.37**
(32.89) (24.27) (79.39) (62.55) (81.34) (62.83)

Observations 112 112 112 112 112 112
𝑅2 0.47 0.46 0.51 0.52 0.51 0.52

Table SM-6: Regressions with climate laws as measure of peers’ climate policy. Outcome variable is
emissions change in 2021 NDC as a percentage of 2010 emissions levels, re-scaled so that positive values
are emissions cuts. OLS regression models with standard errors in parentheses. + p < 0.1, * p < 0.05, ** p
< 0.01
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SM-2.3 Spatial matrices

Trade flows. The models in the main text use row-standardized spatial matrices for dyadic trade

ties and joint IO memberships. Concretely, the row-standardized measure divides the value of

dyadic trade by a country’s total trade: (𝐼𝑚𝑝𝑜𝑟𝑡𝑠𝑖← 𝑗 +𝐸𝑥𝑝𝑜𝑟𝑡𝑠𝑖→ 𝑗 )/(𝐼𝑚𝑝𝑜𝑟𝑡𝑠𝑖 +𝐸𝑥𝑝𝑜𝑟𝑡𝑠𝑖). This

means that a country’s trade to each of its partners is converted to a share of that country’s total

trade, and each country’s total trade shares add to 1. This also implies that each country is equally

exposed to international trade, since all countries’ total trade exposures are the same. However, we

know that countries are differentially integrated into global trade, with some countries trading high

volumes and others trading lower volumes relative to the size of their economy. When governments

set climate targets, if they take into account their trade partners’ climate targets and they respond

differently when they are more integrated into the global economy, then the row-standardized spatial

matrix will misrepresent the data generating process.

I now investigate an alternative construction of the spatial weight for trade, where trade ties

are normalized by dividing dyadic trade by a country’s economic size rather than standardizing

across countries as dyadic trade shares. Concretely, cells of the connectivity matrix are GDP-

normalized by taking dyadic trade and dividing dyadic imports and exports by GDP: (𝐼𝑚𝑝𝑜𝑟𝑡𝑠𝑖← 𝑗 +
𝐸𝑥𝑝𝑜𝑟𝑡𝑠𝑖→ 𝑗 )/𝐺𝐷𝑃𝑖. With this measure, countries that trade large volumes relative to the size of

their economy are more exposed to international trade and receive a larger spatial stimulus from their

trade partners’ climate targets. The Pearson correlation coefficient between the row-standardized

and the GDP-normalized spatial weight for countries in the analysis is 𝑟 = 0.84. I also multiply

the GDP-normalized spatial weight by 1000 to bring it onto a similar scale as the row-standardized

measure. I construct an analogous measure for EITE trade only.

In table SM-7, models 1 and 2 reproduce the results from the main text (table 1, models 1

and 2), which use a row-standardized spatial matrix for trade ties. In models 3 and 4, I use the

GDP-normalized spatial matrix instead, and I recover the same positive and statistically significant

coefficient. Models 5 and 6 find the same results with EITE trade. An interaction model can

help adjudicate which of the row-standardized or GDP-normalized measures better characterizes

climate target-setting. Interacting the row-standardized spatial weight with trade openness allows

the effect of trade partners’ climate targets to vary based on a country’s level of trade openness
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because trade openness sums national imports and exports as a share of GDP. This is analogous

to the GDP-normalized measure, but explicitly models whether the effect of trade partners’ targets

depends on levels of trade openness. In models 7 and 8, I interact the row-standardized spatial

weight with a country’s log-transformed trade openness, which was a control variable in model 2.

I find that the coefficient on the interaction term is not statistically significant and the main effects

are also no longer significant. That the interaction is not significant suggests that the effects of

trade partners’ climate targets does not differ by levels of trade openness. This lends support for

relying on the row-standardized measure, where all states receive equivalent impulses from their

trade partners, regardless of their levels of trade.

