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A.1. HTE-Robust Estimators

Scholars have proposed a number of novel estimators that relax TWFE assumptions and

allow for HTE. We discuss several of them below. Broadly, we can categorize these estimators

along two dimensions: (1) estimation strategy and (2) applicable settings. Along (1), we

divide estimators into two groups. We call one group of methods “DID extensions,” which

use local, 2 × 2 DIDs between treated and control observations as building blocks, and

the other “imputation methods,” which impute counterfactual outcomes using an explicit

outcome model (in particular, the TWFE model) that is fit globally on all available control

observations. We see the former as direct extensions to DID, while the latter embed DID’s

functional form assumptions in their outcome models. For (2), estimators either are suited

only to the staggered setting (which includes the classic DID setting) where treatment is an

absorbing state or can accommodate treatment reversals. Those suited to the latter are also

suited to the former, which is just a special case of the latter. The reverse is not true.

In the following subsections, which are organized by this typology, we introduce and

compare several recently introduced HTE-robust estimators. Although these estimators all

relax the TWFE assumption of homogeneous effects, they do not absolve us of needing

the parallel trends (PT) assumption or strict exogeneity. These estimators can, however,

estimate dynamic treatment effects, which in turn allow us to assess the validity of parallel

trends by testing for pretrends.

A.1.1. DID Extensions for the Staggered Setting

We first introduce a set of estimators, each constructed from local 2× 2 DID estimates, that

are suitable only for the staggered adoption setting. The general strategy of these estimators

is to estimate the dynamic cohort average treatment effect on the treated (CATT), τg,l, for

each cohort g and for each period since treatment adoption l using a valid 2 × 2 DID.

By valid, we mean that the DID consists of (1) a pre-period and a post-period and (2)

a treated group and a comparison group. The pre-period is such that all observations in

both groups are in control, and the post-period is such that observations from the treated

group are in treatment and the observations from the comparison group are in control. The

choice of comparison group is what primarily distinguishes estimators in this category. To

obtain higher-level averages, we then average over our estimates of τg,l using appropriate,

non-negative weights.
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Sun and Abraham (2021) propose an interaction-weighted (IW) estimator that is a weighted

average of CATT estimates obtained from a TWFE regression with cohort dummies fully

interacted with indicators of relative time to the treatment’s onset. Specifically,

Yi,t = αi + λt +
∑
g/∈C

∑
l ̸=0

τg,l1{Ei = g} · 1 {Ki,t = l}+ ϵi,t, (A1)

where C is some set of reference cohorts and Ki,t is similarly defined as in the main text.

Equivalently, each estimate of τg,l from equation A1 can can be characterized as a difference

in the average changes in outcome from some fixed pre-period s < g to l periods since g

between the treated cohort g and comparison cohorts in C:

τ̂(g, l) =
1

|{i : Ei,t = g}|
∑

i:Ei,t=g

(Yi,g+l − Yi,s)−
1

|{i : Ei,t ∈ C}|
∑

i:Ei,t∈C

(Yi,g+l − Yi,s),

The authors recommend using C = {supi Ei,t}, which is either the never-treated cohort or

(if none exists) the last-treated cohort. The estimator then weights τ̂g,l by the sample share

of each cohort ŵg before taking some average thereof. For example, the dynamic treatment

effects (DTE) from relative period l between −a and b can be estimated from

τ̂ IWl =
∑
g

ŵg τ̂g,l, a ≤ l ≤ b,

and the ATT up to b periods after the treatment’s onset from

τ̂ IW =
1

b

∑
1≤l≤b

∑
g

ŵg τ̂g,l.

The authors note that their estimator can be extended to include covariates, but also that

this may require additional functional form assumptions.

Using the same general strategy, Callaway and Sant’Anna (2021) propose doubly robust

estimators that directly incorporate pre-treatment covariates. These estimators, which we

collectively refer to as CSDID, use either never-treated (τ̂CS
nev) or not-yet-treated units (τ̂CS

ny )

as the comparison group. τ̂CS
nev uses the same comparison group as IW when a never-treated

cohort exists, whereas τ̂CS
ny differs and uses all untreated observations of later adopters (in-

cluding the never-treated) as potential controls for early adopters. Besides the choice of

comparison cohort, these estimators both differ from the IW estimator in that they allow

the user to condition on pre-treatment covariates using both an explicit outcome model and
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inverse propensity score weighting (IPW).A1 If either the outcome model or the propensity

score model is correct, the estimators will be consistent.

