
Appendix For “Conflicts that Leave Something to
Chance”

January 15, 2025

Contents

I Comments on Model Assumptions 1

1 Connections to Powell (2015) 1

II Complete Information Game 2

2 Complete Information Equilibrium 2

3 Proving the Proposition and Remarks 3

4 Figure Parameters 11

III Extension: Making n Endogenous 12

5 Game form 12

6 Equilibrium 13

7 Cross-Equilibrium Analysis 15

IV Extension: Endogenous Bargaining 15

8 Equilibrium Assumptions & Equilibria 17

9 Results 21



V Extension: Incomplete Information Model and Discussion 22

10 Equilibrium Overview 22

11 Proving Lemma 1 25

12 Characterizing and Proving the Equilibrium 29

13 Demonstrating the Equilibrium Satisfies the Intuitive Criterion 46

14 Proof of Incomplete Information Remarks 48

15 Proof of Remark 3 (Incomplete Information) 48

VI Discussion: What if C Could Also Arm? 54



Part I

Comments on Model Assumptions

1 Connections to Powell (2015)
This section expands on the “Comments on Model Assumptions” section in the main paper by
elaborating on the similarities and differences between this paper and Powell.

In this paper, nuclear risk in a conventional conflict is determined indirectly through the de-
fender’s arming level. In contrast, in Powell, the defender is able to directly, publicly, and
credibly manipulate the level of nuclear risk within a conventional war without altering its like-
lihood of winning in the conventional war.1 A natural interpretation of the defender’s choice in
the Powell model would be manipulating Defense Readiness Condition (DEFCON) levels while
in a conflict, In contrast, in the model presented here, the defender’s arming level indirectly
shapes the likelihood of a nuclear exchange by generating longer or shorter conflicts. While the
model of Powell is groundbreaking, it includes several strong assumptions that may not apply
to all settings. For example, Powell assumes it is possible to publicly and credibly manipulate
the likelihood of a nuclear exchange within a crisis. Practically, doing so would be subjected to
“cheap talk” concerns, as a defender may want to signal that they have implemented a high-risk
system (that is, one with a high risk of nuclear exchange) to deter challengers when, in reality,
they have not. Placing conventional forces, as the defender does in my model, is more visible
and less subject to this kind of bluffing. As another example, Powell assumes it is possible to
exclusively manipulate nuclear risk without altering the balance of conventional power. This
puts the model in (Powell, 2015) outside of most standard discussions of tripwires (see Schelling
(1966)). As Schelling describes, the positioning of conventional forces in Western Berlin is a
tripwire in that they bid-up nuclear risk, but such force placement would mechanically alter
the likelihood of conventional conflict success.

Second, these models also differ in how conventional forces generate nuclear risk. In Powell,
whenever one actor adds additional conventional forces to a conflict, this always leads to a
greater risk of escalation. Unlike the model presented here, Powell does not consider the possi-
bility that undertaking a rapid and decisive deployment could potentially reduce the probability
of a nuclear exchange by preventing a protracted affair.

The modeling choices in this paper were made in an attempt to best represent our scholarly
understanding of conflicts over non-existential issues in the nuclear era. In adopting these

1Formally, after a challenger selects some level of arming, p, the defender selects function r(p). p denotes
the likelihood the C wins in a conventional conflict, and r(p) denotes the likelihood the conventional conflict
escalates to a nuclear exchange.
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choices, I establish a series of results suggesting that actors may arm more (Remark 1), fight
harder (Remark 4), and signal more effectively (Remark 7) than what is established in Powell
(2015), and below I describe how these insights offer more nuance into substantive cases in the
nuclear era. However, some readers may prefer some of the modeling choices made in Powell
(2015), and I address these concerns while preserving the defender’s choice in selecting a force
posture in the following way. First, if readers prefer assuming that nuclear risk is monotonically
increasing in the selected conventional force posture, my model can support this assumption;2

all remarks below will still attain, excluding Remark 4, which I discuss more below. Second,
if readers believe that the defender can also manipulate nuclear risk, I discuss in an extension
where the defender manipulates both conventional arming and nuclear risk; again, similar results
attain. Lastly, while the results here are robust to modifications to make the model more like
that in Powell, these results are distinct from what is presented in Powell).

Part II

Complete Information Game

2 Complete Information Equilibrium
2.1 Deriving pC and pD

Outside of pC and pD, the equilibrium follows from construction. I first derive pC , the force
postures that would make C willing to challenge, conditional on D escalating in stage 4

0 ≤− n

h
NC +

α

hp(1− p)
((1− p)vC)− cC

h

0 ≤− npNC + αvC − cCp

p ≤ αvC
cC + nNC

This means that if D arms to level p = pC = αvC
cC+nNC

, C is indifferent between dropping out
or not. In our equilibria, to prevent open set issues, whenever D arms to p = pC , C will be
deterred and will not challenge.

2This can be accommodated by shifting the p0 and p1 parameters to only consider regions where the rela-
tionship is monotonic or non-monotonic.
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Next I derive pD as the force posture that would make a type vD D willing to escalate conditional
on C challenging. The left-hand-side is D’s payoffs (sans arming costs, which are sunk) if D
does not escalate, and the right is D’s payoff from fighting (sans arming costs).

0 ≤n
h
∗ (−ND) +

α

hp(1− p)
(pvD)− cD

h

0 ≤− n(1− p)ND + αvD − cD(1− p)

p ≥1− αvD
cD + nND

.

This means that if D arms to level p = pD(vD), D is indifferent between escalating or not.

3 Proving the Proposition and Remarks
3.1 Proposition 1, Remarks 1, 2, and 5 Proofs

Proposition 1 follows all player’s best responses in a straitforward manner.

All remark follow from the equilibrium and the derivation of pD and pC .

3.2 Remark 3 Proof

3.2.1 Case 1: For n′′, pC ≤ pD

If for n′′ pC ≤ pD holds, then under n′′, war is not possible because there is no arming level
where C would be willing to challenge and D would be willing to fight. For all parameters
where pC(n′′) ≤ pD(n′′), the likelihood of war is weakly decreasing as n′ shifts to n′′.

3.2.2 Case 2: For n′′, pC > pD

This proof is assisted by a helpful Lemma that applies to a subset of the parameter space within
Case 2. When D is optimally choosing to fight, D selects some arming level p within the set S,
where S =

[
max

{
p0, p

D
}
,min

{
pC , p1

}]
. Intuitively, the set S defines feasible arming levels

where D will fight if challenged, and C will not be deterred. Note that we will consider two
levels of nuclear instability parameter n, which we denote n and n′ (with n < n′). As defined,
S(n′) ⊂ S(n).3

I introduce some new notation here. I let Û(p, n) = − p(1−p)
α+np(1−p)(nND + cD) + α

α+np(1−p) (pvD)−

3Recall pC = αvC
cC+nNC

and pD = 1− αvD
cD+nND

.
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K(p). I also define p∗(a, b) as

p∗(a, b) ∈argmaxp∈S(a)Û(p, b)

Note that whenever a = b = n, this is D optimizing an arming level at nuclear instability
parameter n.4

Whenever D (optimally) selects a p and goes to war, I define D’s value function as

V̂D(n) =maxp∈S(n)Û(p, n)

This allows us to set up a useful Lemma.

Nuclear Instability and War Lemma V̂D(n) is decreasing in n.

Proof: With this structure in place, I can show that V̂D(n′) ≤ V̂D(n). The proof proceeds as fol-
lows: V̂D(n′) = maxp∈S(n′)Û(p, n′) ≤ maxp∈S(n)Û(p, n′) ≤ Û(p∗(n, n′), n) ≤ maxp∈S(n)Û(p, n) =

V̂D(n)

The first inequality holds because S(n′) ⊂ S(n), meaning Û is optimized over a smaller set
under n′. The second inequality holds because Û(p, n) is decreasing in n at a fixed arming level
p∗(n, n′).5 The third inequality holds because there D is selecting their optimal p. �

The Lemma above shows that as n increases, D recieves a lower utility from going to war. Note
that if for n′′ pC > pD, then it also must be that pC > pD for n′. This means that for D to
deter C through force posture, under both n′ and n′′, D will set pC , which is decreasing in n.
Together, this means that as n increases, D’s utility from war (setting p̂) is decreasing, D’s
utility from deterring (setting pC) is increasing, and D’s utility from arming then acquiescing
(setting p0) remains the same. This means that as n increases, D will arm with the intent of
fighting weakly less. �

3.3 Remark 4 Proof

In the statement of Remark 4 in the text, I reference two conditions. First, the assumption
that the solution set p̂ is singleton matters because this means that I do not need to define
every solution as satisfying a relevant condition. Second, the assumption that both actors place
high value on the issue is in place to keep the bounds on pD and pC—which move inwards as n

4Note that we abuse notations and sometimes let this denote a set of arming levels; when this is the case,
the proof functions for all individual elements of the set p∗(a, b). Note, we need to keep this separate as part of
the proof below.

5Taking first order conditions of Û(p, vD, n) with respect to n yields (p−1)p(αND+αpv̄D−p(1−p)cD)

(−α+n(p)2−sp)
2 . Note that

p− 1 < 0 and, because p ≥ pD(vD), we can say 0 ≤ −n(1− p)ND + αv̄D − c(1− p).
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and ND increases—away from influencing the direct effect of these parameters on D’s preferred
arming choice.

The complete, more technical statement of the Remark is as follows.

Remark 4A. Formally, consider nuclear cost parameters N ′D and N ′′D, and nuclear instability
parameters n′ and n′′, where N ′D < N ′′D and n′ < n′′.

(a) If p∗(N ′D) ≤ 1
2
, p∗(N ′′D) ≤ 1

2
and pC > 1

2
, then p∗(N ′D) ≥ p∗(N ′′D).6 And if p∗(N ′D) ≥ 1

2
,

p∗(N ′′D) ≥ 1
2
, and pD(N ′′D) < 1

2
, then p∗(N ′D) ≤ p∗(N ′′D).

(b) If p∗(n′) and p∗(n′′) are small enough, and pC(n′′) > 1
2
,7 then p∗(n′) ≥ p∗(n′′). And if p∗(n′)

and p∗(n′′) are large enough, pD(n′′) < 1
2
, and pC(n′′) ≥ p1, then p∗(n′) ≥ p∗(n′′).

3.3.1 For ND. Part A. Analyzing the Objective Function

Proving (a). Consider a the solution to D’s optimization problem. This is

p̂ ∈ arg max
p∈[max{pD,p0},min{pC ,p1}]

{
− np(1− p)
α + np(1− p)

ND +
α

α + np(1− p)
(pvD)− cDp(1− p)

α + np(1− p)
−K(p)

}
.

First, note that the objective function exhibits decreasing differences in ND and p when p < 1/2

and increasing differences in ND and p when p > 1/2. Letting ND < N ′D and p < p′, this
experiences increasing differences when

− np′(1− p′)
α + np′(1− p′)

N ′D −
(
− np(1− p)
α + np(1− p)

N ′D

)
>− np′(1− p′)

α + np′(1− p′)
ND −

(
− np(1− p)
α + np(1− p)

ND

)
or

np′(1− p′)
α + np′(1− p′)

ND −
np(1− p)

α + np(1− p)
ND >

np′(1− p′)
α + np′(1− p′)

N ′D −
np(1− p)

α + np(1− p)
N ′D

or more simply

(ND −N ′D)

(
np′(1− p′)

α + np′(1− p′)
− np(1− p)
α + np(1− p)

)
>0.

The term ND − N ′D is negative. The expression np′(1−p′)
α+np′(1−p′) −

np(1−p)
α+np(1−p) is (weakly) negative so

long that p ≥ 1/2.8 The expression is weakly positive so long that p ≤ 1/2.
6As defined earlier, p̂ may represent the minimum value of a set. Here, when I say p∗(N ′D) ≤ p∗(N ′′D), I

abuse notation and assume that every element of both p∗(N ′D) and p∗(N ′′D) is less than or equal to 1
2 .

7We will clarify “small enough” and “large enough” in the appendix.
8Can be seen by taking the cross partial derivative, or ∂2

∂p∂ND

np(1−p)
α+np(1−p) = αn(2p−1)

(n(p−1)p−α)2 .
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3.3.2 For ND. Part B. Proving for p∗(ND) ≤ 1
2
and p∗(N ′D) ≤ 1

2

By Assumption, p∗(ND) ∈ [p0,
1
2
] and p∗(N ′D) ∈ [p0,

1
2
], with pC > 1

2
. We demonstrate over the

range

UD(p;ND) =

0−K(p) if p < pD

− np(1−p)
α+np(1−p)ND + α

α+np(1−p) (pvD)− cDp(1−p)
α+np(1−p) −K(p) if pD ≤ p ≤ 1

2

the utility function has decreasing differences in p and ND. In the Proof of Lemma 1 (see
the proof of incomplete information), we demonstrated there are no open set issues to the
optimization problem. Also, below we will reference “Regions.” Region 1 is is any p < pD,
Region 2 is any pD ≤ p ≤ 1

2
. Recall by assumption pC > 1

2
.

I write out every case that I must consider, as characterized by what Region of the utility
function that the considered p or p′ and ND or N ′D put the function into. Note that there is
some structure to the cases that I consider; for example, if (p,N ′D) puts the utility function
into Region 1, then (p,ND) must also fall within Region 1; similarly, if (p′, N ′D) puts the utility
function into Region 1, then (p′, ND) must also fall within Region 1.

Cases UD(p′;N ′D) UD(p;N ′D) UD(p′;ND) UD(p;ND)

A 1 1 2 1
B 1 1 2 2
C 2 1 2 2
D 2 1 2 1
E 1 1 1 1
F 2 2 2 2

It is useful to describe several properties that will be used in the proofs below.

Property (a): If p ≥ pD, then − np(1−p)
α+np(1−p)ND + α

α+np(1−p) (pvD)− cDp(1−p)
α+np(1−p) ≥ 0.9

Property (b): if p ≥ pD, then − np(1−p)
α+np(1−p)ND + α

α+np(1−p) (pvD)− cDp(1−p)
α+np(1−p) is increasing in p.10

Property (c): I abuse notation and (sometimes below will) bring in the region numbers to the
utility function, letting UD(p; 1) = −K(p) and UD(p; 2) = − p(1−p)

α+np(1−p) (nND + cD)+ α
α+np(1−p) (pvD)−

9This holds based on how pD is defined: when p ≥ pD, then D is willing to fight and attain utility
− np(1−p)
α+np(1−p)ND + α

α+np(1−p) (pvD)− cDp(1−p)
α+np(1−p) over acquiesce and attain utility 0.

10Taking first order conditions gives d
dp

(
− p(1−p)
α+np(1−p) (nND + cD) + α

α+np(1−p) (pvD)
)

=

α(2p−1)(cD+nND)+αvD(α+np2)
(α−n(p−1)p)2 , or equal to αp(cD+nND)+α(1−p)(−cD−nND)+αvD(α+np2)

(α−n(p−1)p)2 . The right-hand side
will be positive whenever −(1− p)(cD + nND) + vD(α+ np2) ≥ 0, which will hold by Property (a).
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K(p) regardless of p’s relationship to pD or pC ; for example, I will let UD(pC , 1) = −K(pC). If
p < pD(ND), then UD(p;ND, 2) < UD(p;ND, 1) (because p is fixed).

I now describe how decreasing differences (UD(p′, N ′D)−UD(p,N ′D) ≤ UD(p′, ND)−UD(p,ND))
occurs across all cases listed above.

Case A. Property (a) implies UD(p′;N ′D) ≤ UD(p′;ND). Also, UD(p,N ′D) = UD(p,ND). This
case exhibits decreasing differences.

Case B. Note that − (UD(p′;N ′D)− UD(p;N ′D))−K(p′)+K(p) = 0. Thus, Property (b) implies
UD(p′;ND)− UD(p;ND)− (UD(p′;N ′D)− UD(p;N ′D)) ≥ 0. Re-arranging this term implies that
the case exhibits decreasing differences.

Case C. Because the objective function exhibits decreasing differences, we have UD(p′;N ′D) −
UD(p;N ′D, 2) ≤ UD(p′;ND)− UD(p;ND). Applying Property (c) implies that this case exhibits
decreasing differences.