Figure SM-1 examines common support between trade openness and the row-standardized

spatial weight for trade and finds common support across terciles of trade openness, with the

exception of low trade openness and high values of the spatial weight. In the right panel, I show

the fitted values and 95% confidence intervals across the range of the spatial weight for trade for a

relatively closed country (where trade is roughly 54% of GDP; the 25th percentile of trade openness)

and a relatively open country (where trade is roughly 103% of GDP; the 75th percentile). Here,

there is no difference in the effect of the spatial weight at low and high values of trade openness.
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(1) (2) (3) (4) (5) (6) (7) (8)

TradeParis (row-standardized) 1.01** 0.89* 4.94+ 5.12+
(0.31) (0.36) (2.81) (2.85)

TradeParis (normalized by GDP) 1.16** 1.06**
(0.33) (0.37)

TradeEITEParis (normalized by GDP) 6.32** 5.61*
(2.06) (2.29)

TradeParis (row-standardized):Trade openness −0.90 −0.96
(0.64) (0.65)

Trade openness 2.39 9.16 8.52 −9.17 −8.95
(9.92) (9.25) (9.37) (12.12) (12.44)

Paris target 0.71** 0.70** 0.73** 0.71** 0.71** 0.69** 0.72** 0.71**
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

(Intercept) 9.58 6.05 7.49 −24.11 5.93 −22.78 52.39 60.20
(5.82) (48.23) (5.35) (43.58) (5.33) (44.38) (55.54) (60.10)

Controls No Yes No Yes No Yes No Yes
Observations 112 112 112 112 112 112 112 112
𝑅2 0.50 0.51 0.51 0.52 0.50 0.51 0.51 0.52

Table SM-7: Regressions with dyadic trade flows normalized by GDP levels. Outcome variable is emissions
change in 2021 NDC as a percentage of 2010 emissions levels, re-scaled so that positive values are emissions
cuts. OLS regression models with standard errors in parentheses. + p < 0.1, * p < 0.05, ** p < 0.01
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Figure SM-1: Multiplicative interaction model for row-standardized spatial weight for trade and trade
openness (trade as a share of GDP). The left panel investigates common support for the spatial weight across
terciles of trade openness. The right panel shows fitted values from M7.
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IO memberships. The same consideration could arise with the spatial matrix for joint IO mem-

berships, which is row-standardized in the main text. I now create a non–row-standardized matrix

of joint IO ties and use this to re-create the IO-weighted measure of peers’ climate targets. With

this measure, states receive a larger spatial stimulus when they have more total IO memberships.

The Pearson correlation coefficient between the row-standardized and the non–row-standardized

spatial weight for countries in the analysis is only 𝑟 = 0.22. I also divide the spatial weight by 1000

to place it on a similar scale as the prior measure.

Table SM-2 begins by reproducing the baseline models from table 2. Then in models 3 and

4, I use the non–row-standardized measure of IO ties. The coefficient on IO ties is not statistically

significant in either model. I investigate this further by interacting the row-standardized spatial

weight and the count of IO memberships in models 5 and 6. Once again, this allows the effect of

IO-weighted peers’ climate targets to vary at different levels of countries’ total IO membership. We

see a positive main effect for the spatial weight and a negative interaction effect in both models.

In figure SM-2, I investigate common support and show fitted values for model 5. First, the

data lack common support, as there are no countries in the lowest tercile of IO membership whose

IO-weighted peers have stronger climate targets than about -29%. Therefore, we should be attentive

to not make inferences outside the range of common support. Second, the fitted values show that

countries set stronger targets when their IO-weighted peers set stronger targets, but that the marginal

effect of these peers’ targets wanes as states have more IO memberships. The interaction effect is

negative, implying that IO-weighted peers’ climate targets have diminishing effects on the ratchet

process as countries gain more total IO memberships. The fitted values in figure SM-2 suggest that

the effect of IO ties flattens out at high counts of IO memberships rather than reversing and turning

sharply negative. The effect is still positive at the 75th percentile of total IO membership and

reaches zero around the 93rd percentile of membership. Combined with the positive main effect

of the IO-weighted targets and the positive effect for countries in the lower tercile, there remains

some empirical support for the ratchet process diffusing through shared IO memberships, though

the effect appears to be diluted when states have many IO memberships.
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(1) (2) (3) (4) (5) (6)

IOsParis (row-standardized) 4.27** 4.25** 12.33** 11.72*
(1.11) (1.39) (4.39) (4.61)

IOsParis (non–row-standardized) 0.03 −0.03
(0.13) (0.15)

IOsParis (row-standardized):IO memberships −0.08* −0.08*
(0.04) (0.04)

IO memberships −2.34+ −2.25+
(1.19) (1.23)

Paris target 0.70** 0.70** 0.78** 0.73** 0.73** 0.72**
(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

