Supplementary material 1:
	Box 1 Glossary

	Descriptive analysis is the concise summary of the data, examining its distribution within a population or obtaining a quantitative overview of the data at hand. They are typically embedded in studies in "table 1". The summary statistics, such as numbers, percentages, mean, standard deviation, etc., are described. They may also include simple visualisation techniques. For example, they can answer questions like what percentage of people in the population have cancer and what percentage have yellow fingers. Here, we are interested in the probabilities of the variables, such as p(y) and p(x).


	Explanatory analysis is the process of using data to look for explanations that may or may not be causal. This approach is generally used to establish a potential risk factor in a population of interest. It often uses statistical inferential tests (such as chi-square/t-tests) to examine if the distribution of a particular variable of interest differs in two populations. For example, to answer the question, is there an association between the presence of yellow fingers and cancer? We may compare the presence of yellow fingers in those with cancer and without using a chi-square test. They try to look for a function that maps an independent variable to a dependent variable, such as f(x) = y. Here, we are interested in the function f(.) that maps x (risk factor) onto y (outcome). In other words, we are interested in a function that gives us the conditional probability of y given x, such as p(y|x).


	Prediction analysis is the process of predicting an outcome given a particular risk factor. Once again, a causal explanation differs from what we are interested in. For example, we may try to answer a question: given the relationship between yellow fingers and cancer, can I predict the probability of a person developing cancer, given that they have yellow fingers? Here, the aim is to predict y (outcome) given an x (risk factor) in a new participant. We are not particularly interested in the function f(.). But the y given an x(new). In other words, we are interested in the conditional probability of y given x in an unseen person, such as p (y | unseen x).


	Causal analysis seeks to determine the impact of a treatment, action, or intervention on an outcome by distinguishing correlation from causality. In Rubin's Potential Outcomes Framework, (see below) causality is defined by comparing the potential outcomes under different treatment conditions, though only one outcome can be observed per individual – the fundamental problem of causal inference. Pearl’s Structural Causal Model (SCM) uses Directed Acyclic Graphs (DAGs) and the do-operator to represent and reason about interventions in a system. Both frameworks aim to estimate the causal effect and provide complementary tools for understanding and quantifying causal relationships in data.

	Causality is the relationship between an event (the cause) and a second event (the effect), where the second event results from the first. In other words, causality is the relationship between cause and effect.


	Causal inference is the process of concluding a causal relationship based on the evidence available. It involves using data and statistical methods to infer the causal relationship between variables. The goal of causal inference is to determine whether a particular exposure or intervention causes a particular outcome. This is often done by comparing the outcomes of groups that differ in their exposure or intervention status while controlling for other factors that may influence the outcome.


	Causal reasoning refers to the process of making inferences about cause-and-effect relationships. It involves using logic, evidence, and prior knowledge to understand and explain how one event leads to another.


	Type causality encompasses inference on causal relationships between variables, such as in causal discovery and causal effect estimation. It focuses on reasoning about the relationships between variables and their average effects. RCTs or well-planned observational studies adjusting for confounding only derive the intervention's average treatment effect (ATE) across the entire study population. The ATE does not tell us if the intervention will work for a specific individual with unique characteristics.


	Actual causality (also called specific causality) refers to an inference of the degree to which specific events cause other events. That is actual causality concerns reasoning about specific events and their causes. For example, questions such as "Was John's smoking habit responsible for his lung cancer? To facilitate precision medicine and a personalised approach to care, we need to derive the individualised treatment effect (ITE) for each patient.


	Pearl's causal ladder provides a framework for understanding the different levels of causal inference. At the base of the ladder is association, where we simply observe relationships between variables without understanding whether one causes the other. Moving up the ladder, we find intervention, where we actively manipulate one variable to see its direct effect on another. The highest rung is counterfactuals, where we ask "what if" questions to explore hypothetical scenarios and their potential outcomes. For example, at the association level, we might observe a correlation between smoking and lung cancer. At the intervention level, we could conduct a randomized controlled trial to determine whether quitting smoking reduces the risk of lung cancer. Finally, at the counterfactual level, we might ask, "If this person had never smoked, would they have developed lung cancer?" This question requires us to imagine a hypothetical scenario that cannot be directly observed.

