MOLECULAR DYNAMICS SIMULATION STUDY OF PORE SIZE EFFECTS ON GAS ADSORPTION KINETICS IN ZEOLITES

JEFFERY A. GREATHOUSE¹, MATTHEW J. PAUL¹, GUANGPING XU², MATTHEW D. POWELL²

¹ Nuclear Waste Disposal Research & Analysis Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

² Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA

SUPPLEMENTARY INFORMATION

Fig. S1. GCMC adsorption isotherms	S2
Fig. S2. Gas MD mean square displacement profiles	S2
Fig. S3. Water MD mean square displacement profiles	S3
Fig. S4. MD gas loading profiles for dry clinoptilolite at low gas concentration	S3
Fig. S5. MD gas loading profiles for dry mordenite at low gas concentration	S4
Fig. S6. MD gas loading profiles for gas mixtures in dry clinoptilolite	S5
Fig. S7. Kinetic model fits of gas loading in dry clinoptilolite	S6
Fig. S8. Kinetic model fits of gas loading in dry mordenite	S7
Fig. S9. Snapshots from MD simulations of clinoptilolite	S8
Fig. S10. Radial distribution function profiles from MD simulations of clinoptilolite.	S9
Fig. S11. Snapshots from MD simulations of mordenite	. S10
Sig. S12. Radial distribution function profiles from MD simulations of mordenite	. S11
Table S1. Gas loadings from MD simulations of clinoptilolite	. S12
Table S2. Gas loadings from MD simulations of mordenite	. S12
Table S3. Fitted parameters of Ar loading profiles in clinoptilolite	. S13
Table S4. Fitted parameters of Kr loading profiles in clinoptilolite	. S14
Table S5. Characteristic timescales for gas loading profiles in clinoptilolite	. S15
Force field parameters	. S16

Figure S1. Adsorption isotherms at 300 K from GCMC simulations for (A) clinoptilolite and (B) mordenite in fully hydrated conditions.

Figure S2. Time evolution of gas mean square displacement during 10 ns MD simulations at 300 K in bulk zeolites in (A, B) dry and (C, D) partially hydrated states.

Figure S3. Time evolution of water mean squared displacement from 10-ns simulations in partially hydrated bulk zeolites with different gases. Slopes over the range 6 – 10 ns correspond to water diffusion coefficients of $0.005 \times 10^{-9} \text{ m}^2 \cdot \text{s}^{-1}$ and $0.25 \times 10^{-9} \text{ m}^2 \cdot \text{s}^{-1}$ for clinoptilolite and mordenite, respectively.

Figure S4. Results from MD simulations showing gas loading profiles in the bulk region of dry clinoptilolite slabs at low gas concentration (50 atoms on each side).

Figure S5. Results from MD simulations showing gas loading profiles in the bulk region of dry mordenite slabs at low gas concentration (50 atoms on each side).

Figure S6. Results from MD simulations of Ar/Xe and Kr/Xe mixtures showing gas loading profiles in the "bulk zeolite" region of 4.4 nm clinoptilolite slabs for (dry models). Gas concentrations are 50 atoms of each gas on each side (low concentrations). Results in the left column show gas loading profiles from single gas simulations (Figure S4). Simulation temperatures are 250 K (blue), 300 K (green), and 350 K (red).

Figure S7. Kinetic model fits (black lines) of MD simulation results at 250 K (blue), 300 K (green), and 350 K (red) of total gas loading profiles ("interface" and "bulk" regions) for Ar and Kr in the 4.4 nm and 5.9 nm clinoptilolite slabs at high gas concentration (100 atoms on each side).

Figure S8. Kinetic model fits (black lines) of MD simulation results at 250 K (blue), 300 K (green), and 350 K (red) of total gas loading profiles ("interface" and "bulk" regions) for single component noble gases in the 3.9 nm mordenite slab at high gas concentration (100 atoms on each side).

Figure S9. Snapshots from 1-ns MD simulations of clinoptilolite in dry, 7.6% water, and 15.5% water. Cations are shown as spheres (K = purple, Na = blue, Ca = green). For the dry state, snapshots are shown after simulation at 300 K (left) and after simulation at 623 K (350 °C) followed by cooling to 300 K (right).

Figure S10. Cation-oxygen radial distribution functions (RDFs) and running coordination numbers (CN) from 1-ns MD simulations of clinoptilolite in dry, 7.6% water, and 15.5% water. Oz and Ow refer to zeolite oxygen and water oxygen, respectively.

Figure S11. Snapshots from 1-ns MD simulations of mordenite in dry, 5.7% water, and 11.1% water. Cations are shown as spheres (K = purple, Na = blue, Ca = green). For the dry state, snapshots are shown after simulation at 300 K (left) and after simulation at 623 K (350 °C) followed by cooling to 300 K (right).

Figure S12. Sodium-oxygen radial distribution functions (RDFs) and running coordination numbers (CN) from 1-ns MD simulations of mordenite in dry, 5.7% water, and 11.1% water. Oz and Ow refer to zeolite oxygen and water oxygen, respectively.