(Intercept) 127.68** 135.59+ 5.99 −56.47 359.19* 324.37+
(33.93) (73.27) (31.59) (72.14) (137.76) (169.93)

Controls No Yes No Yes No Yes
Observations 112 112 112 112 112 112
R2 0.52 0.52 0.46 0.48 0.54 0.54

Table SM-8: Regressions with alternative spatial weights for joint IO memberships. Outcome variable is
emissions change in 2021 NDC as a percentage of 2010 emissions levels, re-scaled so that positive values
are emissions cuts. OLS regression models with standard errors in parentheses. + p < 0.1, * p < 0.05, ** p
< 0.01
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Figure SM-2: Multiplicative interaction model for row-standardized spatial weight of IO peers’ climate
targets and states’ counts of IO memberships. The left panel investigates common support for the spatial
weight across terciles of trade openness. The right panel shows fitted values from M5.
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SM-3 Estimation

SM-3.1 Unobserved regional heterogeneity

Figure 3 suggests that ratcheting behavior may cluster geographically — where some world regions

have ratcheted more on average, while others have ratcheted less. The spatial terms already account

for regional variation to the extent that countries trade more with their geographic neighbors and

share more international organizational memberships with their neighbors through regional IOs.

Nonetheless, there may be further unobserved heterogeneity across regions and I now include a set

of regional fixed effects to account for this. I take the World Bank’s regional classifications and

add these to the main regression models; East Asia and the Pacific is the reference category.

I report these results in table SM-9, where even numbered models control for trade openness,

industry’s share of GDP, renewable electricity generation, and fossil fuel rents. In models 1 and 2,

we see that the TradeParis term is no longer statistically significant when controlling for regional

heterogeneity. The IOsParis term remains statistically significant in models 3 and 4. Finally,

in models 5 and 6, with the spatial terms for trade and IOs, neither spatial term is statistically

significant at conventional thresholds. The 𝑝-values for TradeParis are very large, while those

for IOsParis are 0.025, 0.044, 0.054, and 0.066 across models 3–6, respectively. Nonetheless, the

coefficients on IOsParis are very stable across models, which suggests that omitting the regional

intercepts does not bias the estimates. The standard errors are larger in models 5 and 6, which make

the estimates less precise. The only remaining variation in models 5 and 6 for the IOsParis term

to explain is within-region IO ties beyond what can be accounted for with existing trade ties and

the lagged Paris climate target in a single cross-section. Introducing these additional region terms

adds little to the model fit, as shown by the small increase in the 𝑅2 statistic between table 2 and

table SM-9. This is intuitive given that the lagged climate target already accounts for most of the

underlying variation in levels across observations. As a result, these models may be over-specified,

which can be inefficient and inflate standard errors.
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(1) (2) (3) (4) (5) (6)
TradeParis (row-standardized) 0.41 0.34 −0.08 −0.14

(0.36) (0.39) (0.44) (0.47)
IOsParis (row-standardized) 4.71* 5.03* 5.00+ 5.52+

(2.07) (2.47) (2.56) (2.97)
Europe and Central Asia 33.99* 35.91* 15.62 15.53 15.24 14.80

(16.37) (17.61) (18.60) (20.53) (18.79) (20.77)
Latin America and Caribbean 44.57* 46.00* 54.94** 57.39** 55.97** 59.53**

(18.59) (19.88) (18.38) (19.61) (19.25) (20.94)
Middle East and North Africa 33.45 36.08 37.34+ 36.56 37.70+ 37.11

(22.63) (24.05) (22.25) (23.58) (22.43) (23.76)
North America 44.05 44.03 32.21 33.13 32.31 33.98

(36.92) (38.66) (36.75) (38.29) (36.92) (38.57)
South Asia −8.66 −6.98 −3.20 0.66 −3.65 0.31

(25.93) (26.72) (25.48) (26.53) (25.71) (26.68)
Sub-Saharan Africa −0.12 1.71 13.73 14.62 14.23 15.81

(16.60) (17.85) (17.67) (18.69) (17.95) (19.20)
Paris target 0.71** 0.70** 0.70** 0.69** 0.70** 0.70**

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)
(Intercept) −18.91 −20.65 121.55+ 126.65 129.16+ 135.44