Case D. We have UD(p;N ′D) = UD(p;ND). And, because UD(p;ND) is decreasing in ND, we
have UD(p′;N ′D) < UD(p′;ND). Thus, the case exhibits decreasing differences.

Case E. UD(p′;N ′D) = UD(p′;ND) and UD(p;N ′D) = UD(p;ND). This case holds trivially.

Case F. The objective function in this region exhibits decreasing differences.

We have now shown that the utility function in this region exhibits decreasing differences in p
and ND. Via Topkis Theorem, we can say the optimal choice correspondence is decreasing.

3.3.3 For ND. Part C. Proving for p∗(ND) ≥ 1
2
and p∗(N ′D) ≥ 1

2

By Assumption, p∗(ND) ∈ [1
2
, p1] and p∗(N ′D) ∈ [1

2
, p1] with pD(vD) < 1

2
. We demonstrate over

this range,

UD(p;ND) =

−
np(1−p)

α+np(1−p)ND + α
α+np(1−p) (pvD)− cDp(1−p)

α+np(1−p) −K(p) if 1
2
≤ p < pC

vD −K(p) if pC ≤ p

the utility function has increasing differences in p and ND. In the Proof of Lemma 1, we
demonstrated there are no open set issues to the optimization problem. Also, below we will
reference “Regions.” Region 2 is any pD(vD) ≤ p < pC . Region 3 is any p ≥ pC .

Note that both regions of the utility function exhibit increasing differences when UD(p′;N ′D),
UD(p;N ′D), UD(p′;ND), and UD(p;ND) are entirely in Region 2 or Region 3. And, because pC

is unchanging in ND, we only need to consider the following case.
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Cases UD(p′;N ′D) UD(p;N ′D) UD(p′;ND) UD(p;ND)

E 3 2 3 2

We can show that UD(p′, N ′D)−UD(p,N ′D) ≥ UD(p′, ND)−UD(p,ND). Note that UD(p′;N ′D) =

UD(p′;ND). Also note that in Region 2 UD(·;ND) is decreasing in ND, meaning UD(p;N ′D) ≤
UD(p;ND). Thus, this region exhibits increasing differences.
We have now shown that the utility function in this region exhibits increasing differences in p
and ND. Via Topkis Theorem, we can say the optimal choice correspondence is increasing.

3.3.4 For n. Part A. Analyzing the Objective Function

For n, effects in Remark 4 are less precise (than it was for ND) but still partially present. I
can turn my attention to properties of the expression ĜD = − np(1−p)

α+np(1−p)ND + α
α+np(1−p) (pvD)−

cDp(1−p)
α+np(1−p) , which, unlike K, is twice continuously differentiable. I take the cross partial of ĜD ,
giving

∂2

∂p∂n
ĜD =

α(2p− 1)(αND − (1− p)p(2cD + nND)) + αpvD (α(3p− 2)− n(1− p)p2)

(α + n(1− p)p)3

This expression is ugly, but consider when p0 ≈ 0 and p1 ≈ 1. Taking the limits and eliminating
terms that obviously go to zero yields:

limp→0

[
∂2

∂p∂n
ĜD

]
=
−(α2ND)

α3

limp→1

[
∂2

∂p∂n
ĜD

]
=
α2ND + α2vD

α3

While this is not nearly as clean as the ND expression, but clearly here when p∗ is close to zero
for a fixed set of parameters, the ĜD exhibits decreasing differences. And, when p∗ is close to
1 for a fixed set of parameters, then ĜD exhibits increasing differences.

I will proceed as follows. I’m going to refer to p as the upper-bound on the region where ĜD

only experiences decreasing differences. And, I will refer to p̄ as the lower-bound on the region
where ĜD only experiences increasing differences.

Additionally, we want to show that ĜD is decreasing in n. Taking only first order conditions
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yields

∂

∂n
ĜD =

(p− 1)p (α(ND + pvD)− (1− p)cDp)
(α− n(p− 1)p)2

Recall for any p ≥ pD(vD), it must be that 0 ≤ −n(1 − pD)ND + αv̄D − cD(1 − pD). This
implies that the expression (α(ND + pvD)− (1− p)cDp) is positive, meaning that (p− 1) times
the expression is negative. Thus, for the range we are considering ĜD is decreasing in n.

3.3.5 For n. Part B. Proving for p∗(n) ≤ p and p∗(n′) ≤ p

By Assumption, p∗(n) ∈ [p0, p] and p∗(n′) ∈ [p0, p], with pC > p. We demonstrate over the range

UD(p;ND) =

0−K(p) if p < pD

− np(1−p)
α+np(1−p)ND + α

α+np(1−p) (pvD)− cDp(1−p)
α+np(1−p) −K(p) if pD ≤ p ≤ p

the utility function has decreasing differences in p and n. In the Proof of Lemma 1, we demon-
strated there are no open set issues to the optimization problem. Also, below we will reference
“Regions.” Region 1 is is any p < pD, Region 2 is any pD ≤ p ≤ p.

I write out every case that I must consider, as characterized by what Region of the utility
function that the considered p or p′ and n or n′ put the function into.

Cases UD(p′;n′) UD(p;n′) UD(p′;n) UD(p;n)

A 1 1 2 1
B 1 1 2 2
C 2 1 2 2
D 2 1 2 1

The proof for this part is nearly identical to the proof of showing the p∗(ND) was decreasing in
the lower region. For that reason, I exclude this part of the proof.

Part C. For n. Part c. Proving for p∗(n) ≥ p̄ and p∗(n′) ≥ p̄ In this case, p∗(n) and
p∗(n′) always fall within the range where p̄ ≤ p ≤ p1 < pC ; therefore, because this region
exhibits increasing differences, p∗(n) ≤ p∗(n′).

3.4 Expanding Remarks 1 and 2

Until this point I have kept the discussion of Remarks 1 and 2 brief, highlighting that increasing
n can have dual effects on arming and welfare. More precision is possible.
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What happens when nuclear
instability increases?
Is pD(n′) ≥ pC(n′)?

Under n′,
does D deter?

Under n′′,
does D

D arms more,
Pareto inefficient

D arms less,
welfare gain

D acquiesces
under n′ and n′′;

no change

Is pC(n′′) >
pD(n′′)?

yes
yes deter

acquiesceno

no

Under n′,
does D fight?

Under n′,
does D deter?

D arms less,
Pareto im-
provement

Under n′,
D acquiesces.

Under n′′,
does D

Further anal-
ysis required

Less arming,
welfare gain

Under n′′,
does D

No change

D arms more,
welfare loss

Otherwise (i.e.
pD(n′) < pC(n′) &
pC(n′′) ≤ pD(n′′)

fight/deter

acquiesce
yes

no

no

yes

yes

acquiesce

deter

no

Under n′, does
D fight or deter?

Under n′′,
D prefers Unclear

D arms less,
welfare gain

Under n′,
D acquiesces.

Under n′′,
D prefers

Further anal-
ysis required

D arms more,
welfare loss

No change

yes

acquiesce

deter

no

deter

acquiesce

Figure 1: As n′ shifts to n′′ (where n′ < n′′), what happens to D’s arming level and overall
welfare? This analysis assumes that vDC such that a transfer of the asset from one actor to the
other can never be a welfare gain.
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Figure 1 describes the effect of increasing nuclear instability, or formally, shifting n = n′ to
n = n′′, where n′ < n′′. This flowchart works by starting in the upper-left box and following
the arrows based on what conditions hold. The terminal nodes (gray shading) describe the
final effects of the change from n′ to n′′ when the conditions along the flow hold. Within this
analysis, I assume that vD and vC are such that D’s transferring the asset in dispute to C does
not constitute a welfare gain or loss; any loss of welfare here comes through actors undertaking
inefficient actions (arming or war) or doing worse within these inefficient actions (arming more,
or doing worse in war).

To walk through how to use this flowchart, suppose under n′ the condition pD ≥ pC holds.
The next relevant question is how D behaves under n′. If D optimally deters under n′ and
also optimally deters under n′′, then this is the scenario described in the discussion on Remark
1: as nuclear instability increases, D must arm more to achieve deterrence, which constitutes
a welfare loss (or more specifically, the shift from n′ to n′′ is Pareto inefficient). In contrast,
if pD ≥ pC , D deters under n′, and D acquiesces under n′′, then the shift from n′ to n′′ is
welfare-improving (because D is no longer arming), though D does worse (because D no longer
gets the asset). Finally, if pD ≥ pC and D does not deter under n′, then D’s only other option
is to acquiesce under n′. If D acquiesces under a lower level of nuclear instability (n′), D will
also acquiesce under a higher level of nuclear instability (n′′), meaning welfare and arming will
not change.

Depending on the conditions and what D prefers under n′ and n′′, changing n can induce a
wide range of changes in arming behaviors and welfare outcomes. While in some cases (labeled
“Further analysis required”) I cannot definitively say whether arming or welfare changes, the
model makes specific predictions on arming and welfare for a wide range of parameters.

4 Figure Parameters
Figure 2: The cost function is k ∗ (p∗ − p0)/(p1 − p∗) (but note that is not plotted). The
non-illustrated parameter values are cD = 2, cC = 1.5, NC = 60, ND = 40, α = 0.1, n = 0.04,
k = 8, π = 0.8, vD = 18.

Figure 3: The cost function is k∗(p∗−p0)2. The non-illustrated parameter values are p0 = 0.001

, p1 = 0.9, cD = 6, cC = 1.5, NC = 30, ND = 40, α = 0.2, n = 0.03, k = 15, π = 0.8, vD range
is 5 to 25, vC range is 0.1 to 20.

Figure 4: The cost function is k∗(p∗−p0)2. The non-illustrated parameter values are p0 = 0.001

, p1 = 0.9, cD = 6, cC = 1.5, NC = 30, ND = 40, α = 0.2, k = 15, π = 0.8, vD range is 5 to 25,
vC range is 0.1 to 20.

Figure 5 (Remark 4): The cost function is k ∗ (p∗ − p0)/(p1 − p0). The non-illustrated
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parameter values are cD = 1.2, cC = 1.5, NC = 32, ND = 10, α = 0.12, k = 8, vC = 40, vD
range is 12 to 35.

Part III

Extension: Making n Endogenous

For this extension (and all others), I will add a simple assumption to rule out fairly uninteresting
cases.

Extension Assumption I will assume that pD > p0.

It may be possible for D to manipulate both arming and the level of nuclear instability. This
extension consider this possibility.

5 Game form
Two players, a challenger (C) and a defender (D), are in a deterrence game with complete
information. The game order is as follows.

1. D selects a conventional force level that determines p ∈ [p0, p1], which is D’s likelihood of
winning in a conventional conflict. I assume 0 < p0 < p1 < 1. For ease, I will sometimes
refer to this force level as D’s “arming” level. D also selects nD ∈ N ⊂ R+, which denotes
the nuclear instability parameter. N is assumed to be closed and compact.

2. C selects whether to challenge or not. If C does not challenge, the game ends with C
receiving payoff 0 and D receiving payoff vD−K(p), where K : R+ → R+ is D’s costs from
the conventional force level. I assume K(p0) = 0, and K is continuous and increasing in
p. If C does challenge, the game moves to the next stage.

3. D selects whether to acquiesce or escalate to conflict. If D acquiesces, C receives payoff
vC and D receives payoff −K(p). If D escalates to conflict, then both states receive their
conflict payoffs (described below).

The game here is nearly identical to the game form in the main text, only here D selects the
nuclear instability parameter nD, whereas previously this was given as fixed (as n > 0). For
the sake of completeness, this means that h(p) = nD + α

p(1−p) , and C’s expected utility from

12



conflict is

nD
h(p)

∗ (−NC) +
α

h(p)p(1− p)
((1− p)vC)− cC

h(p)
,

and D’s expected utility from conflict is 11

nD
h(p)

∗ (−ND) +
α

h(p)p(1− p)
(pvD)− cD

h(p)
−K(p).

6 Equilibrium
Much of the intuition is the same as it was in the game in the main text. I highlight the
differences here. When D does best deterring C, D can now (sometimes) use nD to lower their
arming costs. As it was earlier, to deter C, D must select an arming level where both D’s
war participation constraint and C’s war cost constraint hold. However, now this is slightly
different. I let pD(nD) denote the following:

pD(nD) = 1− αvD
cD + nDND

To make D most willing to go to war at the smallest possible arming level, D will select the
lowest possible nuclear instability parameter. So long that the selected arming level is greater
than or equal to this expression, D is willing to fight. For ease, I denote this arming level

pD(nD) = 1− αvD
cD +min {N}ND

I also let pC(nD) denote the following.

pC(nD) =
αvC

cC + nDNC

.

To make C least willing to go to war at the smallest possible arming level, D will select the
greatest possible nuclear instability parameter. For ease, I denote this arming level

11Or, for C and D (respectively), using h(p) = α+np(1−p)
p(1−p) ,

np(1− p)
α+ np(1− p)

∗ (−NC) +
α

α+ np(1− p)
((1− p)vC)− cCp(1− p)

α+ np(1− p)

− np(1− p)
α+ np(1− p)

ND +
α

α+ np(1− p)
(pvD)− cDp(1− p)

α+ np(1− p)
−K(p)
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pC(n̄D) =
αvC

cC +max {N}NC

.

Together, so long that D selects p = max
{
pC(nD), pD(n̄D)

}
, deterrence will hold.

Sometimes D will prefer to fight a war. Now, when D does best going to war, D selects

{p̂, n̂D} ∈argmaxp∈[max{pD(nD),p0},min{pC(nD),p1}]×N̂

{
nD
h(p)

∗ (−ND) +
α

h(p)p(1− p)
(pvD)− c

h(p)
−K(p)

}
.

For any given nD ∈ N where max
{
pD(nD), p0

}
≤ min

{
pC(nD), p1

}
, a maximizer (or set of

maximizers) exists. The function is continuous and optimized over a closed and compact set,
meaning at least one maximizer exists. And, becauseN is closed and compact, at least one joint
{p̂, n̂D} exists. Once again, if there are multiple possible maximizers, I assume D selects the
smallest p̂ from the set. I let UD(p̂, n̂D) denote D’s utility from the above. Alternatively, it can
also sometimes be the case that for some nD max

{
pD(nD), p0

}
> min

{
pC(nD), p1

}
; when this

is the case, the function is not defined. For that reason, I restrict the set of nuclear instability
parametersN to N̂ , which is the set of nD values wheremax

{
pD(nD), p0

}
≤ min

{
pC(nD), p1

}
.

If the set is empty, then D cannot ever select a (p̂, n̂D) value where war occurs. Together, the
equilibrium is as follows:

Proposition : There exists an essentially unique12 subgame perfect equilibrium taking the fol-
lowing form. Working backwards, if challenged, D will fight whenever p ≥ pD(nD) and will
acquiesce otherwise. Before D fights or acquiesces, C will not challenge when p ≥ pD(nD) and
p ≥ pC(n̄D) and will challenge otherwise. And, before C challenges or not, letting p∗ denote
equilibrium arming levels, D will select the following arming levels.

• Case 1: When pD(n̄D) < pC(nD) ≤ p1,

– If VD−K(pC(nD)) ≥ 0 and VD−K(pC(nD)) ≥ UD(p̂, n̂D), then D selects p∗ = pC(n̄D)

and C is deterred,

– If 0 > VD − K(pC(nD)) and 0 > UD(p̂, n̂D), then D selects p∗ = p0, C challenges,
and D acquiesces,

– Otherwise, D selects p∗ = p̂ and n∗D = n̂D, C challenges, and D fights.

• Case 2 (Deterring C is Impossible): When pD(n̄D) < pC(nD) and pC(nD) > p1,

12Two types of equilibria could also exist. First, mixed strategy equilibria can exist when players are indifferent
over their actions. For example, if UD(p̂) < 0 = VD − k(pC), D could mix over p = p0 and p = pC . Second,
the optimal selected p conditional on D wanting to fight C could take on multiple values that D could mix over.
Ultimately, we are assuming that both D and C are not mixing over actions that they are indifferent over when
these cases arise.
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– If UD(p̂, n̂D) ≥ 0, then D selects p∗ = p̂ and n∗D = n̂D, C challenges, and D fights,

– Otherwise, D selects p∗ = p0, C challenges, and D acquiesces.