A.1.2. DID Extensions for the General Setting

The next group of estimators we discuss also use local DIDs as building blocks, but estimators

in this group can accommodate treatment reversals. The general strategy is once again to use

valid 2× 2 DIDs, but this time the goal is to estimate the DTE τl for all treated units some

number of periods since treatment l—cohorts are no longer defined, since treatment reversals

make it insensible to group units by their time of treatment adoption. The literature has

effectively proposed one common strategy of selecting a comparison group, which is to match

treated and control observations belonging to units with the same treatment history.

IKW (2023) propose one such estimator. Formally, to estimate the ATT, we first define

a matched set for each observation (i, t) satisfying Di,t = 1 and Di,t−1 = 0,

Mi,t =

{
i′ : i′ ̸= i,Di′,t = 0, Di′,t′ = Di,t′ ∀t′ ∈ {t− 1, t− 2, . . . , t− a}

}
,

where a is the number of periods on which we wish to match treatment histories. The authors

also propose “refining” the matched set to incorporate other pre-treatment covariates and

past outcomes. We do not further discuss refinement for a more seamless comparison with

other estimators and refer interested readers to the original paper. Without refinement and

fixing the number of periods a on which to match, the proposed estimator for the DTE l

periods since treatment τl is,

τ̂PM
l,a =

∑T−l+1
t=a

∑N
i=1Gi,tτ̂

(i,t)
l∑T−l

t=a+1

∑N
i=1Gi,t

,

where Gi,t = 1 {|Mi,t| > 0}Di,t(1 −Di,t−1) is equal to 1 if and only if the observation (i, t)

switches into treatment at time t and has a non-empty matched set (and is zero otherwise)

and τ̂
(i,t)
l = (Yi,t−1+l−Yi,t−1)−

∑
i′∈Mi,t

1
|Mi,t|(Yi′,t−1+l−Yi′,t−1) is the local DID obtained from

the pre- and post-periods t−1 and t−1+ l, respectively, the treatment “group” consisting of

just (i, t), and the comparison group consisting of the matched set for (i, t). To then obtain

an estimate for the DTE τ̂l, we then average over all τ̂
(i,t)
l such that (i, t) Essentially, the

strategy is to average over the estimates of the DTE for all units that switch into treatment

A1The IPW estimator proposed by Strezhnev (2018) is similar to τ̂CS
ny . One small difference is that τ̂CS

ny allows
more complex outcome modeling than a simple before-and-after estimator.
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at t (if there are any) for each time period t, and then to average across all time periods for

which we can obtain an estimate.A2 If the goal is to estimate the average effect of treatment

reversal (ART), we then analogously defined matched sets for each observation (i, t) satisfying

Di,t = 1 andDi,t−1 = 0,Mi,t = {i′ : i′ ̸= i,Di′,t = 1, Di′,t′ = Di,t′ ∀t′ ∈ {t−1, t−2, . . . , t−a}}.
We use τ̂PM−ART

l,a to denote the resulting estimator.

Interestingly, several DID extensions can be viewed as special cases of PanelMatch.

Remark A.1 (Relation between τ̂PM
1,1 without refinement and τ̂M). Assume we have a bal-

anced panel of units, i.e. every unit i is observed at every time period t. For the special case

when we match on only one period (a = 1) and are estimating the contemporaneous treat-

ment effect (l = 1), without refinement, a weighted average of the PanelMatch estimators for

the ATT and ART is equivalent to the multiple DID estimator proposed by de Chaisemartin

and D’Haultfœuille (2020), or τ̂M , when there exists a ‘stable’ group (i.e., whenever there is

a unit switching into or out of treatment, there is at least one other unit staying in control

or treatment; see the next section for a formal statement of this assumption), where the

weights are the proportion of “switchers” that are “joiners” versus “leavers.” That is, if we

do not refine the matched set, then NJ

NS
τ̂PM
1,1 + NL

NS
τ̂PM−ART
1,1 = τ̂M , where NJ , NL, and NS are

the numbers of joiners, leavers, and switchers. The proof is in the next section. This ob-

servation allows us to appeal to the results that de Chaisemartin and D’Haultfœuille (2020)

prove about τ̂M . Minor adjustments of their proofs will give us that, under some typical

assumptions (the details of which we provide later in this section), τ̂PM
1,1 without refinement

is asymptotically normal, unbiased, consistent for the average contemporaneous treatment

(reversal) effect on the treated.