(14.97) (54.37) (65.93) (94.81) (77.32) (99.64)
Controls No Yes No Yes No Yes
Observations 112 112 112 112 112 112
𝑅2 0.56 0.56 0.58 0.58 0.58 0.58

Table SM-9: Alternative specification of main models with regional intercepts added; reference region is
“East Asia and the Pacific”. Outcome variable is emissions change in 2021 NDC as a percentage of 2010
emissions levels, re-scaled so that positive values are emissions cuts. OLS regression models with standard
errors in parentheses. + p < 0.1, * p < 0.05, ** p < 0.01
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SM-3.2 Independence of trade and IO pathways

The models in text present an independent relationship between trade-weighted peers’ and IO-

weighted peers’ climate targets — where each has an additive effect on the ratchet that can be

estimated after partialling out the other’s influence. However, it could also be the case that the

targets of trade-weighted and IO-weighted peers interact — either through a complementary process

where strong pre-existing IO ties support trade ties or a substitution process where strong IO ties

can make up for weak trade ties, and vice versa. I model this as a multiplicative interaction effect

in table SM-10. Models 1 and 2 reproduce the main results from 2. Models 3 and 4 add the

interaction, and the interaction term is not statistically significant.

Figure SM-3 investigates common support across the interaction. Since the spatial terms

for trade and IOs are positively correlated, there are no cases with high levels of IO-weighted

peers’ climate targets but low values of trade-weighted peers’ climate targets, which restricts which

inferences can be drawn from this data. In plotting the fitted values, we see that IO-weighted

peers with strong climate targets can substitute for trade-weighted peers with weak targets, while

the effect of IO-weighted peers on climate targets is attenuated when countries’ trade partners

have strong targets. Similarly, when a country’s IO-weighted peers have relatively weak targets

their trade-weighted peers’ targets can support the ratchet when the latter are strong; but when

IO-weighted peers have strong targets, trade-weighted peers’ targets do not effect the ratchet. The

interactions suggest that trade and IO relationships can substitute for each other when one is low, but

the coefficients remain imprecisely estimated and their relationship lacks common support across

the full range of the interaction.
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(1) (2) (3) (4)
IOsParis (row-standardized) 3.26* 3.34* 2.55+ 2.62

(1.49) (1.66) (1.51) (1.69)
TradeParis (row-standardized) 0.41 0.43 −4.84+ −4.64+

(0.41) (0.43) (2.70) (2.78)
TradeParis (row-standardized):IOParis (row-standardized) −0.17+ −0.16+

(0.08) (0.09)
Paris target 0.69** 0.69** 0.73** 0.72**

(0.08) (0.08) (0.08) (0.08)
(Intercept) 101.77* 121.79 86.10* 103.84

(42.46) (74.55) (42.65) (74.35)
Controls No Yes No Yes
Observations 112 112 112 112
𝑅2 0.53 0.53 0.54 0.54

Table SM-10: Regressions with alternative spatial weights for joint IO memberships. Outcome variable is
emissions change in 2021 NDC as a percentage of 2010 emissions levels, re-scaled so that positive values
are emissions cuts. OLS regression models with standard errors in parentheses. + p < 0.1, * p < 0.05, ** p
< 0.01
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Figure SM-3: Models with a multiplicative interaction between trade-weighted peers’ climate targets and
IO-weighted peers’ climate targets. Top panel investigates common support across levels of the interacted
variables. Bottom-left panel shows fitted values across levels of IO-weighted peers’ climate targets for a
country whose trade-weighted peers have weak targets (red) and strong ones (blue); bottom-right panel is
vice versa.
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SM-3.3 Sensitivity analysis

The research design relies on no confounding to estimate the average treatment effect of peers’

targets on the ratcheted targets. I have argued that the strongest source of confounding in this

design are states’ previous climate targets, where the Glasgow targets strongly reflect each state’s

pre-existing Paris target. Controlling for other observed covariates helps strengthen the argument

of no confounding, but we can also assess the credibility of this assumption more rigorously using

sensitivity analysis. Sensitivity analysis is a tool for understanding how strong an unobserved

confounder would need to be to substantially change an observed estimate. It can be used to place

bounds on an estimate that quantify how much unobserved confounding there would need to be to

reduce an estimated effect size to zero.