• Case 3: When pC(nD) ≤ pD(n̄D) and N̂ is non-empty

– If VD − K(pD(n̄D)) ≥ 0, and VD − K(pD(n̄D)) ≥ UD(p̂, n̂D), then D selects p∗ =

pD(n̄D) and C is deterred,

– If VD −K(pD(n̄D)) < 0 and 0 ≥ UD(p̂, n̂D), D selects p∗ = p0, C challenges, and D
acquiesces.

– Otherwise, D selects p∗ = p̂ and n∗D = n̂D, C challenges, and D fights.

• Case 4: When pC(nD) ≤ pD(n̄D) and N̂ is empty

– If VD −K(pD(n̄D)) ≥ 0, then D selects p∗ = pD(n̄D) and C is deterred,

– Otherwise, D selects p∗ = p0, C challenges, and D acquiesces.

7 Cross-Equilibrium Analysis
When D can select the nuclear instability parameter, it can leads to greater or lower levels
of nuclear instability and lower levels of arming. For example, consider N = {n, n, n̄}, with
n < n < n̄. Suppose it is optimal for D to deter C. In this new model (compared to the old
model), here D either selects p∗ = pD(n̄D) or p∗ = pC(nD), where these values are lower than
pD and pC (respectively).

Part IV

Extension: Endogenous Bargaining

The model in the main text was a deterrence model, much like Carter (2010), Baliga et al.
(2020), and the paper this model is closest to, Powell (2015). However, some readers may have
concerns about what the addition of bargaining would do to the paper’s equilibrium actions
and results. So long that the crisis bargaining setting has some kind of commitment problem,
fighting is still possible and the crisis bargaining setting strongly resembles the deterrence
setting. Here I modify the model to (a) allow for endogenous bargaining and (b) have a
commitment problem stemming an exogenous power shift.
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The model is as follows. Two players, a challenger (C) and a defender (D), are in a deterrence
game with complete information over an infinite time horizon. The game order is as follows.

1. Period t = 1 begins.

2. D selects a conventional force level p ∈ [p0, p1], which determines D’s likelihood of winning
in a conventional conflict in period t = 1. I assume 0 < p0 < p1 < 1. Arming costs D
one-time cost K(p), with K : R+ → R+ increasing and continuous, and K(p0) = 0.

3. D selects xt ∈ [0, 1], which is some proposed split of the asset.

4. C selects whether to challenge or not. If C does not challenge, C receives share xt of the
asset, D receives share 1−xt of the asset, and the game moves to Step 6. If C challenges,
the game moves to Step 5.

5. In response to C challenging, D selects whether to acquiesce or fight. If D acquiesces, the
game ends and C receives the entirety of the good for all remaining periods. If D fights
and escalates to conflict, then the game ends and both states receive their conflict payoffs
(described below).

6. In response to C not challenging, period t ends, and actors receive a per-period payoff
that is the split of the good. The period is updated to t = t + 1, and payoffs in period t
are discounted by the common rate δ. The game re-starts at Step 3.

Suppose D makes some stream of offers xt for all t and C does not challenge. Their payoffs are

UC =
∞∑
t=1

δt−1xtvC

UD =−K(p) +
∞∑
t=1

δt−1(1− xt)vD

Next, suppose D makes some offer x1, C challenges, and D acquiesces. The payoffs are

UC =
vC

1− δ

UD =−K(p)

Next, suppose D arms to level p, makes some offer x1, C challenges (in the first round), and D

16



fights. Letting h(p) = n+ α
p(1−p) , The payoffs here are as follows

UC =
1

1− δ

(
n

h(p)
∗ (−NC) +

α

h(p)p(1− p)
((1− p)vC)− cC

h(p)

)

UD =−K(p) +
1

1− δ

(
n

h(p)
∗ (−ND) +

α

h(p)p(1− p)
(pvD)− cD

h(p)

)

Finally, after the initial period, assume that D and C have engaged in a series of offers where
C does not challenge. Then, in period q > 1, C challenges in response to xq and D fights. I
abuse notation and define the new distribution of power as exogenous parameter p̃ ∈ [p0, 1).

UC =

q∑
t=1

δt−1xtvC +
δq

1− δ

(
n

h(p̃)
∗ (−NC) +

α

h(p̃)p̃(1− p̃)
((1− p̃)vC)− cC

h(p̃)

)

UD =−K(p̃) +

q∑
t=1

δt−1(1− xt)vD +
1

1− δ

(
n

h(p̃)
∗ (−ND) +

α

h(p̃)p̃(1− p̃)
(p̃vD)− cD

h(p̃)

)
Essentially, in this model, if D makes C an offer x1 and C does not challenge, the game moves
on with bargaining. A key feature here is that between periods 1 and 2, there is an exogenous
power shift that might create a commitment problem. While bargaining could play out, C (or
D) could decide that fighting in the first period would be optimal. Admittedly, this is a stark
way of modeling a future shift in power: ultimately, this model is about showing how C and D
being in a crisis in an environment with a power shift makes a crisis bargaining version of the
model produce virtually identical results as the deterrence model (in the paper). While this
could be done in many different, the modeling assumptions made here are designed to make
this more complex model as tractable as possible and to offer the simplest intuition as to why
the introduction of bargaining does not radically change the Remarks.

8 Equilibrium Assumptions & Equilibria
I only consider subgame perfect equilibria. I also make a series of assumptions about parameter
features to simplify the analysis. I make two assumptions, one of which that is equivalent the
assumptions in the main text. I assume that without any arming, D is unwilling to fight in the
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first period after C challenges D. Letting pD = 1 − αvD
cD+nND

, this is pD > p0.13 Additionally, I
assume that in the first period, D will be willing to fight at some arming level, or that pD ≤ p1.

The next assumption is new and relates to the power shift. I assume that if the power shift is
allowed to happen, then this power shift favors D to the point where C is no longer willing to
challenge in the future. This is

0 ≥ 1

1− δ

(
n

h(p̃)
∗ (−NC) +

α

h(p̃)p̃(1− p̃)
((1− p̃)vC)− cC

h(p̃)

)
.

Additionally, this power shift is such that D is always willing to fight when challenged, or

p̃ ≤pD

All these assumptions reduce the numbers of cases and make the ensuing analysis simpler.

The equilibria are as follows:

8.1 Periods t ≥ 2

If the game enters into the second period, the game settles into a fixed equilibrium path. Here,
D has experienced the power shift, meaning here D can extract the asset from C via bargaining
(i.e. set xt = 0 for all t ≥ 2). When D makes this offer, C is at least indifferent between
accepting and challenging, and will accept. From here, the game repeats such that D can keep
offering C xt = 0, and C will continue accepting.

8.2 Period t = 1

The bulk of strategic play happens in the first round. Essentially, three things can happen.
First, D could acquiesces. This is D not arming (p = p0) and setting any x1 ∈ [0, 1], then
C challenging, and then D acquiescing. This gives C the asset in the first round and all future
rounds. This will give D payoff

UD(acquiesce) =0.

13Note in this model the condition is 0 > 1
1−δ

(
n

h(p0) ∗ (−ND) + α
h(p0)p0(1−p0) (p0vD)− cD

h(p0)

)
, which is sim-

plified to the same pD.
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Second, D could deter C. If D is optimally deterring C, D will select a p and x1 that
optimizes the following (recall h(p) = n+ α

p(1−p)):

maxp∈[p0,p1],x1∈[0,1]

{
−K(p) + (1− x1)vD +

δ

1− δ
vD

}
conditional on the following holding

p ≥pD

x1vC ≥
1

1− δ

(
n

h(p)
∗ (−NC) +

α

h(p)p(1− p)
((1− p)vC)− cC

h(p)

)
I let x1 = x̌ and p = p̌ denote the solution to the above optimization. There are several things
to note here. Note that the first constraint (that p ≥ pD) is the same as it was in the main
model. Essentially, when D is choosing between fighting and acquiescing, D is choosing between
getting zero forever or getting D’s wartime payoff forever, making the constraint equivalent to
the one-period model.14 Also note that the second constraint is different—because D can make
some first-round offer to C to prevent war, C is deciding between fighting in the first round
and accepting a first round offer (x1) then getting nothing for all future periods given period
2 behavior. This dynamic is similar, but still somewhat different from the main model. Also
note, as it was in the main model, there may not exist a feasible p and x1 satisfying these these
two inequalities. The second inequality may not be satisfied, which is akin to when pC > p1 in
the main model. Lastly, note that this is still set up as two constraints on p, one where D must
be willing to fight (the top constraint) and the second where C must do sufficiently bad from
challenging conditional on D fighting.

Overall, when D deters C, I assume that D selects some x1 = x̌ and p = p̌ that are the
solution to the maximization problem above. This will give D utility

UD(x̌, p̌) = −K(p̌) + (1− x̌)vD +
δ

1− δ
vD

Third, D could go to war. When this is the case, D will select a p and x1 such that the
following holds.

maxp∈[p0,p1],x1∈[0,1]

{
−K(p) +

1

1− δ

(
n

h(p)
∗ (−ND) +

α

h(p)p(1− p)
(pvD)− cD

h(p)

)}
14D must select some p such that 0 ∗ 1

1−δ ≤
1

1−δ

(
n
h(p) ∗ (−ND) + α

h(p)p(1−p) (pvD)− cD
h(p)

)
.
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such that D would be willing to fight if challenged and C does not challenge, or (respectively)

p ≥1− αvD
cD + nND

= pD

x1vC <
1

1− δ

(
n

h(p)
∗ (−NC) +

α

h(p)p(1− p)
((1− p)vC)− cC

h(p)

)
I denote x1 = x̃ and p = p̃ as the values that optimize the above. Note that I set this up as
an optimization over all feasible p where the second constraint could be satisfied with equality.
But, if D ever selects a x1 and p that has the second constraint hold with equality, then this
will deter C. Ultimately, this does not matter much; if D selects such a set of values, D would
instead prefer deterring C from challenging, so this will never be optimal for D. For shorthand,
I will denote D’s utility from selecting this optimal x̃ and p̃ as UD(x̃, p̃).

Together, I can describe D’s equilibrium play.

Proposition 1B : There exists an essentially unique 15 subgame perfect equilibrium taking
the following form. Working backwards, in any round where t ≥ 2, D will set xt = 0 and C
will accept. In the first round, if challenged, D will fight whenever p ≥ pD and will acquiesce
otherwise. Before D fights or acquiesces, if both p ≥ pD and
x1vC ≥ 1

1−δ

(
n
h(p)
∗ (−NC) + α

h(p)p(1−p) ((1− p)vC)− cC
h(p)

)
, then C will not challenge; otherwise

C will challenge. And before C challenges or not, D will select the following arming levels
(letting x1 = x∗and p = p∗ denote equilibrium arming levels):

• Case 1: When there exists some feasible x1, p satisfying
x1vC ≥ 1

1−δ

(
n
h(p)
∗ (−NC) + α

h(p)p(1−p) ((1− p)vC)− cC
h(p)

)
, and there exists some (differ-

ent) feasible x1, p satisfying both x1vC <
1

1−δ

(
n
h(p)
∗ (−NC) + α

h(p)p(1−p) ((1− p)vC)− cC
h(p)

)
and p ≥ pD

– If UD(x̌, p̌) ≥ UD(x̃, p̃) and UD(x̌, p̌) ≥ 0, then D selects p∗ = p̌ and x∗ = x̌ and C
will not challenge (C is deterred).

– If UD(x̌, p̌) < UD(x̃, p̃) and UD(x̃, p̃) ≥ 0, then D selects p∗ = p̃ and x∗ = x̃, C will
challenge, and D will fight.

– Otherwise, D will select p∗ = p0, C will challenge, and D will acquiesce.
15Two other types of equilibria could also exist. First, mixed-strategy equilibria can exist when players are

indifferent over their actions. Second, the optimal selected p conditional on D wanting to fight C could take
on multiple values that D could mix over. Ultimately, I assume assuming that neither D nor C is mixing over
actions that they are indifferent over when these cases arise.
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• Case 2 (deterrence is impossible): When there does not exist any feasible x1, p sat-
isfying x1vC ≥ 1

1−δ

(
n
h(p)
∗ (−NC) + α

h(p)p(1−p) ((1− p)vC)− cC
h(p)

)
, and there exists some

feasible x1, p satisfying both x1vC <
1

1−δ

(
n
h(p)
∗ (−NC) + α

h(p)p(1−p) ((1− p)vC)− cC
h(p)

)
and

p ≥ pD.

– If UD(x̃, p̃) ≥ 0, then D selects p∗ = p̃ and x∗ = x̃, C will challenge, and D will fight.

– Otherwise, D selects p∗ = p0, C challenges, and D acquiesces.

• Case 3 (fighting is impossible): When there exists some feasible x1, p satisfying
x1vC ≥ 1

1−δ

(
n
h(p)
∗ (−NC) + α

h(p)p(1−p) ((1− p)vC)− cC
h(p)

)
, and there does not exist any

feasible x1, p satisfying both x1vC <
1

1−δ

(
n
h(p)
∗ (−NC) + α

h(p)p(1−p) ((1− p)vC)− cC
h(p)

)
and

p ≥ pD.

– If UD(x̌, p̌) ≥ 0, then D selects p∗ = p̌ and x∗ = x̌ and C will not challenge (C is
deterred).

– Otherwise, D selects p∗ = p0, C challenges, and D acquiesces.

Proof: Follows by construction.

9 Results
9.1 Feasibility of Fighting/Game Outcomes

First, it is worthwhile pointing out that, in this model, fighting is entirely feasible. Consider
the parameters p0 = 0.001, p1 = 0.8, cD = 10, cC = 1, NC = 10, ND = 40, α = 0.2, n = 0.02,
K(p) = 30 ∗ (p − p0)2, vD = 20, vC = 10, and δ = 0.95. Under these parameters, D cannot
deter C: when D sets p = 0.8 and x = 1, C is still willing to fight; however, D does better here
fighting rather than acquiescing, so in equilibrium, D will set p = 0.8, x = 0, C will challenge,
and D will fight. Naturally, fighting is not the only possible outcome: if all parameters were
the same by vD was lowered to vD = 12, then D would acquiesce. Below, I will discuss cases
where D deters C.

9.2 Do the Remarks Still Hold?

Regarding Remarks 1, 2, and 5, the intuition described in the main text still holds. For
deterrence, D must select a p such that (a) D is willing to fight, and (b) C must suffer enough
from fighting. These two constraints are still influenced by n in opposite ways. For example,
under the parameters p0 = 0.001, p1 = 0.9, cD = 8, cC = 1.5, NC = 50, ND = 40, α = 0.2,
n = 0.02, K(p) = 15 ∗ (p − p0)2, vD = 15, vC = 8, and δ = 0.9, D wants to deter C, and can
do so by setting p = 0.6591 and x1 = 0. However, if n increases to 0.035, then D switches to
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setting p = 0.6809 and x1 = 0; in short, p increases, thus leading to greater arming costs. As
a second example, under the parameters, p0 = 0.001, p1 = 0.9, cD = 10, cC = 1.5, NC = 30,
ND = 40, α = 0.2, n = 0.02, K(p) = 35 ∗ (p− p0)2, vD = 15, vC = 10, and δ = 0.9, D will deter
C by setting p = 0.7958 and x1 = 0.3305. However, if n increases to 0.035, then D switches to
setting p = 0.7502 and x = 0.1052; in short, p decreases, thus leading to lower arming costs.

A partial form of Remark 3 can be replicated. The difficulty here lies in analyzing the constraint
on C’s arming level; whereas before the constraint could be written in terms of p (p < pC for C
to be willing to fight), now this constraint is more complex.16 There is not an easy resolution
for this. Instead, I offer a different version of Remark 3 for this new model.

Remark 3B. Consider nuclear instability parameters n′, n′′ ∈ R+ with n′ < n′′. If n′ shifts to
n′′and x∗1(n′) = x∗1(n′′) = 0, then the likelihood of war weakly decreases.

Essentially, by assuming that the equilibrium the optimal offer is zero across both levels of
nuclear instability, I am able to attain the nuclear peace result in this new model. Additionally,
this result is easy to achieve in simulations; if I used the parameters from the “Feasibility of
Fighting/Game Outcomes” subsection above but raised n to 0.2, then D would optimally deter
C by setting p = 0.7778 and x1 = 0, which would keep C from challenging (i.e. reduce the
likelihood of war from certainty to zero).

Regarding Remark 4, the proof is identical to as it was in the main text (K and the 1/(1− δ)
terms drop out when signing the cross-partial derivative).