	Heterogeneity of Treatment Effect (HTE):  refers to the variation in the treatment effect across different individuals or subgroups within a population. Rather than having a uniform treatment effect for everyone, HTE acknowledges that the impact of a treatment or intervention can differ based on individual characteristics, covariates, or other contextual factors. If treatment effects vary significantly across individuals, then the ITE will differ from person to person. In other words, the ATE (the population average of all ITEs) may not be a good representation of any single individual’s ITE. As a corollary, in homogenous assumptions (where HTE is absent), ATE approximates ITE.


	Individualised Treatment Effect (ITE): Individual treatment effect refers to the actual, true causal effect of a treatment on a specific individual. It represents the difference between what the outcome for that individual would have been under treatment and what the outcome would have been under no treatment. It is impossible to directly observe both potential outcomes for the same individual making the true individual treatment effect unobservable.  The Individualised Treatment Effect (ITE) is therefore an estimate of the causal effect of the treatment on an individual, considering their unique characteristics. Estimating ITEs is challenging, often requiring strong assumptions. In RCTs, ATE are often thought to be a close approximation of ITE, if  HTE is minimal, because randomisation ensures that confounders are equally distributed between groups (See ATE and HTE definition below). 
Mathematically, 
Let Yi (1) be the outcome for an individual i who received the treatment (1)
Let Yi (0) be the outcome for an individual i  who did not received the treatment (0)
Then ITEi = Yi (1) – Yi (0) | confounders


	Average Treatment Effect (ATE): The Average Treatment Effect (ATE) measures the average difference in outcomes between treated and untreated individuals in a population. It is a central concept in causal inference and answers the question: "What is the average effect of a treatment across the entire population?". The ATE represents the average causal effect of the treatment for the population as a whole. It is the population average of all the ITEs (see above what ITE is). In a Randomised Controlled Trial (RCT), individuals are randomly assigned to either the treatment group or the control group. This randomisation ensures that, on average, any confounding variables (both measured and unmeasured) are equally distributed between the two groups, isolating the effect of the treatment. In other words, the randomisation ensures that the treatment and control group are similar in all aspects, other than the treatment.  The Average Treatment Effect (ATE) is calculated by comparing the average outcome in the treatment group to the average outcome in the control group. This is the ATE, representing the average benefit for the entire study population.
Mathematically, 
ATE = E[Y (1)] − E[Y(0)] …1
 = E [Y (1) – Y(0)]              …2  
= E [ITE] ;
where E is the expected value or population average. E [Y (1)] is the average effect in treatment arm; E[Y (0)] is average effect in placebo arm in an RCT.  Equation 1 = Equation 2 under the consistency assumption (see below).

	Conditional Average Treatment Effect (CATE): This is the average treatment effect for a specific subgroup of individuals defined by shared characteristics (e.g., age, income). It acknowledges that treatment effects can vary across distinct groups and provides a more nuanced understanding than the overall ATE. While RCTs do not directly estimate CATEs, they can be used to identify subgroups and estimate CATEs within those subgroups. At the finest level, CATE could give us an estimate of ITE.
Mathematically, 
the CATE for a set of covariates X=x is:
CATE (x)= E[Y(1)−Y(0)∣X=x] ; 
where X represents the covariates (such as age, BMI, etc.). E[⋅∣ X=x] is the expected value (average) of the treatment effect conditional on X=x.


	Potential Outcomes (Factual / Counterfactual): This framework, developed by Donald Rubin, provides a foundation for causal inference by defining causality in terms of factual and counterfactual outcomes. For everyone, the factual outcome is what actually happens under the treatment they received, while the counterfactual outcome is the hypothetical outcome that would have occurred had they received a different treatment.
For example, if a patient is treated with olanzapine, their weight gain under olanzapine is the factual outcome, and their hypothetical weight gain under aripiprazole is the counterfactual. The causal effect is the difference between these two outcomes (factual vs. counterfactual), but only one of these outcomes is observable for each person—this is known as the fundamental problem of causal inference. 

	Structural Causal Model (SCM): This framework developed by Judea Pearl, uses Directed Acyclic Graphs (DAGs) and structural equations to explicitly model causal relationships, focusing on understanding how interventions change outcomes. The core mathematical object is the do-operator, where do(X=x) forces a variable X to take a specific value, allowing the estimation of P (Y ∣ do (X=x)), the post-intervention distribution of Y. Pearl's framework provides tools like causal graphs to encode assumptions about the data-generating process and enables backdoor adjustments for confounding. Further reading: 

	Conditions of Causality from Observational Studies
: For causal inference in observational studies, three main conditions often need to be satisfied: (a) Consistency, meaning that the potential outcomes under a given treatment are well-defined and stable; (b) Exchangeability, where treated and untreated groups are comparable in terms of unmeasured factors (often achieved through randomization or careful adjustment); and (c) Positivity, ensuring that there is a non-zero probability for all treatment groups to receive every treatment level. (d) Non-interference (also known as the Stable Unit Treatment Value Assumption or SUTVA)  ensures each individual's outcome depends only on their own treatment and not on the treatments received by others. 