Cinelli and Hazlett (2020) present a “robustness value” that quantifies how much of the residual

variance in both the treatment and the outcome would need to be explained by a confounder to

bring the estimated effect to zero.68 The robustness value for table 2, model 3 is 0.19, implying

that unobserved confounders would need to explain more than 19% of the unexplained variance in

both the Glasgow targets and the climate policy of IO-weighted peers to reduce 𝜃 to zero.

I analyze the influence of a confounding variable as strong as each state’s Paris target to

consider the sensitivity of the main finding. The Paris targets are highly correlated with the

Glasgow targets (𝑟 = 0.68) and also correlated with IO peers’ climate policy (𝑟 = 0.26). It is

difficult to imagine another confounder that would be more associated with the Glasgow targets

than these lagged targets.

The sensitivity analysis finds that even a confounder as strong as the Paris targets that explained

all of the residual variation in the Glasgow targets and that was as strongly associated with IO

partners’ targets would not be strong enough to reduce the effect of IO partners’ climate targets to

zero. The bound on 𝑅2
𝐷∼𝑍 |X = 0.0122 is below the robustness value and below the partial 𝑅2 of

the treatment with the outcome 𝑅2
𝑌∼𝐷 |X = 0.0426. The bound on 𝑅2

𝑌∼𝑍 |X,𝐷 = 0.71 is above the

robustness value; however, the bounds on each 𝑅2
𝐷∼𝑍 |X and 𝑅2

𝑌∼𝑍 |X,𝐷 would need to be greater than

the robustness value to drive the estimate to zero. Note, as well, that the bound of 𝑅2
𝐷∼𝑍 |X is below

68Sensitivity analysis conducted in R using “sensemakr”. Cinelli, Carlos and Chad Hazlett (2020). “Making
sense of sensitivity: Extending omitted variable bias.” Journal of the Royal Statistical Society Series B —
Statistical Methodology 82.1, pp. 39-67.
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the robustness value for the 𝛼 = 0.05 significance level (𝑅2
𝐷∼𝑍 |X = 0.0122; 𝑅𝑉𝑞=1,𝛼=0.05 = 0.019,

which implies that this hypothetical confounder would also keep 𝑝-value below 0.05.

Outcome: Glasgow target
Treatment Estimate Std. error 𝑡-statistic 𝑅2

𝑌∼𝐷 |X 𝑅𝑉𝑞=1 𝑅𝑉𝑞=1,𝛼=0.05

IOParis 3.264 1.489 2.191 4.3% 19% 1.9%
df = 108 Bound: (1 × Paris target): 𝑅2

𝑌∼𝑍 |X,𝐷 = 71%, 𝑅2
𝐷∼𝑍 |X = 1.2%

Table SM-11: Sensitivity analysis for table 2, model 3.
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Figure SM-4: Sensitivity analysis reveals that unobserved confounding would need to explain 21–24%
of the unexplained variance in both the Glasgow targets and the trade-weighted climate policy of peers to
reduce the estimate for 𝜃 to zero. The bounds for a confounder as strongly correlated with these variables as
the Paris targets measure would not be sufficient to confound the results.
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SM-3.4 Randomization inference

There is some concern that 𝑝-values may be incorrect in small samples, especially when the main

variables are not normally distributed, so I conduct randomization inference and find normally

distributed estimates of 𝜃, and calculate 𝑝 = 0.003, smaller than the analytical 𝑝 = 0.0306 in table

2, model 3.
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Figure SM-5: Randomization inference. Estimates of the average treatment effect in 1,000 permutations of
IOParis for table 2, model 3. Vertical lines indicate model ATE, 𝜃 = 3.26 and the two-sided cutoff, −3.26.
In 1,000 permutations, only 3 estimates were larger than |𝜃 = 3.26|, implying 𝑝 = 3/1000 = 0.003.
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SM-4 Who leads target-setting?

Table SM-12 presents results for the timing of climate target submissions. The outcome variable

is a categorical indicator that measures when countries submitted their updated NDCs relative to

the submissions of the EU and the US. The updated NDCs were “due” in March 2020, but very

few states submitted these on time—even before the 2020 coronavirus pandemic completely halted

daily activities. The slow progress in submitting NDCs on time was concerning for observers, and

the UN climate secretariat eventually changed the updated NDC deadline to the end of December

2020; however, most countries missed even this second deadline. In 2020, the US was led by the

Trump Administration that was in the process of formally withdrawing from the Paris Agreement.