Part V

Extension: Incomplete Information Model
and Discussion

10 Equilibrium Overview
The discussion of equilibrium behavior in the main paper was written in terms of strategic
behavior. This was done in an attempt to make the presentation of strategic behavior as-clear-
as-possible. Here, I discuss the equilibrium characterization in terms of specific arming levels,
namely, considering every unique arming pair from both types of D. For the purpose of proving
the various characterizations are equilibrium behavior within a set of parameters, this is better.

16This is now x1vC ≤ 1
1−δ

(
n
h(p) ∗ (−NC) + α

h(p)p(1−p) ((1− p)vC)− cC
h(p)

)
.
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Type vD
arming

Type v̄D
arming

How is arming
used? (Low-type
first)

War with D? (Low-
type first)

Separating 1 p0 pD(v̄D) Acquiesce, Deter No, No
Separating 2 p0 pC Acquiesce, Deter No, No
Separating 3 p0 p̂(v̄D) Acquiesce, Fight No, Yes
Separating 4 p0 p̄ Acquiesce, Signal No, No
Separating 5 p̂(vD) p̂(v̄D) Fight, Fight Yes, Yes
Separating 6 p̂(vD) pC Fight, Deter Yes, No
Pooling 1 p0 p0 Acquiesce, Acquiesce No, No
Pooling 2 pD(v̄D) pD(v̄D) Bluff, Deter No, No
Pooling 3 p̃ p̃ Bluff, Deter No, No
Pooling 4 pD(vD) pD(vD) Deter, Deter No, No
Pooling 5 pC pC Deter, Deter No, No

Table 1: Equilibrium Summary. Note that implicit here is that p0 < pD(v̄D).

What does equilibrium arming behavior look like? I summarize these various arming levels in
the Table 1, which assumes p0 < pD(v̄D).17

The way to read the table is as follows. The first column names the equilibrium, indicating
whether it is pooling or separating. The second and third column specify the low-type’s and
high-type’s arming levels. The forth column describes what the arming level accomplishes,
using the terminology in the text. And the fifth column flags if war occurs or not.

To give a sense of what the game looks like, see Figure 2 displays the equilibrium for various
parameters while allowing vD and vC to vary. vD increases along the x-axis, and vC increases
along the y-axis. Note that these are the same parameters as Figure 1 in the main text, which
allows for easy comparison between the labeling here and the labeling in the text. For example,
the Separating 1 and Separating 2 equilibria form the “Deter-Acquiesce” equilibrium space,
Pooling 2 and Pooling 3 form the “Deter-Bluff” equilibrium space, etc.

To give a sense of how the game plays out, recall that high-type D’s are always willing to
arm to level pD(v̄D) if this results in C not challenging by the parameter assumptions. In the
bottom-left corner of Figure 1 (Separating 1), low-type D’s care very little about the asset (low
vD). In the Separating 1 parameter space, low-type D’s are unwilling to arm to the level where
they would imitate high-type D’s, even if it led to them attaining the asset. In this parameter
space, C will never challenge upon observing p = pD(v̄D) because C knows only high-types of
D would be wiling to make this investment, and high-types would always fight after selecting

17I express the full equilibria without this assumption in the “Characterizing and Proving the Equilib-
ria” section. To offer one example, the arming levels in Pooling 2 without this assumption would be
p = max

{
p0, p

D(v̄D)
}
.
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Figure 2: On the x-axis, I vary the values of vD, and on the y-axis I vary the values of vC . “S1”
is in reference to “Separating 1,” and “P2” is in reference to “Pooling 2,” etc. I add extra text
to describe where war happens. The cost function is k ∗ (p∗ − p0)2. Note that Pooling 1 isn’t
visualized; because high-type D’s going to war gives these D’s a better payoff than selecting
p0 and acquiescing, this equilibrium space is ruled out (if war were more expensive, P1 would
exist roughly where S3 and S5 is).

this investment level. Also here, C will always challenge upon observing p = p0, because only
low-types make the low investment and C knows that if they challenge, then they will attain
the asset.

Moving to the right, low-type D’s care more about the asset. Within Pooling 2, low-type D’s
are willing to select arming level p = pD(v̄D) if it results in them attaining the asset (i.e. C
not challenging).18 That being said, if low-type D’s select arming level p = pD(v̄D) and were
challenged, they would not fight because pD(v̄D) < pD(vD); however, in this range, because C
cares so little about the asset, C is unwilling to challenge at arming level pD(v̄D) even though
C knows that by challenging all low-type D’s would drop out. Moving up to Pooling 3, the
logic is the same, only D’s must pool on a slightly higher level of arming p = p̃ to deter C from
challenging even though C knows low-type D’s would drop out if challenged.

Moving up from Pooling 3 into the Separating 4 and Pooling 4 regions, C cares more about
the asset, but is still unwilling to challenge if C knew that D would fight in response. Within
this range of parameters, no arming level exists where (a) high-type D’s would fight when
challenged, (b) low-type D’s would acquiesce when challenged, and (c) C would be deterred
from challenging conditional on D’s behavior as characterized in Pooling 2 and 3. When low-

18This holds because vD − k(p̄D) ≥ 0 in this range.
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type D’s do not value the asset enough—as characterized by vD−k(pD(vD)) < 0)—a separating
equilibrium (Separating 4) exists where high-type D’s select an arming level that will insure
low-type D’s will not mimic them (p = p̄), and low-type D’s will select the lowest arming level
p = p0. In response, C would never challenge when observing p = p̄, and would always challenge
when observing p = p0. When low-type D’s value the asset more (Pooling 4)—as characterized
by vD − k(pD(vD)) ≥ 0—low-type D’s attain a positive utility from arming to level p = pD(vD)

and deterring C from challenging.

Moving up again, when pD(v̄D) < pC (to Separating 2), then the level of arming that would
convince a high-type D to fight after being challenged is less than the level of arming that would
deter C from challenging conditional on D fighting with certainty. Thus, within this range, D
must select a level of arming that exceeds pD(v̄D) to deter C. This level of arming will be pC ,
the level that would make C not challenge (Separating 2). In the range of vD values where
v̄D − k(pD(vD)) ≥ 0, low-type D’s begin caring enough and could select Pooling 5, where they
choose pC in order to deter C.

Finally, in the top region of the graph, high-type D’s are no longer willing to arm to level pC to
deter C, or it becomes impossible with pC > p1. Under these parameters, then high-type D’s
will either select p = p0 and acquiesce when challenged (Pooling 1), or will select p = p̂(v̄D)

and fight when challenged (Separating 3), depending on which offers D a greater utility. When
high-type D’s optimally select p = p0, low-type D’s will always match high-type D’s play and
select p = p0. When high-type D’s optimally select p = p̂(v̄D), low-type D’s will either select
p = p0 (when vD is low, Separating 3), or will select p = p̂(vD) and will fight when challenged
(Separating 5).19

11 Proving Lemma 1
Before I characterize and prove the equilibrium, I must prove Lemma 1. Lemma 1 estab-
lishes, for a set of parameters, that the selected level of arming p is increasing in D’s type
(vD ∈ {vD, v̄D}). This Lemma is useful on two accounts. First, it is critical to Remark 1, which
establishes the positive relationship between type and arming across the entire set of possible
parameters. Second, the set of parameters included within Lemma 1 span several equilibria
spaces. This allows me to refer to the monotonicity result within Lemma 1 at several points to
make the equilibrium proofs more abbreviated.

Below I will refer to pC and pD(vD), where vD ∈ {vD, v̄D}. I let p = αvC
cC+nNC

and pD(vD) =

1 − αvD
cD+nND

. These are the arming values where C would be deterred from challenging if D

19Note: Separating 5 may not actually be separating when low and high type D’s optimally select the same
arming level when fighting. For example, this can occur when pC > p1 and both low and high types arm to
level p = p1.
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fought, and the arming value where type vD D would be willing to fight.

Lemma 1: Suppose vD −K(pD(vD)) ≥ 0 and pD(vD) < pC. Given C’s equilibrium behavior,
within this region, high types select greater arming levels (i.e. p∗(v̄D) ≥ p∗(vD).20

Proof: Consider what this range means for D. Due to vD − K(pD(vD)) ≥ 0, low types may
become willing to deter or fight rather than just arm to level p0 and let C take the asset.21

And, due to pD(vD) < pC , each type D faces their own optimization problem with their arming
decision that fully determines equilibrium play. To summarize equilibrium play in this region, if
a type vD D selects some p ∈ [0, pD(vD)), C will challenge and D will acquiesce. If D selects some
p ∈ [pD(vD), pC), then C will challenge and D will fight. And, if D selects some p ≥ pC , then C
will not challenge. Formally, under these parameters, both types of D face a non-continuous,
non-concave optimization problem with respect to arming, where their utility function for all
p ∈ [p0, p1] is

UD(p; vD) =


0−K(p) if p < pD(vD)

− np(1−p)
α+np(1−p)ND + α

α+np(1−p) (pvD)− cDp(1−p)
α+np(1−p) −K(p) if pD(vD) ≤ p < pC

vD −K(p) if pC ≤ p ≤ p1

Because I have kept things general and cannot identify an explicit solution, for Lemma 1 to
hold, I must show that in this region enough structure exists where high type D’s will always
select weakly lower levels of arming than low-type D’s. This part of the proof will utilize the
Topkis Monotonicity Theorem (Topkis 1978; Milgrom and Shannon, Econometrica 1994). For
ease, I define the relevant increasing differences condition:

Definition: Function UD : [p0, p1]×{vD, v̄D} → R has increasing differences (ID) in (p, vD)

if, for all p′ > p and v′D > vD, UD(p′, v′D)− UD(p, v′D) ≥ UD(p′, vD)− UD(p, vD).

The Topkis Monotonicity Theorem can then clarify the relationship between the set of selected
arming levels p∗(vD) = argmaxp∈[p0,p1)UD(p; vD) and D’s private value vD. This is defined as
the following:

Topkis Monotonicity Theorem: If UD(p; vD) has increasing differences (ID) in p and vD, then
p∗(vD) is non-decreasing.

To use the Topkis Theorem, I first show that an optimal p (or set of p’s) exist by demon-
20Technically the set p∗ is non-decreasing in private type.
21When vD −K(pD(vD)) < 0, low types prefer setting p = p0 and receiving payoff 0 to arming to level vD

and getting the good with certainty.
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strating that there are no “open set” issues. In the first region of the utility function, or
Region 1 (the region where the selected p < pD(vD)), D’s utility is strictly decreasing in p,
meaning the optimal p for this region is p0 (so long that p0 < pD(vD)).22 Next, Region 3
(where pC ≤ p), D’s utility is strictly decreasing, making pC the optimal arming level. Finally,
consider an analysis of a modified23 Region 2. Consider the function V (p) = − np(1−p)

α+np(1−p)ND +
α

α+np(1−p) (pvD) − cDp(1−p)
α+np(1−p) −K(p) that is optimized over the closed set pD(vD) ≤ p ≤ pC . So

long that V is not maximized at pC , then there is a clearly defined optimum to UD(p) over the
span of Region 2 (pD(vD) ≤ p < pC). If V is maximized at pC , then based on the parameter
assumptions, D would do strictly better setting p = pC and attaining utility vD − K(pC).24

Together, this means that the discontinuities between Regions will never create open set issues,
making this a well-define optimization problem with at least one solution.

Having established a non-empty set of optima exist for UD(p; vD) as defined above, I must
show that the above utility function exhibits increasing differences (ID) in vD and p. It is
straightforward to see that within Regions 1 and 3—in other words, for a p, p′ pair such that
both p fall within Region 1 (or Region 3)—(ID) holds with equality. Within Region 2, (ID) is
equivalent to showing

α

α + np′(1− p′)
(p′v′D)− α

α + np(1− p)
(pv′D)−

(
α

α + np′(1− p′)
(p′vD)− α

α + np(1− p)
(pvD)

)
≥0

or (
αp′

α + np′(1− p′)
− αp

α + np(1− p)

)
(v′D − vD) ≥0.

This will hold so long that

αp′

α + np′(1− p′)
− αp

α + np(1− p)
≥0

or

α2p′ − α2p+ αnpp′(1− p)− αnpp′(1− p′) ≥0,

which will hold because p′ > p.

Across regions is slightly more complicated. To show UD has increasing differences, I write
22Consider the edge case where p0 = pD(vD). In this case, D’s utility from selecting p0 then acquiescing when

challenged is the same as their utility from selecting p0 then fighting when challenged. So, for the equilibrium
that I consider, D will always fight.

23The modification here is that I optimize over the set pD(vD) ≤ p ≤ pC here rather than over the set
pD(vD) ≤ p < pC as it was above.

24This will be the case because αp/(α+ np(1− p)) is always less than 1.
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out every case I must consider, as characterized by what Region of the utility function that
the considered p or p′ and vD or v′D put the function into. Note that there is some structure
to the cases that I consider; for example, if (p′, v′D) puts the utility function into Region 2,
then (p′, vD) , (p, v′D), and (p, vD) must fall within Region 2 or Region 1, but not Region 3. As
intuition, lowering p and vD can never shift pC downward or result in p ≥ pC when I started
with p′ < pC . And, if (p′, v′D) (or (p, v′D)) puts the utility function into Region 3, then (p′, vD)

(or (p, vD)) must also fall within Region 3 because pC is unchanging in vD.25 The set of cases
that I must consider are shown in the Table below. To interpret what this means, Case A
(below) implies that for a given p′ and v′D, the utility function is in the second region (where D
is going to war); and, for (p, v′D), (p′, vD), and (p, vD), the utility function is in the second region.

Cases UD(p′; v′D) UD(p; v′D) UD(p′; vD) UD(p; vD)

A 2 1 1 1
B 2 2 1 1
C 2 1 2 1
D 2 2 2 1
E 3 2 3 2
F 3 2 3 1
G 3 1 3 1

Before I proceed showing UD has increasing differences (UD(p′, v′D)−UD(p, v′D) ≥ UD(p′, vD)−
UD(p, vD)), note the following properties hold:

Property (a): if p ≥ pD(vD), then − np(1−p)
α+np(1−p)ND + α

α+np(1−p) (pvD)− cDp(1−p)
α+np(1−p) ≥ 0.26

Property (b): αp
α+np(1−p) < 1 and αp′

α+np′(1−p′) < 1.27

Property (c): if p ≥ pD(vD), then − np(1−p)
α+np(1−p)ND + α

α+np(1−p) (pvD) − cDp(1−p)
α+np(1−p) is increasing in

p.28

Property (d): I abuse notation and (sometimes below will) bring in the region numbers to
the utility function, letting UD(p; vD, 1) = −K(p), UD(p; vD, 2) = − p(1−p)

α+np(1−p) (nND + cD) +
α

α+np(1−p) (pvD)−K(p), and UD(p; vD, 3) = vD −K(p), regardless of p’s relationship to pD(vD)

25This latter point rules out, for example, a “Case H” where, in order, the regions are 3, 3, 3, and 1. This is
ruled out because if UD(p; v′D) falls in region 3, then it must also be the case that UD(p; vD) falls in region 3.

26This holds based on how pD(vD) is defined: when p ≥ pD(vD), then D is willing to fight and attain utility
− np(1−p)
α+np(1−p)ND + α

α+np(1−p) (pvD)− cDp(1−p)
α+np(1−p) over acquiesce and attain utility 0.

27This holds by virtue of p ∈ [0, 1].
28Taking first order conditions gives d

dp

(
− p(1−p)
α+np(1−p) (nND + cD) + α

α+np(1−p) (pvD)
)

=

α(2p−1)(cD+nND)+αvD(α+np2)
(α−n(p−1)p)2 , or equal to αp(cD+nND)+α(1−p)(−cD−nND)+αvD(α+np2)

(α−n(p−1)p)2 . The right-hand side
will be positive whenever −(1− p)(cD + nND) + vD(α+ np2) ≥ 0, which will hold by Property (a).
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or pC ; for example, I will let UD(pC ; vD, 1) = −K(pC). If p < pD(vD), then UD(p; vD, 2) <

UD(p; vD, 1) (because p is fixed).

I now describe how UD exhibits increasing differences across all cases listed above.