Remark A.2 (Equivalence of PanelMatch and CSDID without covariate adjustment).

Again assume we have a balanced panel of units. If we use a simple difference in means

as the outcome model for CSDID and employ uniform propensity score weights (i.e., do not

adjust for covariates), then CSDID is equivalent to PanelMatch with an arbitrary number of

lags and without refinement (in the staggered setting). This follows from the facts that in

the staggered setting, for any time period t: (1) Any observation belonging to a unit that

switches into treatment at time t (‘switchers’) must have been under control for the periods

A2Note that, without refinement, all treated observations with the same treatment history share the same
matched set, so we can group these observations together and rewrite the inner sum to instead be over
all possible treatment histories. We can thus also express the inner sum of the numerator as a weighted
sum of local DIDs using a slightly different treatment group—all treated observations with the treatment
history—where the weights are proportional to the size of said group.
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1, . . . t−1; and (2) all control observations must belong to units that have been under control

for the periods 1, . . . t − 1 (i.e., they have the same treatment history as switchers). Thus,

the matched set will always include all units under control (all “not-yet treated” units).

A.1.3. Imputation Methods for the General Setting

The last class of estimators we discuss no longer directly take the difference between differ-

ences; instead, they take the difference of the observed outcome and an imputed counterfac-

tual outcome (for treated observations)—the before-and-after difference is embedded in the

functional form assumption used to impute treated counterfactuals. Under strict exogeneity

or a stronger version of the PT, the imputation method allows researchers to make infer-

ences about the ITE of treated observations, τi,t,∀(i, t) s.t. Di,t = 1, the most fine-grained

estimand (e.g., Bai and Ng, 2021).

BJS (2024) propose an “imputation procedure” that first imputes the counterfactual

outcomes for treated units based on the outcome model,

Yi,t = A′
i,tλi +X ′

i,tβ +Di,tΓ
′
i,tθ + ϵi,t,

and then estimates the treatment effect for treated observations with the difference be-

tween their observed and their imputed counterfactual outcomes. That is, first use only

the untreated observations {(i, t) : Di,t = 0} to estimate λi and β (by λ̂i and β̂) using

OLS on the regression Yi,t = A′
i,tλi + X ′

i,tβ + εi,t. Then, for each treated observation, set

Ŷ BJS
i,t (0) = A′

i,tλ̂i +X ′
i,tβ̂ and estimate the ITE as τ̂BJS

i,t = Yi,t − Ŷ BJS
i,t (0). We can then com-

bine these ITE estimates to estimate aggregate quantities, including the ATT and dynamic

effects.

LWX (2024) refer to imputation-based estimators as “counterfactual estimators” and

discuss several such estimators. LWX (2024) consider a class of outcome models of the form

Yi,t(0) = f(Xi,t) + h(Ui,t) + εi,t, where f(·) and h(·) are known parametric functions, Xi,t is

observed, and Ui,t is unobserved (whereas in BJS (2024), both Xit and Ait are observed).

Note that this framework subsumes the TWFE outcome model as we can model Yi,t(0) =

X ′
i,tβ + αi + ξt + εi,t. We can then use an estimation procedure similar to the one in BJS

(2024). LWX (2024) call this estimator the fixed effect counterfactual (FEct) estimator, τ̂ fect

(for the ATT) or τ̂ fectl (for the dynamic effects).

The two imputation methods, BJS (2024) and LWX (2024), produce the same post-

treatment estimated DTE in event-study plots but differ in their estimation of pre-treatment

DTE. The former employs a dynamic TWFE specification using only untreated observations,
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with period indicators for pre-treatment periods:

Yi,t = αi + ξt +
l=0∑

l=−T+1

τTWFE
l · 1 {Ki,t = l}+ εi,t for (i, t) with Dit = 0

where T represents the earliest pre-treatment period and is treated as the reference period.

As shown in Roth (2024), this asymmetry in the calculation of pre- and post-treatment DTE

can lead to a discontinuity at the first post-treatment period.

LWX (2024), on the other hand, estimates the pre-treatment DTE by comparing observed

and predicted pre-treatment outcomes. Li and Strezhnev (2024) demonstrates that because

LWX (2024) fits Ŷit(0) using observations where Dit = 0 and calculates the DTE as Yit −
Ŷit(0), this procedure relies on in-sample errors, which can result in DTE estimates being

biased toward zero. To address this issue, they recommend using the leave-one-out method:

holding out observations from each pre-treatment period, using observations from other pre-

treatment periods to impute the counterfactual for the held-out observations, and basing

DTE estimation on out-of-sample errors.