	Target Trial Emulation: Target trial emulation is a framework used in observational studies to mimic the design of a randomized controlled trial (RCT). By explicitly defining the eligibility criteria, treatment strategies, assignment rules, and outcome measures of a hypothetical RCT, researchers aim to reduce bias and improve causal inference. This approach helps in addressing confounding and selection bias in non-randomized data.

	Generative Models capture the underlying process that generates the data that we have at hand. It learns the hidden rules and relationships governing how that data (e.g., hallucinations/ delusion) is generated, allowing it to reproduce existing data and generate entirely new, plausible examples. A generative model may seek to mimic the brain's inner workings by capturing the processes that generate the observed data, like brain activity or behaviour. An analogy for generative computational model is illustrated here. Imagine you try a delicious dish at a restaurant and want to recreate it at home. However, you don't have the recipe – only the finished product. A generative computational model is like a chef who doesn't have a recipe but can taste the dish and experiment with different ingredients and cooking methods. By trying various combinations, the chef aims to uncover the recipe and its key components that contribute to the unique taste. This allows them to not only recreate the dish but also potentially discover new variations with different flavours and textures. By analysing successful and unsuccessful attempts, they can then identify the unique combination of ingredients and methods responsible for distinct taste of the dish from different restaurants.


	Simulation in Producing Counterfactual Outcomes: Simulation is used to generate hypothetical counterfactual outcomes by estimating what would have happened under different treatment scenarios for individuals in the observational data. By modelling the data-generating process and manipulating the treatment variable, researchers simulate both the factual (observed) and counterfactual (unobserved) outcomes to estimate treatment effects, such as the Individualised Treatment Effect (ITE).

	Generative adversarial network (GAN): While this is not a typical simulation technique, GAN is a type of artificial intelligence (AI) framework that uses two neural networks competing against each other to generate new, realistic data. It is like having two artists, a counterfeiter (the generator) and an art critic (the discriminator), working together to create increasingly convincing imitations. In a counterfactual machine learning setting, the discriminator learns how the features map onto the actual treatment and real outcomes. The generator creates counterfactual patient outcomes, given their features and the counterfactual treatment. The discriminator then tries to distinguish between real outcomes and generated counterfactuals. The generator learns to create more realistic counterfactuals based on discriminator feedback. The process repeats until the discriminator can no longer reliably distinguish real from generated outcomes.



Further reading:
1. "The Book of Why: The New Science of Cause and Effect" by Judea Pearl and Dana Mackenzie (2018) ; A popular science book that explains causal inference in an accessible way. Pearl outlines his Structural Causal Model (SCM) and the do-calculus, introducing key ideas about how humans think about cause and effect.
2.  "Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction" by Guido Imbens and Donald B. Rubin (2015)
3. Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal Inference in Statistics: A Primer. Wiley.
4. "Causal Inference: What If" by Miguel A. Hernán and James M. Robins (2020) : Hernán and Robins provide a thorough introduction to causal inference, focusing on epidemiological and biomedical applications. The book explains causal diagrams, g-methods (including inverse probability weighting and the g-formula), and treatment effect estimation.
5. "Estimating Individual Treatment Effects in Observational Data Using Bayesian Additive Regression Trees" by Susan Dandl, Moritz Berger, Bernd Bischl, and Christoph Molnar (2022)
6. "DoWhy: An End-to-End Library for Causal Inference" by Amit Sharma and others (2019)
7. "Causal Inference in Machine Learning" by Mihaela van der Schaar and Ahmed M. Alaa (2017)
8. Hoogland J, IntHout J, Belias M, et al. A tutorial on individualized treatment effect prediction from randomized trials with binary endpoint. Stat Med. 2021; 40(26): 5961-5981.
9. Dablander, F. “An Introduction to Causal Inference.” PsyArXiv, 13 Feb. 2020. Web.
10. Shadish, W. R., & Sullivan, K. J. (2012). Theories of causation in psychological science. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol. 1. Foundations, planning, measures, and psychometrics (pp. 23–52). 
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