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Fig. S1 Exemplary data analysis of stopped-flow conductivity measurements. The red curve results 

from fitting a bi-exponential function (Eq. 1) to data obtained at 25 °C from experiments with a short-

range ordered aluminosilicate (Al:Si = 1.4; 1 g L-1) and oxalic acid (0.5 mmol L-1) at initial pH 5. The 

red curve is the sum of the two exponential functions representing a fast (blue) and a slow process 

(green) 
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Fig. S2 X-ray diffractograms of short-range ordered aluminosilicates used as adsorbents. Data are 

shifted along the y-axis for clarity 
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Fig. S3 Transmission Fourier-transform infrared spectra of short-range ordered aluminosilicates 

(SROAS) with an Al:Si ratio of 1.4 (a) and 3.7 (b) used as adsorbents. Spectra of SROAS previously 

characterized by 27Al and 29Si nuclear magnetic resonance spectroscopy (Lenhardt et al., 2021) are 

given as reference. Data were normalized to absorption maxima at 1015-970 cm-1 
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Fig. S4 Transmission Fourier-transform infrared spectra of short-range ordered aluminosilicates used 

as adsorbents. Data were normalized to absorption maxima at 590-565 cm-1 and shifted along the y-

axis for clarity 
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Fig. S5 Zeta potential of short-range ordered aluminosilicate particles measured in water and 

50 mmol L-1 NaCl solution at pH 5 and 6.5 
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Fig. S6 Aluminum and silicon concentrations in filtrates of batch-adsorption experiments with short-

range ordered aluminosilicates (molar Al:Si ratio 1.4 and 3.7) and oxalic acid (a), salicylic acid (b), and 

octanoic acid (c) plotted against pH  
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Release of Al and Si from SROAS during batch-adsorption experiments 
Figure S6 gives Al and Si concentrations in filtrates of batch-adsorption experiments with organic acids 

after 5 h reaction time. Maximal relative amounts of Al and Si released were 4.3% and 2%, 

respectively. Therefore, the processes discussed in the following do not affect the conclusions in the 

main article on adsorption phenomena. 

We plotted the concentrations against pH, since dissolution of SROAS and the processes that may 

have led to incomplete phase separation depend on pH. However, since adsorption of organic acids 

caused OH- release as a function of their concentration, the final pH was proportional to organic-acid 

concentration, particularly for oxalic and salicylic acid.  

The pH of the filtrates ranged from 5.2 to 8.2. The presence of Al and Si in filtrates with pH <7 from 

experiments with Al-rich SROAS cannot be explained by dissolution, since the concentrations 

surpassed the solubility of proto-imogolite (Lumsdon & Farmer, 1995; 1997). Hence, especially at 

lower pH, net positive surface charge likely favored disaggregation and thus incomplete phase 

separation. Molar Al:Si ratios in filtrates were slightly higher than those of the adsorbent (4.9-6.8; 

adsorbent: 3.7). A slight increase in Al concentrations at pH >7 that was reached only in the presence 

of oxalic and salicylic acid, may be caused by dissolution of Al-rich SROAS or mobilization of Al by 

organic acids. 

Incomplete phase separation was negligible in batches with Si-rich SROAS. In filtrates from 

experiments with octanoic acid (Fig. S6c) and from variants without organic-acid addition (lowest pH, 

Fig. S6), Al concentrations were very low. A lower point of zero charge of Si-rich SROAS likely thwarted 

disaggregation (Su et al., 1992). With increasing concentrations of oxalic and salicylic acid, Al 

concentrations increased (Figs. S6a, b), while Si concentrations were unaffected. This indicates that 

organic acids formed soluble complexes with Al. Surprisingly, this process was negligible in batches 

with Al-rich SROAS, although oxalic and salicylic acid had a much higher affinity for Al-rich SROAS 

(see main article). Concentrations of Si markedly surpassed Al concentrations in most samples and 

were generally independent of final pH. This indicates preferential release of Si by depolymerization 

of ill-defined SROAS (Farmer et al., 1991; Strekopytov et al., 2006). Particularly Si-rich SROAS contain 

ill-defined and thus less stable Si species (Farmer et al., 1991; Strekopytov et al., 2006; Lenhardt et 

al., 2021).  

  



 

 

 
Fig. S7 Filtrate pH as a function of oxalic-acid (a), salicylic-acid (b) and octanoic-acid (c) adsorption 

on two short-range ordered aluminosilicates (Al:Si = 1.4 and 3.7, green and black symbols, 

respectively) after a contact time of 5 h. Initial pH was adjusted to 5 and 6.5 (full and open symbols, 

respectively) in mineral suspensions and adsorptive solutions. There was no adsorption of octanoic 

acid at initial pH 6.5  
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Fig. S8 Time-dependent pH change during adsorption of salicylic and oxalic acid (1.2 mmol L-1) on 

short-range ordered aluminosilicates with molar Al:Si ratio of 1.4 (a) and 3.7 (b) at initial pH 6.5 

  

0 500 1000 1500
6.0

6.5

7.0

7.5

8.0

0 500 1000 1500
6.0

6.5

7.0

7.5

8.0
pH

Time (s)

a) b)

pH

Time (s)

 no organic acid
 salicylic acid
 oxalic acid



 
Fig. S9 DRIFT spectra of reference compounds and difference spectra of adsorption complexes 

formed by interaction of oxalic acid and a short-range ordered aluminosilicate (SROAS; Al:Si = 3.7) at 

initial pH 5. Bands of C-O stretching in adsorption complexes are marked by vertical lines 
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Fig. S10 DRIFT spectra of reference compounds and difference spectra of adsorption complexes 

formed by interaction of salicylic acid and a short-range ordered aluminosilicate (SROAS; Al:Si = 3.7) 

at initial pH 5. Bands of C-O stretching in adsorption complexes are marked by vertical lines 
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Table S1 Limiting molar conductivities (S cm2 mol-1) of ions used in stopped-flow experiments. At low 

adsorptive concentration (0.5 mmol L-1), the limiting molar conductivity is an appropriate indicator for 

the contribution of the various ions to specific conductivity. 

Ion 10 °C 15 °C 20 °C 25 °C Reference 

H3O+ 314 344 375 404 Kinart (2019) 

Octanoate 15.6 18.8 21.9 25.0 Kinart (2017) 

Oxalate 51.0 58.7 66.4 74.9 Kinart (2021) 

Salicylate  26.9 30.4 34.2 Stańczyk et al. (2019) 
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