Although both methods estimate pre-treatment DTE asymmetrically compared to post-

treatment DTE, we prefer the latter method for two reasons. First, both BJS (2024) and

LWX (2024) estimate post-treatment DTE using the average of all pre-treatment periods as

the reference. However, BJS (2024) uses the earliest pre-treatment period as the reference

when estimating pre-treatment DTE, which can lead to inconsistency in the interpretation

of results. Second, we apply the leave-one-out procedure across most replicated samples, and

the results closely align with those obtained using in-sample errors, indicating robustness of

the latter method.
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A.1.4. Strict Exogeneity and Parallel Trends

In this subsection, we clarify the relationship between strict exogeneity, often invoked in

TWFE models, and the identifying assumptions in DID research designs, including no an-

ticipation, no carryover, and PT assumptions.

Assumption A1 (Functional form).

Yi,t = τDi,t +Xi,t
′β + αi + ξt + εi,t, ∀i, t,

in which Yi,t is the outcome variable for unit i at time t; Di,t is the treatment variable;

Xi,t is a vector of covariates; αi, ξt are unit fixed effects and time fixed effects; and εi,t are

idiosyncratic errors.

Denote Di = {Di,1, Di,2, · · · , Di,T} and Xi = {Xi,1, Xi,2, · · · , Xi,T}. Given Assump-

tion A1, we can simplify the potential outcome to depend solely on the treatment status in

period t without loss of generality:

Yi,t(di) = Yi,t(di,t) =

Yi,t(1), if di,t = 1

Yi,t(0), if di,t = 0
.

Note that, Yi,t(0) = Xi,t
′β + αi + ξt + εi,t and Yi,t(1) = Yi,t(0) + τ . This formulation of the

potential outcomes directly implies no anticipation and no carryover, as the potential

outcome in period t is unaffected by treatment status in other periods.

Assumption A2 (Strict exogeneity).

E[εi,t | Di,Xi, αi, ξt] = E[εi,t | Di,t, Xi,t, αi, ξt] = 0, ∀i, t.

adapted from Wooldridge (2010, p. 253).

Note that Assumption A2 invokes the functional form assumption. Given Assump-

tions A1 and A2, we have:

E[Yi,t | Di,Xi, αi, ξt] = E[Yi,t | Di,t, Xi,t, αi, ξt] ∀i, t,
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which means that once Di,t, covariates, and fixed effects are accounted for, Di,s has no partial

effect on Yi,t, for any s ̸= t; hence it is termed strict.

Strict exogeneity forbids feedback, defined as past outcomes and covariates influencing

current treatment assignment (Imai and Kim, 2019). To see this, if feedback from Yi,t−1 to

Di,t existed, we would have:

E[Yi,t−1 | Di,Xi, αi, ξt]

= E[Yi,t−1 | Di,1, . . . , Di,t−1, Di,t, . . . , Di,T ,Xi, αi, ξt]

̸= E[Yi,t−1 | Di,t−1, Xi,t−1, αi, ξt].

Imai and Kim (2019) provide a detailed discussion.

Next, we show that Assumptions A1 and A2 together imply PT, defined below:

Assumption A3 (Parallel trends). For any i, j, s ̸= t,

E[Yi,t(0)− Yi,s(0) | Di,t = 1, Di,s = 0, Xi,t = x1, Xi,s = x2]

= E[Yj,t(0)− Yi,s(0) | Dj,t = 0, Dj,s = 0, Xj,t = x1, Xj,s = x2].

As in a canonical DID setting, the PT assumption states that between any two groups

of units, once the change in covariates is controlled for, the change in potential outcomes

between any two periods is mean independent of the change in observed treatment status.

Given the functional form assumption, it is sufficient to show

E[εi,t − εi,s | Di,t = 1, Di,s = 0, Xi,t = x1, Xi,s = x2]

= E[εj,t − εj,s | Dj,t = 0, Dj,s = 0, Xj,t = x1, Xj,s = x2].

which is implied by strict exogeneity (with an application of the tower rule to integrate out

αi and ξt).