	Dry		7.6 % H	20
Gas	$N_{ m gas}$ / unit cell	P (bar)	$N_{ m gas}$ / unit cell	P (bar)
Ar	0.5	1.6	0.5	6.0
Kr	0.5	0.4	0.4	1.2
Xe	0.5	< 0.1	0.6	0.4
Rn	0.5	< 0.02	0.4	0.05

Table S1. Gas Loadings (N_{gas} / unit cell) and Corresponding Pressures (bar) for MD Simulations of Gas Mobility in Bulk Clinoptilolite.

Table S2. Gas Loadings and Corresponding Pressures for MD Simulations of Gas Mobility in Bulk Mordenite.

Dry			5.7 % H ₂ O		
Gas	$N_{ m gas}$ / unit cell	P (bar)	$N_{ m gas}$ / unit cell	P (bar)	
Ar	0.8	2.0	1.2	12.0	
Kr	1.5	3.0	1.2	1.2	
Xe	2.3	0.1	1.8	0.8	
Rn	1.0	< 0.02	1.3	0.1	

Table S3. Fitted parameters and 95% confidence intervals (parentheses) from Ar kinetic models in clinoptilolite slabs (high gas concentration).

T(K)	Slab Thickness	α	β (ns ⁻¹)	M _{film}	n_{∞}	Ď
	2w(A)			(atoms)	(atoms/A)	(A^2/ns)
			0.1192	42.01		
250	43.7	2.587 (2.572, 2.602)	(0.1183,	(41.75,	1.008	56.91
			0.1201)	42.26)		
			0.07827	45.94		
250	58.6	1.339 (1.333, 1.345)	(0.07784,	(45.63,	1.124	67.19
			0.07871)	46.24)		
			0.102	36.53		
250	73.8	0.7585 (0.7552, 0.7618)	(0.1015,	(36.13,	1.260	138.88
			0.1025)	36.94)		
			0.0901	37.6		
300	43.7	3.491 (3.472, 3.51)	(0.08944,	(37.4,	0.827	43.02
			0.09076)	37.8)		
			0.06771	48.83		
300	58.6	2.221 (2.207, 2.234)	(0.06716,	(48.54,	0.801	58.13
			0.06826)	49.12)		
			0.07113	49.16		
300	73.8	1.345 (1.338, 1.352)	(0.07069,	(48.83,	0.872	96.85
			0.07158)	49.49)		
			0.04297	40.79		
350	43.7	6.171 (6.135, 6.207)	(0.04257,	(40.66,	0.508	20.51
			0.04336)	40.92)		
			0.0732	44.52		
350	58.6	3.115 (3.094, 3.135)	(0.07254,	(44.27,	0.645	62.84
			0.07386)	44.77)		
			0.06302	49.4		
350	73.8	2.205 (2.191, 2.219)	(0.06247,	(49.09,	0.637	85.81
			0.06356)	49.71)		

T(K)	Slab Thickness	α	β (ns ⁻¹)	M _{film}	n_{∞}	D
- ()	2w(A)		p (iiis)	(atoms)	(atoms/A)	(A^2/ns)
		1.869	0.0259	45.24		
250	4.4	(1.864,	(0.02582,	(45.12,	1.234	12.37
		1.873)	0.02598)	45.37)		
		0.9649	0.01726	48.09		
250	5.9	(0.9633,	(0.01722,	(47.96,	1.319	14.82
		0.9665)	0.01731)	48.23)		
		0.6007	0.01483	48.68		
250	7.4	(0.5998,	(0.0148,	(48.54,	1.281	20.19
		0.6016)	0.01486)	48.81)		
		2.011	0.03285	34.09		
300	4.4	(2.007,	(0.03276,	(33.98,	1.261	15.68
		2.015)	0.03293)	34.2)		
		1.12	0.02082	39.18		
300	5.9	(1.118,	(0.02078,	(39.06,	1.295	17.87
		1.121)	0.02087)	39.3)		
		0.7084	0.01934	39.07		
300	7.4	(0.7072,	(0.0193,	(38.9,	1.276	26.33
		0.7096)	0.01939)	39.23)		
		2.347	0.04688	27.82		
350	4.4	(2.341,	(0.04673,	(27.69,	1.177	22.38
		2.353)	0.04703)	27.94)		
		1.39	0.02347	32.58		
350	5.9	(1.387,	(0.02341,	(32.45,	1.195	20.15
		1.392)	0.02353)	32.71)		
		0.9198	0.02242	35.24		
350	7.4	(0.918,	(0.02236,	(35.08,	1.163	30.53
1		0.9215)	0.02247)	35.41)		

Table S4. Fitted parameters and 95% confidence intervals (parentheses) from Kr kinetic models used to fit simulated gas loadings in clinoptilolite slabs (high gas concentration).