The combination of the pandemic and the American government’s hostility to the Paris process led

to only 6 NDCs being submitted by April 1, and only 33 NDCs throughout 2020, excluding EU

states. In September 2020, the European Commission announced a new EU climate mitigation goal,

and deposited its updated NDC in December. This seemed to signal a restart in multilateral climate

politics, ahead of Joe Biden’s presidential victory in November 2020. American participation in

international climate treaties has hardly been assured historically, despite the Biden Administration’s

stated intentions and swift actions to rejoin the Paris Agreement.

As table SM-12 shows, the most likely countries to submit updated NDCs following the EU’s

announcement were countries with the most trade ties to the European Union. The EU was the

first major emitter to submit their updated NDC, even if theirs was submitted after the initial due

date. The Biden Administration finally presented its updated climate target at a widely-publicized

virtual climate summit on Earth Day in April 2021, and pressured other countries to submit updated

targets. However, as table SM-12 shows, while countries did submit new targets (as demonstrated

by the positive coefficient on the intercept term), these countries were not necessarily more linked

to the US by trade. One possible explanation for the lack of US pull on NDCs is the persistent

domestic credibility problem in American climate policy. The Biden Administration hoped to

have a major piece of domestic legislation finished by COP26 in Glasgow in November 2021, but

opposition from key veto players in the Democratic Party stymied progress. If governments set

climate policy conditional on the behavior of their closest trading partners, then trade ties to the

EU seem to be the strongest determinant of updated NDCs.
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(1)
Early submission Post-EU, pre-US Post-US
Before Sep. 2020 Oct. 2020–Mar. 2021 After Apr. 2021

Term Estimate Std. error Estimate Std. error Estimate Std. error
(Intercept) -0.471 0.503 -2.952* 1.000 1.004* 0.383
EU trade exposure -0.391 1.771 4.589* 2.157 -0.474 1.320
US trade exposure 4.106 2.282 1.913 4.921 0.516 2.062

Table SM-12: Timing of updated NDC submission reflects national-level trade exposures to EU and US.
Multinomial logistic regression with “Never submitted updated NDC” as the omitted reference category.
𝑁 = 161 countries, excluding US, EU member states, and states that formally coordinate their climate policy
with the EU. ∗ indicates 𝑝 < 0.05
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SM-5 Emissions growth scenarios in developing countries

Did countries that weakened their targets simply set more realistic reference levels? One consid-

eration may be that countries that weakened their targets did so because they had unrealistic GHG

emissions projections in their first NDCs and were able to update with more accurate projections in

their second NDCs. This is only a consideration for countries that set baseline scenario targets that

articulate their emissions reductions relative to a future “business as usual” scenario. If the first

NDC’s emissions projection was overly modest, then holding the target absolute emissions level

fixed and updating the projection to be more realistic would imply a weakened target.

We can compare countries’ GHG emissions growth rates that would be consistent with meeting

their BAU reference level in both of their NDCs relative to their emissions growth rates up to the

Paris Agreement. Looking only at non-high income countries, the average annual emissions

growth from 2000–2015 was 2.35 percentage points (pp) per year. Within this set of countries,

for countries that submitted stronger Glasgow targets, their Glasgow targets projected +1.69 pp,

while their Paris targets projected +3.51 pp. Relative to developing countries’ average pre-Paris

growth rate, ratcheting countries projected higher BAU emissions growth in their Paris targets and

then amended this to project lower BAU emissions growth in their Glasgow targets. Some of their

enhanced ambition, therefore, could reflect revisions to emissions growth estimates that are more

in keeping with historical averages.

For developing countries that submitted weaker Glasgow targets, their Glasgow targets pro-

jected +4.24 pp annual growth, while their Paris targets projected +2.09 pp. Relative to developing

countries’ average pre-Paris growth rate, these countries projected BAU emissions growth near the

historical average in their Paris targets, but then revised their estimates to project much stronger

BAU growth in their Glasgow targets than historical averages. Some of their observed reduced am-

bition, therefore, could reflect keeping percentage targets constant while updating BAU forecasts to

project more future growth. Yet, this future growth is nearly double historical norms, which seems

unrealistic. These targets are inflated revised growth forecasts that mask low levels of mitigation

effort, rather than simply more realistic revised growth forecasts.
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