It is worth noting that this version of the PT assumption depends on the parametric

model (Assumption A1), while the PT assumption invoked by many HTE-robust estimators

is weaker. However, from a practical standpoint, they have similar empirical implications.
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A.1.5. Assumptions for Each Estimator

We first dicuss and compare the key identification assumptions required by each method.

Sun and Abraham (2021) define potential outcomes based on treatment history and

assume parallel trends for the never-treated potential outcome Yi,t(∞) of the compari-

son group: E[Yi,t(∞) − Yi,s(∞)|Ei,t = e] is the same for all s ̸= t and e ∈ suppEi,t.
A3

Call this assumption “parallel trends A.” Callaway and Sant’Anna (2021) similarly as-

sume parallel trends for the comparison group, but define potential outcomes based on

current treatment status. As a result, the statement of the assumption becomes, for all g,

E[Yi,t(0)− Yi,t−1(0)|Ei = g] = E[Yi,t(0)− Yi,t−1(0)|Ei,t ∈ C] for each t ≥ max{2, g}. Call this
version “parallel trends B.”

de Chaisemartin and D’Haultfœuille (2020) assume both “strong exogeneity” and “com-

mon trends.” They define the former as, E[Yi,t(d)−Yi,t−1(d)|{Di,t}Tt=1] = E[Yi,t(d)−Yi,t−1(d)]

for all i, all t ≥ 2, and all d ∈ {0, 1}.A4 The common trends assumption requires that this last

quantity — that is, E[Yi,t(d)−Yi,t−1(d)] — does not vary across i for all t ≥ 2 and d ∈ {0, 1}.
Combining these two assumptions, we can instead write that E[Yi,t(d)−Yi,t−1(d)|{Di,t}Tt=1] =

E[Yj,t(d) − Yj,t−1(d)] for all j (including j = i), all i, all t ≥ 2, and all d ∈ {0, 1}. Call this

combined version of the assumptions “parallel trends C.” Like Sun and Abraham (2021),

IKW (2023) define potential outcomes in terms of treatment histories. IKW (2023) do not,

however, assume staggered adoption, and so a much wider range of treatment histories are

possible. The comparison group is also substantially different. The latter compares units that

switch into treatment with those that stay in control and asks that their respective trends

be parallel: E[Yi,t+l(Di,t = 0, Di,t−1 = 0, {Di,t−s}as=2)|Di,t = 1, Di,t−1 = 0] = E[Yi,t+l(Di,t =

0, Di,t−1 = 0, {Di,t−s}as=2)|Di,t = 0, Di,t−1 = 0]. Call this assumption “parallel trends D.”

Recall that the imputation estimators connect to DID in a less direct way, which in

turn implies different assumptions: They assume a TWFE model for untreated potential

outcomes, which requires mean independence for all pairs of units i, j and all pairs of time

periods t, s. For example, BJS (2024) define a version of parallel trends as E[Yi,t(0)−Yi,s(0)] =

E[Yj,t(0) − Yj,s(0)] for all i, j and all t, s. The estimator from BJS (2024) does not require

this to hold, instead requiring a weaker assumption, E[Yi,t(0)] = A′
i,tλi + X ′

i,tβ for all i, t.

Note that this assumption implies that each idiosyncratic error is zero in expectation, and

A3We state the unconditional versions of these assumptions for simplicity.
A4The actual assumption is that this equality holds for all groups g, where g is the level of the fixed ef-
fects, which may be at a higher level than the unit level (e.g., if i indexes cities, g might be counties or
states/provinces). For consistency and simplicity, we assume that this is equal to the unit level in our
discussion (i.e., unit fixed effects).
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thus we refer to this assumption as “outcome model and mean-zero errors.” τ̂ fect from LWX

(2024) requires strict exogeneity and the TWFE outcome model, which together imply the

PT defined by BJS (2024).

Next, we provide a fuller account of all assumptions invoked by each method.

Sun and Abraham (2021)

• Parallel trends A; and

• No anticipation for the comparison group: E[Y e
i,e−l − Y ∞

i,e−l|Ei,t = e] = 0 for all l > 0

and e ∈ C.

Under the above assumptions, the IW estimator is unbiased and consistent.