Gas	<i>T</i> (K)	4.4 nm	5.9 nm	7.4 nm
Ar	250	17.8	43.7	177.3
	300	7.39	13.73	39.32
	350	1.13	7.54	12.96
Kr	250	7.41	18.54	41.10
	300	8.12	16.60	38.60
	350	8.51	12.15	26.50
Xe	250	0.006	0.039	0.108
	300	0.016	0.054	0.123
	350	0.039	0.123	0.249
Rn	250	0.338	0.098	0.403
	300	0.236	0.089	0.341
	350	0.232	0.079	0.182

Table S5. Characteristic timescales γ (μ s⁻¹) from kinetic models used to fit simulated gas loadings in clinoptilolite slabs (high gas concentration).

Atom types, masses, and charges for clinoptilolite in LAMMPS data file format

units real

Masses

28.086 # sz zeolite Si
 15.9994 # oz zeolite O
 15.9994 # o* SPC water O
 39.102 # K
 1.00797 # h* SPC water H
 22.99 # Na
 40.0798 # Ca
 39.95 # Ar
 83.80 # Kr
 131.293 # Xe
 222.0 # Rn
 15.999400 # oh zeolite silanol O
 1.007970 # ho zeolite silanol H

Atoms # full

1	1	1 1.299800	6.703092071	2.825806651	3.058940500	0 0 0 # sz
2	1	2 -0.733300	7.186179122	1.281011288	2.895677400	0 0 0 # oz
3	1	3 -0.820000	0.443236726	14.534976412	7.517279000	0 0 0 # o*
4	1	4 1.000000	5.749371076	3.702454326	8.970500000	0 0 0 # K
5	1	5 0.410000	14.487733424	14.256207043	8.100986293	-1 0 0 # h*
6	1	6 1.000000	1.286945185	0.638136326	8.970500000	0 0 0 # Na
7	1	7 2.000000	2.194336622	7.259788262	0.019999000	0 0 0 # Ca
8	1	8 0.000000	28.56	1.06	8.43	0 0 0 # Ar
9	1	9 0.000000	21.453	16.185	8.507	0 0 0 # Kr
10	1	10 0.000000	12.383	7.145	0.054	0 0 0 # Xe
11	1	11 0.000000	25.509	0.217	0.422	0 0 0 # Rn
12	1	12 -0.777200	51.823	12.912	15.102	$0 \ 0 \ 0 \# oh$
13	1	13 0.410000	52.280	13.126	15.942	0 0 0 # ho

Atom types, masses, and charges for mordenite in LAMMPS data file format

units real

Masses

28.086 # sz zeolite Si
 15.9994 # oz zeolite O
 15.9994 # o* SPC water O
 22.99 # Na
 1.00797 # h* SPC water H
 5.999400 # oh zeolite silanol O
 1.007970 # ho zeolite silanol H

Atoms # full

1	1	1 1.300000	3.553676000	8.756489000	4.031845600	0	0	0 # sz
2	1	2 -0.712500	2.248244000	8.571926000	3.129193600	0	0	0 # oz
3	1	3 -0.820000	18.111000000	14.826561000	2.271674200	0	0	0 # o*
4	1	4 1.000000	36.475945800	10.103798900	3.839279840	-1	0	0 # Na
5	1	5 0.410000	1.497493374	-0.080279899	3.402823501	0	1	0 # h*
6	1	3 -0.767600	15.808864525	8.422441465	50.642987944	0	0	0 # oh
7	1	4 0.410000	15.918548187	9.393552874	50.779020654	0	0	0 # ho

van der Waals parameters in LAMMPS format

pair_coeff	24b	uck/coul/long 1214	18 0.2833	3577 #	oz K
pair_coeff	26b	uck/coul/long 1214	18 0.2469	1501 #	oz Na
pair_coeff	27b	uck/coul/long 1214	18 0.2469	1501 # 0	oz Ca
pair_coeff	33	lj/cut/coul/long	0.1553	3.1690 #	+ 0* 0*
pair_coeff	44	lj/cut/coul/long	0.1232	3.3320 #	• K K
pair_coeff	66	lj/cut/coul/long	0.0999	2.5840 #	• Na Na
pair_coeff	77	lj/cut/coul/long	0.0999	2.5840 #	E Ca Ca
pair_coeff	88	lj/cut/coul/long	0.2385	3.4050 #	Ar Ar
pair_coeff	99	lj/cut/coul/long	0.3378	3.6900 #	# Kr Kr
pair_coeff	10 10	lj/cut/coul/long	0.4193	4.1000 #	# Xe Xe
pair_coeff	11 11	lj/cut/coul/long	0.5962	4.1700 #	# Rn Rn

bond stretch and angle bend parameters in LAMMPS format

units	re	al		
bond_style	ha	rmonic		
angle_style	ha	rmonic		
bond_coeff	1	1383.1	1.65	# sz-oz
bond_coeff	2	1383.1	1.65	# sz-oh
bond_coeff	3	553.93	5 1.0	# oh-ho
bond_coeff	4	553.93	5 1.0	# o*-h*
angle_coeff	1	298.1	110	# oz-sz-oz
angle_coeff	2	59.6	145	# sz-oz-sz
angle_coeff	3	298.1	110	# oz-sz-oh
angle_coeff	4	24.5	118.5	# sz-oh-ho
angle_coeff	5	45.77	109.4	7 # h*-o*-h*