Case A: UD(p′; v′D) > UD(p′; vD) by property (a), and UD(p; v′D) = UD(p; vD) because they are
in Region 1; therefore, (ID) holds.
Case B : by property (c) UD(p′; v′D)−K(p′)− (UD(p; v′D)−K(p)) > 0; therefore (ID) holds.

Case C : UD(p′; v′D) > UD(p′; vD) because, in Region 2, UD is increasing in vD. Also, UD(p; v′D) =

UD(p; vD);therefore, (ID) holds.

Case D: because Region 2 exhibits (ID), I can say UD(p′; v′D)−UD(p; v′D)−(UD(p′; vD)− UD(p; vD, 2)) ≥
0. By Property (d) UD(p; vD, 2) < UD(p; vD, 1) = UD(p; vD); therefore (ID) holds.

Case E: ID in region 2 implies UD(p′; v′D, 2)− UD(p; v′D)− (UD(p′; vD, 2)− UD(p; vD)) ≥ 0. By
property (b) (v′D − vD)

(
1− αp′

α+np′(1−p′)

)
> 0; I can add this to the left hand side and (ID) will

then hold.

Case F: (ID) in region 2 implies UD(p′; v′D, 2)− UD(p; v′D)− (UD(p′; vD, 2)− UD(p; vD, 2)) ≥ 0.
Because (v′D − vD)

(
1− αp′

α+np′(1−p′)

)
> 0, I can add this to the left hand side and get UD(p′; v′D)−

UD(p; v′D) − (UD(p′; vD)− UD(p; vD, 2)) ≥ 0. I use property (d) to say that UD(p; vD, 2) <

UD(p; vD, 1) = UD(p; vD), which will imply (ID) holds.

Case G: UD(p′; v′D) > UD(p′; vD) trivially and UD(p; v′D) = UD(p; vD), meaning (ID) holds.

Thus, increasing differences holds, and p∗(vD) is non-decreasing. Note that in this region it
is not only that p∗(v̄D) ≥ p∗(vD), but also, for example, if v̄′D > v̄D, p∗(v̄′D) ≥ p∗(v̄D). As
discussed in the text, this condition does not hold throughout.

12 Characterizing and Proving the Equilibrium
Here I fully characterize every equilibrium, and prove it’s existence within the given parameter
set.

12.1 Separating Equilibrium 1:

• This equilibrium occurs when vD −K(pD(v̄D)) ≤ 0 , pD(v̄D) ≥ pC ,29 pD(v̄D) > p0.

• Type v̄D selects p∗ = pD(v̄D), and type vD selects p∗ = p0.

• C will challenge for all p < pD(v̄D) and will not challenge for all p ≥ pD(v̄D).
29Note: recall that I am assuming (by the “Parameter Assumptions”) v̄D−K(pD(v̄D)) > 0, and p1 > pD(v̄D).
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• For this equilibrium and all other Equilibrium listed below (i.e. Separating 2, Separating
3, etc), each type of D would escalate if p ≥ pD(vD). Type vD (who is challenged) will
not escalate. Type v̄D (who is not challenged) would escalate if challenged.

• C’s Beliefs: If p < pD(v̄D), then C believes D is low-type with probability 1. If p ≥ pD(v̄D),
then C believes D is high-type with probability 1.

• Payoffs: Type v̄D attains v̄D −K(pD(v̄D)), type vD attains 0.

Proof of Equilibrium:
For type vD: Within the range p ∈ [p0, p

D(v̄D)), C will challenge and D will acquiesce, making
D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming
levels. For any p ∈ [pD(v̄D), p1], C will not challenge, making D’s utility strictly decreasing in p.
Thus, in this range, p = pD(v̄D) dominates all other arming levels. Due to vD−K(pD(v̄D)) ≤ 0,
low-type prefer selecting p = p0 to p = pD(v̄D).

For type v̄D: Because after selecting p ∈ [p0, p
D(v̄D)), it would be optimal for D to acqui-

esce rather than fight, 30 following the logic above, high types choose between p0 and pD(v̄D).
From the Parameter Assumptions v̄D − K(pD(v̄D)) > 0, meaning high types prefer selecting
p = pD(v̄D) to p = p0.

For C: For p ∈ [p0, p
D(v̄D)), C believes D is a low-type and would acquiesce if challenged,

which gives C a strictly positive payoff. For p ∈ [pD(v̄D), p1], the selected p ≥ pC , meaning C
does weakly better not challenging.

12.2 Separating Equilibrium 2:

• This equilibrium occurs when
(a) pD(vD) < pC , pD(v̄D) < pC , max {0, UD(p̂(v̄D))} ≤ v̄D − K(pC), 0 ≥ vD − K(pC),
0 > UD(p̂(vD)), pC ≤ p1, pC > p0, or
(b) pD(vD) ≥ pC ,pD(v̄D) < pC , max {0, UD(p̂(v̄D))} ≤ v̄D − K(pC), 0 ≥ vD − K(pC),31

pC ≤ p1, pC > p0,

• Type v̄D selects p∗ = pC , and type vD selects p∗ = p0.

• C will challenge for all p < pC and will not challenge for all p ≥ pC .

• Type vD (who is challenged) will not escalate. Type v̄D (who is not challenged) would
escalate if challenged.

30This follows from the definition of pD(v̄D).
31Note: this only goes up to pC instead of pD(vD) because in equilibrium play it will be the case that playing

pC will keep C from challenging.
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• C’s Beliefs: If p < pC , then C believes D is low-type with probability 1. If p ≥ pC , then
C believes D is high-type with probability 1.

• Payoffs: Type v̄D attains v̄D −K(pC), type vD attains 0.

Proof of Equilibrium:
For type vD:
Case (a). Within the range p ∈ [p0, p

D(vD)), C will challenge and D will acquiesce, making
D’s utility is strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming
levels. Within the range p ∈ [pD(vD), pC), C will challenge and D will fight. Thus, in this range,
p = p̂(vD) weakly dominates all other arming levels.32 Within the range p ∈ [pC , p1], C will not
challenge, making D’s utility strictly decreasing in p. Thus, in this range, p = pC dominates
all other arming levels. By the conditions of the case, 0 ≥ vD − K(pC) and 0 > UD(p̂(vD)),
implying that D prefers p0 to fighting or deterring.

Case (b). Within the range p ∈ [p0, p
C), C will challenge and D will acquiesce, making D’s

utility is strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming levels.
Within the range p ∈ [pC , p1], C will acquiesce, making D’s utility strictly decreasing in p.
Thus, in this range, p = pC dominates all other arming levels. By the conditions of the case
0 ≥ vD −K(pC), implying that D prefers setting p = p0 to deterring.

For type v̄D: Within the range p ∈ [p0, p
D(v̄D)), C will challenge and D will acquiesce, making

D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming
levels. Within the range p ∈ [pD(v̄D), pC), C will challenge and D will fight; thus, in this range
p = p̂(v̄D) weakly dominates all other arming levels.33 Within the range p ∈ [pC , p1], C will not
challenge, making D’s utility decreasing in p. Thus, in this range, p = pC dominates all other
arming levels. By the conditions of the case, max {0, UD(p̂(v̄D))} ≤ v̄D−K(pC), implying that
D prefers setting p = pC and deterring to fighting or acquiescing.

For C: For p ∈ [p0, p
C), C believes D is a low-type and would acquiesce (when p < pD(vD))

or fight (when p ≥ pD(vD)) if challenged; regardless, C attains a strictly positive payoff for
challenging (based on the pC condition). For p ∈ [pC , p1], C believes that D is a high type and
would fight if challenged, which gives C a weakly negative payoff for challenging (based on the
pC condition).

32If p̂(vD) = pC , then D would optimally select pC and deter. This will prevent any open set issues within
this range.

33If p̂(v̄D) = pC , then D would optimally select pC and deter. This prevents open set issues over this range.
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12.3 Separating Equilibrium 3:

• This equilibrium occurs when
(a) pC ≤ p1, pD(v̄D) < pC , UD(p̂(v̄D)) > v̄D − K(pC), UD(p̂(v̄D)) ≥ 0, and 0 >

UD(p̂(vD)),34 or
(b) pC > p1, 0 ≤ UD(p̂(v̄D)), and 0 > UD(p̂(vD))35

• Type v̄D selects p = p̂(v̄D), and type vD selects p = p0.

• C will challenge for all p < pC , and will not challenge for all p ≥ pC .

• Type vD (who is challenged) will not escalate. Type v̄D (who is challenged) will escalate.

• C’s Beliefs: If p < p̂(v̄D), then C believes D is low-type with probability 1. If p ≥ p̂(v̄D),
then C believes D is high-type with probability 1.

• Payoffs: Type v̄D attains UD(p̂(v̄D)), type vD attains 0.

Proof of Equilibrium:
For type vD:
Case (a),
Case (a.1). In addition to the conditions on case (a), assume pC > pD(vD) and vD−K(pD(vD)) <

0. Within the range p ∈ [p0, p
D(vD)), C will challenge and D will acquiesce, making D’s utility

strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming levels. Within
the range p ∈ [pD(vD), pC), C will challenge and D will fight. Thus, in this range, p = p̂(vD)

weakly dominates all other arming levels.36 Within the range p ∈ [pC , p1], C will not challenge,
making D’s utility decreasing in p. Thus, in this range, p = pC dominates all other arming
levels. By the conditions of the case, 0 > UD(p̂(vD)), implying that D prefers p0 to fighting.
Additionally, I can use the conditions of this subcase pC > pD(vD) and vD −K(pD(vD)) < 0,
which together imply vD − K(pC) < 0, or that D prefers setting p = p0 and acquiescing to
setting p = pC and deterring.

Case (a.2). Assume pC > pD(vD) and vD − K(pD(vD)) ≥ 0. This proof is identical up to
the point before demonstrating that D prefers setting p = p0 and acquiescing to setting p = pC

and deterring. As I showed in Lemma 1, within the parameter set where pC > pD(vD) and
vD −K(pD(vD)) ≥ 0, D’s selected p∗ is non-decreasing in vD. Thus, because high types opti-
mally fight (as I discuss below), low-types would never prefer setting p = pC and deterring.

34This is assisted by Remark 1.
35Note: recall that I am assuming (by the “Parameter Assumptions”) v̄D−K(pD(v̄D)) > 0, and p1 > pD(v̄D).
36If p̂(vD) = pC , then D would optimally select pC and deter. This will prevent any open set issues within

this range.
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Case (a.3) Assume pD(vD) ≥ pC . Within the range p ∈ [p0, p
C), C will challenge and D

will acquiesce, making D’s utility strictly decreasing in p. Thus, in this range, p = p0 dom-
inates all other arming levels. Within the range p ∈ [pC , p1], C will not challenge, making
D’s utility decreasing in p. Thus, in this range, p = pC dominates all other arming levels.
I can demonstrate that low-type D’s always prefer setting p = p0 to p = pC . Starting with
UD(p̂(v̄D)) > v̄D −K(pC), which is given by the conditions of the case, I use the definition of
UD(p̂(v̄D)) to say

− p̂(v̄D)(1− p̂(v̄D))

α + np̂(v̄D)(1− p̂(v̄D))
(nND + cD) +

αp̂(v̄D)

α + np̂(v̄D)(1− p̂(v̄D))
v̄D −K(p̂(v̄D)) >v̄D −K(pC).

Because αp̂(v̄D)
α+np̂(v̄D)(1−p̂(v̄D))

(v̄D − vD) < v̄D − vD, I can say

− p̂(v̄D)(1− p̂(v̄D))

α + np̂(v̄D)(1− p̂(v̄D))
(nND + cD) +

αp̂(v̄D)

α + np̂(v̄D)(1− p̂(v̄D))
vD −K(p̂(v̄D)) >vD −K(pC).

As how p̂(v̄D) is defined, it must be that p̂(v̄D) ≤ pC , implying (by the conditions of case
a.3) p̂(v̄D) ≤ pD(vD). Thus, from how pD(vD) is defined, − p̂(v̄D)(1−p̂(v̄D))

α+np̂(v̄D)(1−p̂(v̄D))
(nND + cD) +

αp̂(v̄D)
α+np̂(v̄D)(1−p̂(v̄D))

vD ≤ 0. This in turn implies

0−K(p̂(v̄D)) >vD −K(pC),

or 0 > vD −K(pC). Thus, D prefers setting p = p0 and acquiescing to p = pC and deterring.

Case b.
Case (b.1) In addition to the conditions on case (b), assume p1 ≥ pD(vD). Within the range
p ∈ [p0, p

D(vD)), C will challenge and D will acquiesce, making D’s utility strictly decreas-
ing in p. Thus, in this range, p = p0 dominates all other arming levels. Within the range
p ∈ [pD(vD), p1] C will challenge and D will fight. Thus, in this range, p = p̂(vD) weakly
dominates all other arming levels. By the conditions of the case, 0 > UD(p̂(vD)), implying that
D prefers setting p = p0 to fighting.

Case (b.2) In addition to the conditions on case (b), assume p1 < pD(vD). Within the range
p ∈ [p0, p1], C will challenge and D will acquiesce, making D’s utility is strictly decreasing in p.
Thus, in this range, p = p0 dominates all other arming levels.

For type v̄D:
Case (a) Within the range p ∈ [p0, p

D(v̄D)), C will challenge and D will acquiesce, making
D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming
levels. Within the range p ∈ [pD(v̄D), pC), C will challenge and D will fight. Thus, in this
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range, p = p̂(v̄D) weakly dominates all other arming levels.37 Within the range p ∈ [pC , p1],
C will not challenge, making D’s utility strictly decreasing in p. Thus, in this range, p = pC

dominates all other arming levels. By the conditions of the case, UD(p̂(v̄D)) > v̄D −K(pC) and
UD(p̂(v̄D)) ≥ 0, implying that D prefers selecting p = p̂(v̄D) and fighting.

Case (b) Within the range p ∈ [p0, p
D(v̄D)), C will challenge and D will acquiesce, making

D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming
levels. Within the range p ∈ [pD(v̄D), p1], C will challenge and D will fight. Thus, in this
range, p = p̂(v̄D) weakly dominates all other arming levels. By the conditions of the case
UD(p̂(v̄D)) ≥ 0, D prefers selecting p = p̂(v̄D) and fighting.

For C: For p ∈ [p0, p̂(v̄D)), C believes D is a low-type and would acquiesce if challenged,
which gives C a strictly positive payoff for challenging (based on p̂(v̄D) < pC).

Case (a) For p ∈ [p̂(v̄D), pC), C believes that D is a high type and would fight if challenged, which
gives C a weakly positive payoff for challenging (based on the pC condition). For p ∈ [pC , p1],
C believes that D is a high type and would fight if challenged, which gives C a weakly negative
payoff for challenging (based on the pC condition).

Case (b) For p ∈ [p̂(v̄D), p1), C believes that D is a high type and would fight if challenged,
which gives C a weakly positive payoff for challenging (based on the p1 < pC condition).

12.4 Separating Equilibrium 4

• This equilibrium occurs when
(a) pC ≤ pD(v̄D), vD−K(pD(v̄D)) > 0, if pD(vD) ≤ p1 then vD−K(pD(vD)) ≤ 0, p̄ ≤ p1,
and, if P̃ is non-empty, vD −K(p̃) ≤ 0

(b) pC > pD(v̄D), vD − K(pC) > 0, if pD(vD) ≤ p1 then vD − K(pD(vD)) ≤ 0, p̄ ≤ p1,
and, if P̃ is non-empty, vD −K(p̃) ≤ 0

• Type v̄D selects p = p̄, and type vD selects p = p0.

• C will challenge for all p < p̄, and will not challenge for all p ≥ p̄.

• Type vD (who is challenged) will not escalate. Type v̄D is not challenged..

• C’s Beliefs: If p < p̄, then C believes D is low-type with probability 1. If p ≥ p̄, then C
37If p̂(v̄D) = pC , then D would optimally select pC and deter. This will prevent any open set issues within

this range.

34



believes D is high-type with probability 1.

• Payoffs: Type v̄D attains v̄D −K(p̄), type vD attains 0.

Proof of Equilibrium:
For type vD: Within the range p ∈ [p0, p̄), C will challenge and D will acquiesce, making D’s
utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming levels.
For any p ∈ [p̄, p1], C will not challenge, making D’s utility strictly decreasing in p. Thus, in
this range, p = p̄ dominates all other arming levels. By it’s definition, vD −K(p̄) = 0, meaning
low-type D’s weakly prefer selecting p = p0 and acquiescing to p = p̄ and bluffing.