Callaway and Sant’Anna (2021)

• Random sampling: {Yi,g,t, Xi, Di,g,t}Ni=1 : 1 ≤ t ≤ T is iid;

• Limited anticipation up to a known number of periods s: E[Yi,g,t(0)−Yi,g,t−1(0)|X,Ei =

g] = E[Yi,g,t(0)− Yi,g,t(0)|X,C = 0] for each t ≥ g − s;

• Overlap: For each t ≥ 2 and g, there exists ϵ > 0 such that P(Gg = 1) pg,t(X) < 1− ϵ

almost surely; and

• Parallel trends B.

Under the above assumptions, τ̂CS
nev and τ̂CS

ny are point-identified when the comparison

groups are the never-treated or not-yet-treated cohorts, respectively. Additionally, when

there are covariates X, the estimators are consistent and asymptotically normal if we also

assume the following (dropping the i subscript):

• For all g = 2, . . . , T , (i) there exists a known function Λ : R→[0, 1] such that pg(X) :=

P(Gg = 1|X,Gg + C = 1) = Λ(X ′π0
g), where C is an indicator variable for whether

a unit belongs to the comparison group; (ii) π0
g int(Π), where Π is a compact subset

of Rk; (iii) supp(X) ⊆ S for some compact S, and E[XX ′|Gg + C = 1] ≻ 0; (iv)

for U = {x′π : x ∈ supp(X), π ∈ Π}, for all u ∈ U , there exists ϵ > 0 such that

Λ(u) ∈ [ϵ, 1 − ϵ], Λ(u) is strictly increasing and twice continuously differentiable with

first derivatives bounded away from zero and infinity and bound second derivatives;

(vi) E[Y t
t ] < ∞ for all t = 1, . . . , T .
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IKW (2023) The authors discuss several assumptions, including

• Balanced panel;

• No spillover (temporally, or across units);

• Limited carryover; and

• (Conditional) parallel trends E[Yt+F (Dt = 0, Dt−1 = 0)− Yt−1|Dt = 1, Dt−1 = 0, Zt] =

E[Yt+F (Dt = 0, Dt−1 = 0)−Yt−1|Dt = 0, Dt−1 = 0, Zt] where Zt =
(
{Dt−l, Yt−l}Ll=2, {Xt−l}Ll=0

)
de Chaisemartin and D’Haultfœuille (2020) Note that in the original paper, de Chaise-

martin and D’Haultfœuille (2020) define their estimator in terms of a group level (the level

of the fixed effects) that need not be equal to the unit level. For simplicity and ease of

comparison, we state their assumptions for the case where the group level is the same as the

unit level (i.e., unit fixed effects). τ̂M is unbiased, consistent, and asymptotically normal

under the following assumptions:

• Balanced panel;

• Independent groups, i.e. (Yi,t(0), Yi,t(1), Di,t)1≤t≤T are mutually independent;

• Strong exogeneity;

• Common trends; and

• The existence of stable groups, i.e. whenever there exists a “joiner” (i, t) : Di,t =

1, Di,t−1 = 0 or a “leaver” (i, t) : Di,t = 0, Di,t−1 = 1, then there also exists a unit

staying in control (i′, t) : Di′,t = Di′,t−1 = 0 or treatment (i′, t) : Di′,t = Di′,t−1 = 1,

respectively.

BJS (2024) The imputation estimator is unbiased under the following assumptions:

• General model for Y (0) (which subsumes the TWFE model) and zero mean error, for

all (i, t), Yi,t(0) = A′
itλi +X ′

itβ + ϵi,t, where E[ϵi,t] = 0;

• No anticipation, Yi,t = Yi,t(0) for all (i, t) such that Di,t = 0;

• Null model for causal effects (i.e., no restrictions on the ITEs), (τi,t)(i,t):Di,t=1 is some

unknown vector of length N1, where N1 is the number of treated observations.
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Furthermore, if errors are homoskedastic and mutually uncorrelated, E[ϵϵ′] = σ2IN , then

the imputation error is efficient. Two additional assumptions ensure that the estimator is

consistent:

• Clustered standard errors, ϵi,t are uncorrelated accross units and have bounded vari-

ance, Cov(ϵi,t, ϵj,s) = 0 for all i ̸= j, and V ar(ϵi,t) < σ̄2 for some finite σ̄2; and

• Herfindahl condition, ∥v∥2H :=
∑

i(
∑

t |vi,t|)2→0, where vi,t are weights such that τ̂ =∑
i,t vi,tYi,t.

