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Figure S1. XRD of representative cylindrical (5CH, 25US) and polygonal (24US) halloysite-
(10 A) samples run immediately in the wet/damp state (blue) and following drying at 70
RH% for 3 days at ambient temperature (red).
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Figure S2. Detail of the ATR spectra of Fig. 3 comparing the five halloysites in their 10 A
(a) and 7 A (b) states.
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Figure S3. Detail of the ATR spectra monitoring the vO-H range during the -(10 A) to —(7
A) transition in cylindrical halloysite 5CH. For experimental details, see text. (b1, b2) The
spectrum of the —(10 A) end-member of each series is shown with a thick line. The vOD
range of the D-form (b2) is shown with the x-axis expanded by a factor of 1.355 to facilitate
comparison with the vOH spectra of both, the H- (a) and the D-forms (b1). Vertical bars
indicate the y-axis scale of the spectra
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Figure S4. Same as Fig. S3 the -(10 A) to —(7 A) transition in cylindrical halloysite 6CH.
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Figure S5. Same as Fig. S3 the -(10 A) to —(7 A) transition in cylindrical halloysite 25US.
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Same as Fig. S3 the -(10 A) to —(7 A) transition in polygonal halloysite 23US.
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Figure S7. Same as Fig. S3 the -(10 A) to —(7 A) transition in polygonal halloysite 24US.
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Figure S8. 2" derivative (Savitzky-Golay, 9pt) evolution during the 10 to 7 A conversion of
polygonal 24US and cylindrical 25US halloysites. The spectrum of the 7 A end member is
shown in red. Peak positions are indicated for the ~1120 (Si-O) and the ~910 cm™ (inner
OH) modes. The data are taken from the H,0 series, but their D;O counterparts are
identical. Re-wetting of the 7 A phase leaves the spectra of the 7 A end-member
unaffected.
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Figure S9. Detail of the ATR spectra monitoring the vO-D range in cylindrical halloysite
25US (left) and polygonal halloysite 23US (right) during: a. the transition D-halloysite-(10
A) to —(7 A); b. the rehydration of D-halloysite-(7 A) by D,0; c. the rehydration of H-
halloysite-(7 A) by D0. Vertical bars indicate the y-axis scale of the spectra in each
panel.
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Fig. S10. Band fitting analysis of the ~1120 cm™ mode in 24US (upper) and 25US (lower)
in their 10 A and 7 A states (left, and right, respectively).
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Fig. S11. Experimental (blue) and model patterns of 6CH-(7 A) prepared by heating the
10A starting material at 60 °C for 1 week. The consideration of 8.5 A instead of 10 A RO
interstratifications (red and grey, respectively) improves the simultaneous matching of
the ~7.4 and 3.6 A peak positions. Various other fits using an RO interstratification of just
10 and 7 A layers in different proportions were trialed, but none appears as satisfactory
as those composed of 8.5 and 7 A layers for the example shown. Undoubtedly, further
improvement would result if a three-component system were used and it is also clear
that elements of R1 segregation in a 3-component system will be required to match
some of the profiles recorded at other stages of the dehydration, such as those shown in
Figure 2. Modelled patterns were calculated manually using Sybilla v2.2.14.