For type v̄D: Within the range p ∈ [p0, p
D(v̄D)), C will challenge and D will acquiesce,

making D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other
arming levels. Within the range p ∈ [pD(v̄D), p̄), C will challenge and D will fight. Thus, in
this range, there exists some arming level or set of arming levels that dominates all others.38

Within the range p ∈ [p̄, p1], C will not challenge, making D’s utility strictly decreasing in p.
Thus, in this range, p = p̄ dominates all other arming levels. Because vD −K(p̄) = 0, it must
be that v̄D −K(p̄) > 0, meaning D prefers arming to p = p̄ to setting p = p0. To demonstrate
that D prefers setting p = p̄ to fighting, I must first define the value ṗ as type v̄D’s optimal
arming level conditional on the high type looking to fight, or

ṗ ∈argmaxp∈[pD(v̄D),p̄]

{
− ṗ(1− ṗ)
α + nṗ(1− ṗ)

(nND + cD) +
αṗ

α + nṗ(1− ṗ)
v̄D −K(ṗ)

}
.

Note that because vD − K(p̄) = 0 and vD − K(pD(vD)) ≤ 0, it must be that p̄ ≤ pD(vD),
meaning ṗ ≤ pD(vD).

I start with a condition which follows from how p̄ is defined:

vD −K(p̄) =0.

Using that ṗ ≤ pD(vD), it must be that

vD −K(p̄) ≥− ṗ(1− ṗ)
α + nṗ(1− ṗ)

(nND + cD) +
αṗ

α + nṗ(1− ṗ)
vD −K(ṗ).

38Note this will not be p = p̂(v̄D) because the utility function is optimized over a different domain. Also,
following the rationale discussed in prior footnotes, there will not be open set issues here.
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Because v̄D − vD > (v̄D − vD)
(

αṗ
α+nṗ(1−ṗ)

)
, I can say

v̄D −K(p̄) ≥− ṗ(1− ṗ)
α + nṗ(1− ṗ)

(nND + cD) +
αṗ

α + nṗ(1− ṗ)
v̄D −K(ṗ),

which implies that D always prefers setting p = p̄ and deterring to selecting p = ṗ and fighting.

For C: For p ∈ [p0, p̄), C believes D is a low-type and would acquiesce if challenged, which
gives C a strictly positive payoff. For p ∈ [p̄, p1], C believes D is a high-type and would fight
if challenged. For both cases, p̄ ≥ pC ,39 meaning C would prefer to acquiesce rather than fight
with arming level p̄.

12.5 Separating 5 Equilibrium:

• This equilibrium occurs when
(a) pC ≤ p1, pD(vD) < pC , UD(p̂(v̄D)) > v̄D−K(pC), UD(p̂(v̄D)) ≥ 0, and UD(p̂(vD)) ≥ 0,
or40

(b) pC > p1, pD(vD) ≤ p1, 0 ≤ UD(p̂(v̄D)), and 0 ≤ UD(p̂(vD)).

• Type v̄D selects p = p̂(v̄D), and type vD selects p = p̂(vD).

• C will challenge for all p < pC , and will not challenge for all p ≥ pC .

• Both types will escalate when challenged.

• C’s Beliefs: If p < p̂(v̄D), then C believes D is low-type with probability 1. If p ≥ p̂(v̄D),
then C believes D is high-type with probability 1.

• Payoffs: Type v̄D attains UD(p̂(v̄D)), type vD attains UD(p̂(vD)).

Proof of Equilibrium
Case (a).
For type vD: Within the range p ∈ [p0, p

D(vD)), C will challenge and D will acquiesce,
making D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other
arming levels. Within the range p ∈ [pD(vD), pC), C will challenge and D will fight. Thus, in
this range, p = p̂(vD) weakly dominates all other arming levels. Within the range p ∈ [pC , p1],
C will not challenge, making D’s utility strictly decreasing in p. Thus, in this range, p = pC

dominates all other arming levels. By the conditions of the case, UD(p̂(vD)) ≥ 0, implying that
39In case (a), this follows from how p̄ is defined and pC ≤ pD(v̄D) and vD −K(pD(v̄D)) > 0. In case (b), this

follows from how p̄ is defined and vD −K(pC) > 0.
40The part on low-types only choosing between fight and acquiesce relies on Remark 1.
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D prefers setting p = p̂(vD) and fighting to p = p0 and acquiescing. The remainder relies on
utilizing Lemma 1. I now show that the above conditions imply vD −K(pD(vD)) > 0, which is
needed for Lemma 1 to apply. Using UD(p̂(vD)) ≥ 0, I can say

− p̂(vD)(1− p̂(vD))

α + np̂(vD)(1− p̂(vD))
(nND + cD) +

αp̂(vD)

α + np̂(vD)(1− p̂(vD))
vD −K(p̂(vD)) ≥0.

This implies that

vD −K(p̂(vD)) >0.

Because p̂(vD) ∈ [pD(vD), pC ], I can say

vD −K(pD(vD)) >0.

Thus, Lemma 1 can apply here. Because high types prefer setting p = p̂(v̄D) and fighting to
setting p = pC and deterring, low-types will never set p = pC .

For type v̄D: Within the range p ∈ [p0, p
D(v̄D)), C will challenge and D will acquiesce, making

D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming
levels. Within the range p ∈ [pD(v̄D), pC), C will challenge and D will fight; thus, in this range
p = p̂(v̄D) weakly dominates all other arming levels.41 Within the range p ∈ [pC , p1], C will not
challenge, making D’s utility decreasing in p. Thus, in this range, p = pC dominates all other
arming levels. By the conditions of the case, UD(p̂(v̄D)) > v̄D − K(pC) and UD(p̂(v̄D)) ≥ 0

implying that D prefers selecting p̂(v̄D) and fighting to deterring or acquiescing.

For C: For p ∈ [p0, p̂(v̄D)), C believes D is a low-type and would acquiesce if challenged, which
gives C a strictly positive payoff for challenging (based on p̂(v̄D) < pC). For p ∈ [p̂(v̄D), pC), C
believes that D is a high type and would fight if challenged, which gives C a weakly positive
payoff for challenging (based on the pC condition). For p ∈ [pC , p1], C believes that D is a
high type and would fight if challenged, which gives C a weakly negative payoff for challenging
(based on the pC condition).

Case (b). The proof is nearly identical, other than D can no longer select some p ≥ pC

and deter C.
41If p̂(v̄D) = pC , then D would optimally select pC and deter. This will prevent any open set issues within

this range.
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12.6 Separating 6 Equilibrium:

• This equilibrium occurs when
pD(vD) < pC , pC ≤ p1, v̄D − K(pC) ≥ UD(p̂(v̄D)), UD(p̂(vD)) ≥ 0 and UD(p̂(vD)) >

vD −K(pC)

• Type v̄D selects p = pC , and type vD selects p = p̂(vD).

• C will challenge for all p < pC , and will not challenge for all p ≥ pC .

• When challenged, low-types will escalate

• C’s Beliefs: If p < pC , then C believes D is low-type with probability 1. If p ≥ pC , then
C believes D is high-type with probability 1.

• Payoffs: Type v̄D attains v̄D −K(pC), type vD attains UD(p̂(vD)).

Proof of equilibrium:
For type vD: Within the range p ∈ [p0, p

D(vD)), C will challenge and D will acquiesce, making
D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming lev-
els. Within the range p ∈ [pD(vD), pC), C will challenge and D will fight. Thus, in this range,
p = p̂(vD) weakly dominates all other arming levels. Within the range p ∈ [pC , p1], C will not
challenge, making D’s utility strictly decreasing in p. Thus, in this range, p = pC dominates all
other arming levels. By the conditions of the case, UD(p̂(vD)) ≥ 0 and UD(p̂(vD)) > vD−K(pC),
implying that D prefers setting p = p̂(vD) and fighting to p = p0 and acquiescing or pC and
deterring.

For type v̄D: Within the range p ∈ [p0, p
D(v̄D)), C will challenge and D will acquiesce, making

D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming
levels. Within the range p ∈ [pD(v̄D), pC), C will challenge and D will fight; thus, in this range
p = p̂(v̄D) weakly dominates all other arming levels.42 Within the range p ∈ [pC , p1], C will
not challenge, making D’s utility decreasing in p. Thus, in this range, p = pC dominates all
other arming levels. By the conditions of the case, v̄D −K(pC) ≥ UD(p̂(v̄D)), implying that D
prefers selecting p = pC and deterring to selecting p = p̂(v̄D) and fighting. And, as shown in the
discussion of the Separating 5 equilibrium, UD(p̂(vD)) ≥ 0 implies that vD −K(pD(vD)) > 0.
This means that Separating 6 falls within conditions for Lemma 1. Thus, D will never select
p = p0 and acquiesce because low types select p = p̂(vD).

For C: For p ∈ [p0, p
C), C believes D is a low-type and would either acquiesce if challenged or

42If p̂(v̄D) = pC , then D would optimally select pC and deter. This will prevent any open set issues within
this range.
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fight when challenged: both give C a strictly positive payoff for challenging. For p ∈ [pC , p1),
C believes that D is a high type and would fight if challenged, which gives C a weakly negative
payoff for challenging (based on the pC condition).

12.7 Pooling Equilibrium 1:

• This equilibrium occurs when
(a) pC ≤ p1, pD(v̄D) < pC , pC > p0, p0 < pD(v̄D), 0 > ŪD(p̂(v̄D)), 0 > v̄D −K(pC) or
(b) pC > p1, p0 < pD(v̄D), 0 > ŪD(p̂(v̄D))

• Type v̄D selects p = p0, and type vD selects p = p0.

• C will challenge for all p < pC , and will not challenge for all p ≥ pC .

• Neither type will escalate when challenged.

• C’s Beliefs: If p = p0, then C believes D is low-type with probability 1− π and high-type
with probability π. If p 6= p0 and p < pC , then C believes D is low-type with probability
1. If p ≥ pC , then C believes D is high-type with probability 1.

• Payoffs: Type v̄D attains 0, type vD attains 0.

Proof of Equilibrium
Case (a).
For type vD:
Case (a.1) In addition to the assumptions on case (a), also assume that p̂(vD) < pC . Within
the range p ∈ [p0, p

D(vD)), C will challenge and D will acquiesce, making D’s utility strictly
decreasing in p. Thus, in this range, p = p0 dominates all other arming levels. Within the
range p ∈ [pD(vD), pC), C will challenge and D will fight. Thus, in this range, p = p̂(vD) weakly
dominates all other arming levels. Within the range p ∈ [pC , p1], C will not challenge, making
D’s utility strictly decreasing in p. Thus, in this range, p = pC dominates all other arming
levels. Because high type D’s prefer acquiescing to deterring (0 > v̄D −K(pC)), it implies that
low-types also prefer acquiescing to deterring. I can also that type vD prefers setting p = p0

and acquiescing to fighting. I start with 0 > ŪD(p̂(v̄D)), or

0 >− p̂(v̄D)(1− p̂(v̄D))

α + np̂(v̄D)(1− p̂(v̄D))
(nND + cD) +

αp̂(v̄D)

α + np̂(v̄D)(1− p̂(v̄D))
v̄D −K(p̂(v̄D)).

Using that p̂(v̄D) optimizes the expression on the right and using that p̂(vD) ∈ [pD(v̄D), pC ],43

43Because p̂(vD) ∈ [pD(vD), pC ], pD(v̄D) < pD(vD), and p̂(vD) < pC .
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I can say

0 >− p̂(vD)(1− p̂(vD))

α + np̂(vD)(1− p̂(vD))
(nND + cD) +

αp̂(vD)

α + np̂(vD)(1− p̂(vD))
v̄D −K(p̂(vD)),

and also

0 >− p̂(vD)(1− p̂(vD))

α + np̂(vD)(1− p̂(vD))
(nND + cD) +

αp̂(vD)

α + np̂(vD)(1− p̂(vD))
vD −K(p̂(vD)),

Thus, type vD prefers setting p = p0 and acquiescing to fighting.

Case (a.2) Assume that p̂(vD) ≥ pC . Within the range p ∈ [p0, p
C), C will challenge and

D will acquiesce, making D’s utility strictly decreasing in p. Thus, in this range, p = p0 dom-
inates all other arming levels. Within the range p ∈ [pC , p1], C will not challenge, making D’s
utility strictly decreasing in p. Thus, in this range, p = pC dominates all other arming levels.
Because 0 > v̄D − K(pC), it implies that type vD prefers setting p = p0 and acquiescing to
setting p = pC and deterring.

For type v̄D: Within the range p ∈ [p0, p
D(v̄D)), C will challenge and D will acquiesce,

making D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other
arming levels. Within the range p ∈ [pD(v̄D), pC), C will challenge and D will fight; thus, in
this range p = p̂(v̄D) weakly dominates all other arming levels.44 Within the range p ∈ [pC , p1],
C will not challenge, making D’s utility decreasing in p. Thus, in this range, p = pC dominates
all other arming levels. By the conditions of the case, 0 > ŪD(p̂(v̄D)) and 0 > v̄D − K(pC),
implying that D prefers selecting p0 and acquiescing to fighting or deterring .

For C: For p = p0, C believes both types of D are selecting this arming level; thus, C’s
beliefs on type are the prior distribution of type. For p ∈ (p0, p

C), C believes D is a low-type
and would acquiesce if challenged, which gives C a strictly positive payoff for challenging (based
on p̂(v̄D) < pC). For p ∈ [pC , p1], C believes that D is a high type and would fight if challenged,
which gives C a weakly negative payoff for challenging (based on the pC condition).

Case (b). The proof is nearly identical, other than D can no longer select some p ≥ pC

and deter C, and C believes that D is a low type for selecting any p ∈ (p0, p1].
44If p̂(v̄D) = pC , then D would optimally select pC and deter. This prevents open set issues over this range.
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12.8 Pooling Equilibrium 2:

• This equilibrium occurs when vD−K(max
{
pD(v̄D), p0

}
) > 0, pC ≤ max

{
pD(v̄D), p0

}
,and

the set P̃ is non-empty and p̃ ≤ max
{
pD(v̄D), p0

}
,45

• Type v̄D selects p = max
{
pD(v̄D), p0

}
, and type vD selects p = max

{
pD(v̄D), p0

}
.

• C will not challenge when observing p ≥ max
{
pD(v̄D), p0

}
. C will challenge when

observing p < max
{
pD(v̄D), p0

}
.

• Type vD (who is not challenged) would not escalate if challenged. Type v̄D (who is not
challenged) would escalate if challenged.

• C’s Beliefs: If p = max
{
pD(v̄D), p0

}
, then C believes D is low-type with probability

1 − π and high-type with probability π. If p < max
{
pD(v̄D), p0

}
,46 then C believes D

is low-type with probability 1. If p > max
{
pD(v̄D), p0

}
, then C believes D is high-type

with probability 1.

• Payoffs: Type v̄D attains v̄D−K(max
{
pD(v̄D), p0

}
), type vD attains vD−K(max

{
pD(v̄D), p0

}
).

Proof of Equilibrium
For type vD:
Case 1. In addition to the assumptions, also assume that p0 < pD(v̄D). Within the range
p ∈ [p0, p

D(v̄D)), C will challenge and D will acquiesce, making D’s utility strictly decreas-
ing in p. Thus, in this range, p = p0 dominates all other arming levels. Within the range
p ∈ [pD(v̄D), p1], C will not challenge. Thus, in this range, p = pD(v̄D) dominates all other
arming levels. By assumption vD −K(pD(v̄D)) > 0, meaning D prefers setting p = pD(v̄D) and
bluffing to setting p = p0 and acquiescing.47

Case 2. Assume p0 ≥ pD(v̄D). For all p ∈ [p0, p1], C will not challenge. Thus, in this range,
p = p0 dominates all other arming levels.

For type v̄D:
Case 1. In addition to the assumptions, also assume that p0 < pD(v̄D). Within the range
p ∈ [p0, p

D(v̄D)), C will challenge and D will acquiesce, making D’s utility strictly decreas-
ing in p. Thus, in this range, p = p0 dominates all other arming levels. Within the range
p ∈ [pD(v̄D), p1], C will not challenge. Thus, in this range, p = pD(v̄D) dominates all other

45Note: recall that I am assuming (by the “Parameter Assumptions”) v̄D −K(max
{
pD(v̄D), p0

}
) > 0, and

p1 > pD(v̄D).
46Needless to say this belief structure could describe non-feasible actions (when p0 > pD(v̄D)). I keep this in

place for simplicity.
47Because pD(v̄D) < pD(vD), D prefers not fighting.
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arming levels. By the Parameter Assumptions, v̄D−K(pD(v̄D)) > 0, meaning D prefers setting
p = pD(v̄D) and bluffing to setting p = p0 and acquiescing.

Case 2. Assume p0 ≥ pD(v̄D). For all p ∈ [p0, p1], C will not challenge. Thus, in this range,
p = p0 dominates all other arming levels.

For C: For p = max
{
pD(v̄D), p0

}
, C believes both types of D are selecting this arming level;

thus, C’s beliefs on type are the prior distribution of type. For p ∈ [p0, p
D(v̄D)) (whenever

p0 < pD(v̄D)), C believes D is a low-type and would acquiesce if challenged, which gives C a
strictly positive payoff for challenging. For p ∈ (pD(v̄D), p1], C believes that D is a high type
and would fight if challenged, which gives C a weakly negative payoff for challenging (because
pC < pD(v̄D)).

12.9 Pooling Equilibrium 3:

• This equilibrium occurs when the set P̃ is non-empty, p̃ > max
{
pD(v̄D), p0

}
, vD−K(p̃) >

0, p̃ < pD(vD), and p̃ ≤ p1.

• Type v̄D selects p = p̃, and type vD selects p = p̃.

• C will not challenge when observing p = p̃, will challenge when observing p < p̃ , and will
not challenge when observing p > p̃.

• Type vD (who is not challenged) would not escalate if challenged. Type v̄D (who is not
challenged) would escalate if challenged.

• C’s Beliefs: If p = p̃, then C believes D is low-type with probability 1− π and high-type
with probability π. If p < p̃, then C believes D is low-type with probability 1. If p > p̃,
then C believes D is high-type with probability 1.

• Payoffs: Type v̄D attains v̄D −K(p̃), type vD attains vD −K(p̃).

Proof of Equilibrium
For type vD: Within the range p ∈ [p0, p̃), C will challenge and D will acquiesce, making D’s
utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming levels.
Within the range p ∈ [p̃, p1], C will not challenge. Thus, in this range, p = p̃ dominates all other
arming levels. By assumption vD −K(p̃) > 0, meaning D prefers setting p = p̃ and bluffing to
setting p = p0 and acquiescing.48

For type v̄D: Within the range p ∈ [p0, p
D(v̄D)), C will challenge and D will acquiesce, making

D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming
48Because p̃ < pD(vD), D prefers not fighting.
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levels. Within the range p ∈ [pD(v̄D), p̃), C will challenge and D will fight, selecting some
optimal arming level. In the range p ∈ [p̃, p1], C will not challenge. Thus, in this range, p = p̃

dominates all other arming levels. By assumption vD − K(p̃) > 0, implying that high types
prefer setting p = p̃ and deterring to setting p = p0 and acquiescing. To demonstrate that high
types would never select p ∈ [pD(v̄D), p̃) and fight, I define re-define ṗ as

ṗ ∈argmaxp∈[pD(v̄D),p̃]

{
− ṗ(1− ṗ)
α + nṗ(1− ṗ)

(nND + cD) +
αṗ

α + nṗ(1− ṗ)
v̄D −K(ṗ)

}
.

I start using vD−K(p̃) > 0, which is given, and that p̃ < pD(vD), which implies that low-types
would do strictly worse selecting some ṗ and fighting relative to setting p = p0 and acquiescing.
Using this observation and vD −K(p̃) > 0 gives

vD −K(p̃) >− ṗ(1− ṗ)
α + nṗ(1− ṗ)

(nND + cD) +
αṗ

α + nṗ(1− ṗ)
vD −K(ṗ)

I can then use that v̄D − vD > (v̄D − vD)
(

αṗ
α+nṗ(1−ṗ)

)
, which gives

v̄D −K(p̃) >− ṗ(1− ṗ)
α + nṗ(1− ṗ)

(nND + cD) +
αṗ

α + nṗ(1− ṗ)
v̄D −K(ṗ).

Thus, high type D’s prefer arming to level p̃ and deterring to fighting.

For C: For p = [p0, p̃), C believes D is a low-type and would acquiesce if challenged, which
gives C a strictly positive payoff for challenging. For p ∈ (p̃, p1], C believes that D is a high
type and would fight if challenged, which gives C a weakly negative payoff for challenging. For
p = p̃, C’s beliefs follow the priors, and C prefers not challenging based on how p̃ is defined.

12.10 Pooling Equilibrium 4:

• This equilibrium occurs when max
{
pD(vD), p0

}
≥ pC , vD −K(max

{
pD(vD), p0

}
) > 0,

pD(vD) ≤ p1, and, when the set of P̃ is non-empty, p̃ ≥ max
{
pD(vD), p0

}
.

• Type v̄D selects p = max
{
pD(vD), p0

}
, and type vD selects p = max

{
pD(vD), p0

}
.

• C will not challenge when observing p = max
{
pD(vD), p0

}
, will challenge when observing

p < max
{
pD(vD), p0

}
, and will not challenge when observing p > max

{
pD(vD), p0

}
.

• Both types would escalate if challenged.

• C’s Beliefs: If p = max
{
pD(vD), p0

}
, then C believes D is low-type with probability

1 − π and high-type with probability π. If p < max
{
pD(vD), p0

}
then C believes D is
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low-type with probability 1. If p > max
{
pD(vD), p0

}
, then C believes D is a high-type

with probability 1.

• Payoffs: Type v̄D attains v̄D−K(max
{
pD(vD), p0

}
), type vD attains vD−K(max

{
pD(vD), p0

}
).

Proof of Equilibrium

For type vD:
Case 1. In addition to the assumptions, also assume that p0 < pD(vD). Within the range
p ∈ [p0, p

D(vD)), C will challenge and D will acquiesce, making D’s utility strictly decreas-
ing in p. Thus, in this range, p = p0 dominates all other arming levels. Within the range
p ∈ [pD(vD), p1], C will not challenge. Thus, in this range, p = pD(v̄D) dominates all other
arming levels. By assumption vD −K(pD(vD)) > 0, meaning D prefers setting p = pD(vD) and
deterring to setting p = p0 and acquiescing.

Case 2. Assume p0 ≥ pD(vD). For all p ∈ [p0, p1], C will not challenge. Thus, in this range,
p = p0 dominates all other arming levels.

For type v̄D:
Case 1. In addition to the assumptions, also assume that p0 < pD(vD). I also assume
pD(v̄D) > p0; relaxing this makes little difference to the proof, so I will not discuss this al-
ternate case. Within the range p ∈ [p0, p

D(v̄D)), C will challenge and D will acquiesce, making
D’s utility strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming
levels. Within the range p ∈ [pD(v̄D), pD(vD)), C will challenge and D will fight, selecting some
optimal arming level. In the range p ∈ [pD(vD), p1], C will not challenge. Thus, in this range,
p = pD(vD) dominates all other arming levels. By assumption vD −K(pD(vD)) > 0, implying
that high types also prefer setting p = pD(vD) and deterring to setting p = p0 and acquiescing.
To demonstrate that high types would never select p ∈ [pD(v̄D), pD(vD)) and fight, I define
re-define ṗ as

ṗ ∈argmaxp∈[pD(v̄D),pD(vD)]

{
− ṗ(1− ṗ)
α + nṗ(1− ṗ)

(nND + cD) +
αṗ

α + nṗ(1− ṗ)
v̄D −K(ṗ)

}
.

I start using vD − K(pD(vD)) > 0, which is given, and that ṗ < pD(vD), which implies that
low-types would do strictly worse selecting some ṗ and fighting relative to setting p = p0 and
acquiescing.

vD −K(pD(vD)) >− ṗ(1− ṗ)
α + nṗ(1− ṗ)

(nND + cD) +
αṗ

α + nṗ(1− ṗ)
vD −K(ṗ)
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I can then use that v̄D − vD > (v̄D − vD)
(

αṗ
α+nṗ(1−ṗ)

)
, which gives

v̄D −K(pD(vD)) >− ṗ(1− ṗ)
α + nṗ(1− ṗ)

(nND + cD) +
αṗ

α + nṗ(1− ṗ)
v̄D −K(ṗ).

Thus, high types prefer arming to level pD(vD) than to fighting.

Case 2. Case 2. Assume p0 ≥ pD(vD). For all p ∈ [p0, p1], C will not challenge. Thus, in
this range, p = p0 dominates all other arming levels.

For C: For p = max
{
pD(vD), p0

}
, C believes both types of D are selecting this arming level;

thus, C’s beliefs on type are the prior distribution of type. For p ∈ [p0, p
D(vD)) (whenever

p0 < pD(vD)), C believes D is a low-type and would acquiesce if challenged, which gives C a
strictly positive payoff for challenging. For p ∈ (pD(vD), p1], C believes that D is a high type
and would fight if challenged, which gives C a weakly negative payoff for challenging (because
pC < pD(vD)).

12.11 Pooling Equilibrium 5

This equilibrium occurs when vD−K(pC) > 0 and vD−K(pC) ≥ UD(p̂(vD)),max
{
pD(vD), p0

}
<

pC , pC ≤ p1

• Type v̄D selects p = pC , and type vD selects p = pC .

• C will not challenge when observing p = pC , will challenge when observing p < pC , and
will not challenge when observing p ≥ pC .

• Both types would escalate if challenged.

• C’s Beliefs: If p = pC , then C believes D is low-type with probability 1−π and high-type
with probability π. If p < pC , then C believes D is low-type with probability 1. If p > pC ,
then C believes D is high-type with probability 1.

• Payoffs: Type v̄D attains v̄D −K(pC), type vD attains vD −K(pC).

Proof of Equilibrium
For type vD:
Within the range p ∈ [p0, p

D(vD)), C will challenge and D will acquiesce, making D’s utility
strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming levels. Within
the range p ∈ [pD(vD), pC), C will challenge and D will fight. Thus, in this range, p = p̂(vD)

weakly dominates all other arming levels. Within the range p ∈ [pC , p1], C will not challenge,
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making D’s utility strictly decreasing in p. Thus, in this range, p = pC dominates all other
arming levels. By the conditions of the case, vD −K(pC) > 0 and vD −K(pC) ≥ UD(p̂(vD)),
implying that D prefers setting p = pC and deterring to p = p0 and acquiescing or p̂(vD) and
fighting.

For type v̄D:
Within the range p ∈ [p0, p

D(v̄D)), C will challenge and D will acquiesce, making D’s utility
strictly decreasing in p. Thus, in this range, p = p0 dominates all other arming levels. Within
the range p ∈ [pD(v̄D), pC), C will challenge and D will fight. Thus, in this range, p = p̂(v̄D)

weakly dominates all other arming levels. Within the range p ∈ [pC , p1], C will not challenge,
making D’s utility strictly decreasing in p. Thus, in this range, p = pC dominates all other
arming levels. Because pD(vD) < pC and vD − K(pC) > 0, the conditions in Lemma 1 hold;
thus, because low-types most prefer setting p = pC and deterring, high types also most prefer
this.

For C: For p = pC , C believes both types of D are selecting this arming level; thus, C’s
beliefs on type are the prior distribution of type. For p ∈ [p0, p

C) C believes D is a low-type
and would acquiesce if challenged (when p < pD(vD)) or would fight when challenged (when
p ≥ pD(vD)); in either case, given p < pC , these give C a strictly positive payoff for challenging.
For p ∈ (pC , p1], C believes that D is a high type and would fight if challenged, which gives C
a weakly negative payoff for challenging (because p > pC).

13 Demonstrating the Equilibrium Satisfies the Intuitive
Criterion

For the Pooling 1, Separating 1, Separating 2, Separating 3, Separating 5, and Separating 6
equilibrium spaces, it is straightforward to see high types are doing as good as they can. For
example, in Separating 1, high type D’s must arm to level p = max {p0, p(v̄D)} to be willing to
fight, and at this level C will not challenge and grant D the asset. If, for example, part of the
Separating 1 spaces required D select some p′ > p for C to believe D is a high type, then this
would not satisfy the intuitive criterion refinement; instead, for all these equilibria, high types
D are doing as well as they can in the characterized separating equilibrium (or not separating,
in the case of Pooling 1) from low-types.

Pooling 5 also has the feature where high types select the smallest possible value needed to deter
C (p = pC). Furthermore, as demonstrated in Lemma 1, high types will always select a weakly
greater level of arming than low types; thus the vD−K(pC) > 0 and vD−K(pC) ≥ UD(p̂(vD))

conditions imply that high types will do best selecting pC over some p = p̂(v̄D) or p = p0.
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It is possible to demonstrate that Pooling 2, Pooling 3, Pooling 4, and Separating 4 all satisfy
the intuitive criterion simultaneously. I do this in Lemma 3. To give a sense of what Lemma 3
means, Lemma 3 implies that within Pooling Equilibrium 4, high-type D’s will never have an
incentive to switch to some p′′ where pD(v̄D) ≤ p′′ < pD(vD) and fight with positive probability
relative to arming to pD(vD) and attaining the asset. Given that Pooling 2-4 and Separating
4 all have the condition where high-types prefer arming to some level p = p′ that keeps C
from challenging to arming to p = p0 and acquiescing, proving Lemma 3 will imply that the
equilibrium above satisfies the intuitive criterion.

Lemma 3: Suppose an equilibrium exists where C will not challenge upon observing p′ where
p = p′ ∈ (p0, p1], vD − K(p′) ≥ 0, and p′ ≤ pD(vD). If for all p′′ ∈ [pD(v̄D), p′) either (a) C
challenges with certainty upon observing p′′ or (b) C challenges with probability 1 − ζ ∈ (0, 1]

after observing p′′, then high-type D’s prefer arming to level p′ rather than selecting p′′ and
fighting with (a) certainty or (b) probability 1− ζ.

Proof: Any semi-separating equilibrium will take the form of high types arming to level p′′ and
always fighting when challenged,49 and low-types mixing between arming to level p0 and always
acquiescing when challenged (where challenging happens with certainty), and arming to level
p′′ and acquiescing when challenged (where challenging happens with probability 1− ζ).50 For
low-type D’s to be indifferent between arming to p0 and always getting challenged, and arming
to p′′ and getting challenged with probability 1 − ζ, the following must hold (lest ζ does not
support a semi-separating equilibrium):

0 =ζ (vD) + (1− ζ) (0)−K(p′′).

Also note that because p′′ < pD(vD), low-type D’s prefer acquiescing to going to war, implying
that

0 >ζ (vD) + (1− ζ)

(
−(nND + cD)p′′(1− p′′)

α + np′′(1− p′′)
+

α

α + np′′(1− p′′)
(p′′vD)

)
−K(p′′).

Because vD −K(p′) ≥ 0, I can say

vD −K(p′) >ζ (vD) + (1− ζ)

(
−(nND + cD)p′′(1− p′′)

α + np′′(1− p′′)
+

α

α + np′′(1− p′′)
(p′′vD)

)
−K(p′′)

I add v̄D− vD to the left-hand-side, and I add ζ (v̄D − vD) + (1− ζ) αp′′

α+np′′(1−p′′) (v̄D − vD) to the

49High types fight due to p′′ ≥ pD(v̄D)
50Low types acquiesce because p′′ < pD(vD).
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right-hand-side. The inequality is preserved because αp′′

α+np′′(1−p′′) < 1. This gives

v̄D −K(p′) >ζ (v̄D) + (1− ζ)

(
−(nND + cD)p′′(1− p′′)

α + np′′(1− p′′)
+

α

α + np′′(1− p′′)
(p′′v̄D)

)
−K(p′′).

which implies that high-type D’s prefer arming to p′ and attaining the asset relative to arming
to level p′′ and fighting over the asset with some probability (as part of the semi-separating
equilibrium).

Note that the proof above also functions for the case when C challenges with certainty (set
ζ = 0).

14 Proof of Incomplete Information Remarks
Remarks 1, 2 and 5 still hold in the incomplete information game via construction of pD(vD)

and pC . The proof of Remark 3 for the incomplete information game is more complex and
is included below.. Remark 4 holds via the proof above. Remark 6 holds via the equilibrium
construction. Finally, Remark 7 clearly holds given the signalling equilibrium (discussed above).

15 Proof of Remark 3 (Incomplete Information)
Remark 3 (Nuclear Peace). Increasing nuclear instability results in fewer instances of war.
Formally, we define nuclear instability parameters n′, n′′ ∈ R+ with n′ < n′′. If n′ shifts to n′′,
then the likelihood of war weakly decreases.

Proof. Because this proof is involved, it is worthwhile outlining how I proceed. I begin by
discussing “Case 1,” which considers conditions where where war never happens under n′′. I
then proceed to the more complex case, “Case 2.” I first establish a useful lemma, which demon-
strates that as n increases, D’s utility from war is decreasing. I then establish another useful
Lemma, which characterizes the full set of inequalities where low types go to war in equilibrium.
For example, one of these inequalities is that low-type D’s must do better going to war than
acquiescing. I then show the inequalities needed to support the equilibria where low types go
to war are strained or break as n increases. Referring back to the example, because low-type
D’s war utility is decreasing and their “acquiesce” utility is unchanging, the inequality where
D prefers fighting to acquiescing is strained or can break. I then repeat the process for high
types.
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15.1 Case 1: For n′′, pC ≤ pD(v̄D)

If for n′′ pC ≤ pD(v̄D) holds, then for n′′ pC ≤ pD(vD) also holds.51 This implies that under n′′,
war is never possible because there is no arming level where C would be willing to challenge and
D would be willing to fight. Therefore, even if n′ were such that pD(v̄D) < pC or pD(vD) < pC

(i.e. war was possible under n′), the likelihood of war would be (weakly) decreasing.

15.2 Case 2: For n′′, pC > pD(v̄D)

This proof is assisted by a helpful Lemma that applies to a subset of the parameter space within
Case 2.

When D is optimally choosing to fight, D selects some arming level p within the set S =[
max

{
p0, p

D(vD)
}
,min

{
pC , p1

}]
. Intuitively, the set S defines feasible arming levels where

D will fight if challenged, and C will not be deterred. Note that we will consider two lev-
els of nuclear instability parameter n, which we denote n and n′ (with n < n′). As defined,
S(n′) ⊂ S(n).52

I introduce some new notation here. I let Û(p, vD, n) = − p(1−p)
α+np(1−p)(nND+cD)+ α

α+np(1−p) (pvD)−
K(p). I also define p∗(a, b) as

p∗(a, b) ∈argmaxp∈S(a)Û(p, vD, b)

note that whenever a = b, this is D optimizing an arming level at nuclear instability parameter
n.53

Whenever D (optimally) selects a p and goes to war, I define D’s value function as

V̂D(n, vD) =maxp∈S(n)Û(p, vD, n)

This allows us to set up a useful Lemma.

Remark 3 Lemma A: For a fixed vD ∈ {vD, v̄D}, V̂D(n, vD) is decreasing in n.

Proof:

51Recall that pD(v̄D) < pD(vD).
52Recall pC = αvC

cC+nNC
and pD(vD) = 1− αvD

cD+nND
.

53Note that we abuse notations and sometimes let this denote a set of arming levels; when this is the case,
the proof functions for all individual elements of the set p∗(a, b).
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With this structure in place, I can show that V̂ (n′, vD) ≤ V̂ (n, vD). The proof proceeds as
follows.

V̂ (n′, vD) =maxp∈S(n′)Û(p, vD, n
′)

≤maxp∈S(n)Û(p, vD, n
′)

≤Û(p∗(n, n′), vD, n)

≤maxp∈S(n)Û(p, vD, n)

=V̂ (n, vD)

The first inequality holds because S(n′) ⊂ S(n); this means that Û is optimized over a smaller
set under n′. The second inequality holds because Û(p, vD, n) is decreasing in parameter n at
a fixed arming level p∗(n, n′).54 The third inequality holds because there D is selecting their
optimal p.�

This Lemma means D does worse from fighting as n increases. To show that this shrinks
the parameter set where war occurs, I must analyze the equilibrium cases defined above (Sepa-
rating 1, Separating 2, etc). I do this in parts, first focusing on showing the low-types will fight
less as n increases.

15.2.1 The Parameter Set Where Low Types Fight is Shrinking

I first define the following Lemma:

Remark 3 Lemma B : If and only if
(a) when pC ≤ p1, the following conditions hold: max

{
pD(vD), p0

}
< pC, vD − K(pC) <

UD(p̂(vD)) and UD(p̂(vD)) ≥ 0, or

(b) when pC > p1, the following conditions hold: UD(p̂(vD)) ≥ 0,

then low-type D’s go to war.

54Taking first order conditions of Û(p, vD, n) with respect to n yields (p−1)p(αND+αpv̄D−p(1−p)cD)

(−α+n(p)2−sp)
2 . Note that

p− 1 < 0 and, because p ≥ pD(vD), we can say 0 ≤ −n(1− p)ND + αv̄D − c(1− p).
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Proof: The “iff” relies on how the conditions above are equivalent to the conditions for Sepa-
rating equilibria 5 and 6, which are the only equilibria spaces where low-types go to war. From
earlier (see the proof of Separating 5) I can say that UD(p̂(vD)) ≥ 0 implies vD−K(pD(vD)) ≥ 0.
This means that low-types will fight, and that Lemma 1 can be applied here. Based on Lemma
1, type v̄D will either select into fighting (setting p = p̂(v̄D)) or deterring (setting p = pC). When
pC ≤ p1, UD(p̂(v̄D)) > v̄D−K(pC), and the above conditions hold, the equilibrium is Separating
5 (a). When pC ≤ p1, UD(p̂(v̄D)) ≤ v̄D−K(pC), and the above conditions hold, the equilibrium
is Separating 6. And, when pC > p1 and the above conditions hold, then this is Separating 5 (b).

�

Based on Remark 3 Lemma B, low-types will only go to war when those constraints hold.
From here, I can rely on examining how moving from n′ to n′′ will alter the constraints. Sup-
pose for n′ pC ≤ p1. As n′ increases to n′′, pD(vD) is weakly increasing, p0 is unchanging, and
pC is decreasing, thus making the max

{
pD(vD), p0

}
< pC inequality strained (or potentially

break). Also as n increases, vD−K(pC) is increasing , UD(p̂(vD)) is decreasing (as shown above
in the Nuclear Instability and War Lemma), and 0 is unchanging, thus making the inequalities
vD −K(pC) < UD(p̂(vD)) and UD(p̂(vD)) ≥ 0 strained (or potentially break). Now suppose for
n′ pC > p1 holds; through the logic discussed above, the inequalities in this case are strained or
could break. Because pC is decreasing in n, the shift from n′to n′′ could result in a move from
(abusing notation) pC(n′) > p1 to pC(n′′) ≤ p1. When this shift occurs, for war to still occur,
the additional constraint vD−K(pC) < UD(p̂(vD)) must also hold; thus, in the shift from n′ to
n′′, all existing constraints become more difficult to satisfy and new constraints must be met,
collectively making low-type D’s less willing to go to war.

15.2.2 The Parameter Set Where High Types Fight is Shrinking.

As it was for low types, I must identify the constraints that fully characterize all the parameter
spaces where high-types go to war. I do this in the following Lemma:

Remark 3, Lemma C: If and only if

(a) When pC ≤ p1, the following conditions hold: max
{
pD(v̄D), p0

}
< pC, v̄D − K(pC) <

UD(p̂(v̄D)) and UD(p̂(v̄D)) ≥ 0, or

(b) when pC > p1, the following conditions hold: UD(p̂(v̄D)) ≥ 0,

then high-type D’s go to war.
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Proof:

First, suppose pC ≤ p1. It could also be that
(0) The set [max

{
pD(vD), p0

}
, pC ] is empty

(1) The set [max
{
pD(vD), p0

}
, pC ] is non-empty and UD(p̂(vD)) ≥ 0; or

(2) The set [max
{
pD(vD), p0

}
, pC ] is non-empty and UD(p̂(vD)) < 0.

Writing the conditions in (a) with the conditions in (0) and (2) (in other words, fully writ-
ing out conditions (0) and (2)) gives:

(0). pC ≤ p1, max
{
pD(v̄D), p0

}
< pC , v̄D − K(pC) < UD(p̂(v̄D)) and UD(p̂(v̄D)) ≥ 0 and

the set [max
{
pD(vD), p0

}
, pC ] is empty.

(2). pC ≤ p1, max
{
pD(v̄D), p0

}
< pC , v̄D − K(pC) < UD(p̂(v̄D)) and UD(p̂(v̄D)) ≥ 0 and

the set [max
{
pD(vD), p0

}
, pC ] is non-empty and UD(p̂(vD)) < 0.

Together, these are equivalent to Separating 3 (a).

The full set of conditions in (1) are the following: pC ≤ p1,max
{
pD(v̄D), p0

}
< pC , UD(p̂(v̄D)) >

v̄D −K(pC), UD(p̂(v̄D)) ≥ 0, the set [max
{
pD(vD), p0

}
, pC ] is non-empty and UD(p̂(vD)) ≥ 0.

These conditions are nearly equivalent to what is stated in Separating 5 (a). At first pass
there appears to be two differences, but, as I show below, these difference are effectively ruled
out.

First, the conditions for Separating 5 (a) states max
{
pD(vD), p0

}
< pC , while the conditions

on the set in (1) being non-empty imply max
{
pD(vD), p0

}
≤ pC . In other words, (1) above

states it is possible for max
{
pD(vD), p0

}
= pC , the while Separating 5 (a) conditions do not

state this is possible. However, note that the other conditions in (1) imply that this equality
can never actually hold. If for high types max

{
pD(v̄D), p0

}
< pC , it must be that pC > p0.

Due to this, the remaining distinction between (1) and the conditions in Separating 5 (a) is
that (1) also allows for pD(vD) = pC . However, it cannot ever be the case that pD(vD) = pC

and UD(p̂(vD)) ≥ 0 simultaneously hold when p0 < pC . Based on how pD(vD) is defined, the
following holds:

− pD(vD)(1− pD(vD))

α + npD(vD)(1− pD(vD))
(nND + cD) +

αpD(vD)

α + npD(vD)(1− pD(vD))
vD =0.
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Additionally, because p̂(vD) must fall between pD(vD) and pC , when pD(vD) = pC , it must also
be that p̂(vD) = pD(vD) = pC . Expanding out the expression UD(p̂(vD)) ≥ 0 and comparing it
to the expression above (note that UD(p̂(vD)) has an additional cost term) gives

− pD(vD)(1− pD(vD))

α + npD(vD)(1− pD(vD))
(nND + cD) +

αpD(vD)

α + npD(vD)(1− pD(vD))
vD −K(pC) ≥0.

This cannot ever hold: if the top expression equals zero and the bottom expression has a new
subtracted cost, then it cannot simultaneously be the case the p̂(vD) = pD(vD) = pC and
p0 < pC .

Second, the conditions in Separating 5 (a) does not state that UD(p̂(v̄D)) ≥ 0. However,
because UD(p̂(vD)) ≥ 0 (which is given in (1)), based on the proof of Separating 5, it implies
that vD − K(pD(vD)) ≥ 0, meaning Lemma 1 can apply and I know that high-type D’s will
select a greater arming level. Additionally, UD(p̂(vD)) ≥ 0 implies that low-type D’s will either
fight (set p = p̂(vD)) or deter C (set p = pC). Additionally, I know that high-type D’s will
not set p = pC due to UD(p̂(v̄D)) > v̄D −K(pC). Together, this implies that both types of D
will fight, meaning UD(p̂(vD)) ≥ 0. Thus, the conditions set out in (1) are equivalent to the
conditions in Separating 5(a).

Now suppose pC > p1. It could also be that
(1) UD(p̂(vD)) ≥ 0; or
(2) UD(p̂(vD)) < 0.

Writing out conditions (0) and (2) in full gives

(2) pC > p1, UD(p̂(v̄D)) ≥ 0, and UD(p̂(vD)) < 0.

together, these are the conditions for Separating 3 (b).

Writing out conditions (1) in full gives

(1) pC > p1, UD(p̂(v̄D)) ≥ 0, and UD(p̂(vD)) ≥ 0.

These are the conditions for Separating 5 (b).

I have demonstrated that the conditions in the above Lemma are equivalent to the condi-
tions for Separating 3, Separating 5 (a), and Separating 5 (b), the three settings where high
type D’s fight.
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From here, I can examine how moving from n′ to n′′ will alter the constraints. Suppose for both
n′ and n′′ pC ≤ p1. As n increases, pD(v̄D) is weakly increasing, p0 is unchanging, and pC is
decreasing, thus making the max

{
pD(v̄D), p0

}
< pC inequality strained (or potentially break).

Also as n increases, v̄D −K(pC) is increasing , UD(p̂(v̄D)) is decreasing (as shown above), and
0 is unchanging, thus making the inequalities v̄D − K(pC) < UD(p̂(v̄D)) and UD(p̂(v̄D)) ≥ 0

strained (or potentially break). Now suppose for both n′and n′′ pC > p1 holds; through the
logic discussed above, UD(p̂(v̄D)) ≥ 0 is strained or could break. Because pC is decreasing in n,
the shift from n′to n′′ could result in a move from pC(n′) > p1 to pC(n′′) ≤ p1. When this shift
occurs, it imposes additional constraints max

{
pD(v̄D), p0

}
< pC , v̄D −K(pC) < UD(p̂(v̄D)) for

fighting to still occur; thus, all existing constraints become more difficult to satisfy and new
constraints must be met, collectively shrinking the set over which high-type D’s go to war.

I have now demonstrated that as n increases, the constraints that result in selection into Sepa-
rating 3 and Separating 5 all become more difficult to satisfy. Thus, in the shift from n′ to n′′,
the war outcome occurs over a smaller set, or disappears altogether.

Part VI

Discussion: What if C Could Also Arm?

It would be possible to modify the game in the text to include C undertaking some (potentially
costly) arming. Suppose, like Powell (2015), I assumed that C arms at the beginning of the
game. For ease, suppose C chooses one of two arming levels that I denote aC ∈ {aC , āC}, with
aC < āC . Note that C’s arming decision would need to factor into D’s utility function; this could
be accomplished by manipulating D’s arming cost function, making it K(p; aC), where, for all
p, K(p, aC) < K(p, āC). Also note that I do not need to do anything to interact C’s and D’s
arming level in the generation of nuclear risk; ultimately, D’s selected p will still determine risk
levels with more force parity leading to longer conflicts. However, also note that by modeling
it in this way, p no longer cleanly represents the absolute arming level or force posture put
forward by D; this will be important to the discussion below.55

55There is some subtlety here. Suppose under both aC = aC and aC = āC , D optimally arms to p∗ = 1
2 ,

meaning, in response to either of C’s arming levels, D has armed to the level where D has a 50-50 chance of
winning in a conventional war. However, in absolute terms, D would need to select a higher level of arming
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Behavior in the game after C’s arming decision would be identical to what is written in Propo-
sition 1, only with K(p; aC) instead of K(p). Regarding C’s arming decision, some subtlety can
arise. If, in the game, D would be willing to deter C even if C selected āC , then C has no reason
to ever select the higher (more costly) arming level, and C will always select aC . Otherwise,
depending on how costly arming is for C, sometimes C will select the low or high arming level
(based on C’s utilities), and actions will play out as it was in Proposition 1.

However, this is not to say that comparative statics (or the Remarks) would be the same.

Consider Remark 1, Suppose there was a setting where pC < pD and C selected aC = āC in
equilibrium, which resulted in D acquiescing. Now suppose n increases. If this is the case,
then pD would rise, which could potentially result in C initially setting aC = aC with D still
acquiescing. While Remark 1 in the text claims that, when pD > pC , increasing n requires
D to put forward a more expansive force posture for deterrence, in the modified model with
this described equilibrium behavior, there are offsetting effects: pD is increasing in n, but aC
is decreasing. If the latter effect is larger, then the absolute force posture that delivers a pD

probability of winning a war could be less in absolute terms under the new n. These competing
effects cannot easily be disentangled, but if changes in n result in dramatic changes in C’s
arming levels, this is where the Remarks are most likely to being contradicted.

Essentially, the model with C arming could produce a range of new comparative statics; however,
it is not as if these new comparative statics would eliminate the possibility of what is presented
in the text.
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