Lastly, asymptotic normality is guaranteed by the following:

• Higher moments of weights, there exists δ > 0 such that E[|ϵi,t|2+δ is uniformly bounded

and
∑

i

(∑
t |vi,t|
∥v∥H

)2+δ

; and

• lim inf nHσ
2 > 0, where nH = ∥v∥−2

H and σ2 = V ar(τ̂).

LWX (2024) Under the following two assumptions along with some regularity conditions,

FEct is unbiased and consistent:

• Functional form, Yi,t(0) = Xi,t
′β + αi + ξt + εi,t; and

• Strict exogeneity, εi,t ⊥⊥ {Dj,s, Xj,s, αj, ξs} for all i, j = 1, . . . , N and all s, t = 1, . . . , T .
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A.1.6. Proof of Remark A.1

First, we note that de Chaisemartin and D’Haultfœuille (2020) define τ̂M to allow for ‘group’

level fixed effects that may be higher up than the unit level. Let Ng,t denote the number

of observations in group g at time t. We assume a “sharp design,” meaning all units in the

same cell (g, t) have the same treatment. Let Nd,d′,t =
∑

g:
Dg,t=d,

Dg,t−1=d′
Ng,t denote the number

of observations with treatment status d in period t and status d′ in period t − 1. Let

Y.,g,t =
1

Ng,t

∑Ng,t

i=1 Yi,g,t denote the average outcome (across observations) in group g at time

t. Define the following quantities:

DID+,t =
∑

g:Dg,t=1,Dg,t−1=0

Ng,t

N1,0,t

(
Y.,g,t − Y.,g,t−1

)
−

∑
g:Dg,t=Dg,t−1=0

Ng,t

N0,0,t

(
Y.,g,t − Y.,g,t−1

)
and

DID−,t =
∑

g:Dg,t=Dg,t−1=1

Ng,t

N1,1,t

(
Y.,g,t − Y.,g,t−1

)
−

∑
g:Dg,t=0,Dg,t−1=1

Ng,t

N0,1,t

(
Y.,g,t − Y.,g,t−1

)
,

lettingDID+,t = 0 whenever min{N1,0,t, N0,0,t} = 0 andDID−,t = 0 whenever min{N1,1,t, N0,1,t} =

0. Finally, define

τ̂M =
T∑
t=2

(
N1,0,t

NS

DID+,t +
N0,1,t

NS

DID−,t

)
,

where NS := |(g, t) : t ≥ 2, Dg,t ̸= Dg,t−1| is the number of switchers.

Now, we consider the case where the group level is the same as the unit level. Note that

then Ng,t = 1 always.

We can now write

DID+,t =
∑

i:Di,t=1,Di,t−1=0

1

N1,0,t

(
Yi,t − Yi,t−1

)
−

∑
i:Di,t=Di,t−1=0

1

N0,0,t

(
Yi,t − Yi,t−1

)
and similarly

DID−,t =
∑

i:Di,t=Di,t−1=1

1

N1,1,t

(
Yi,t − Yi,t−1

)
−

∑
i:Di,t=0,Di,t−1=1

1

N0,1,t

(
Yi,t − Yi,t−1

)
Now consider τ̂PM with the choice of l = 1, which estimates the contemporaneous treat-
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ment effect at the moment of joining treatment,

τ̂PM
1,a =

∑N
i=1

∑T
t=a+1 1 {|Mit| > 0}Di,t(1−Di,t−1)

(
(Yi,t − Yi,t−1)−

∑
i′∈Mi,t

1
|Mi,t|(Yi′,t − Yi′,t−1)

)∑N
i=1

∑T
t=a+1 1 {|Mit| > 0}Di,t(1−Di,t−1)

.

Now further restrict lags used for matching to a = 1. Then the matched set Mi,t =
{
i′ :

i′ ̸= i,Di,′t = 0, Di,′t−1 = Di,t−1

}
is just units that have the same treatment status in the

previous period and are in control in the current period. Under the assumption that a stable

group exists, the matched set must be nonempty for any “joiner” ((i, t) : Ji,t = 1), where

Ji,t = 1 {Di,t = 1}1 {Di,t−1 = 0}, and so 1 {|Mit| > 0}Di,t(1− i,t) = Ji,t. Let NJ := |(g, t) :
t ≥ 2, Ji,t = 1| be the number of joiners.

Now we have,

τ̂PM
1,1 =

∑
t≥2

∑
i:Ji,t=1

(
(Yi,t − Yi,t−1)− 1

|Mi,t|
∑

i′∈Mi,t
(Yi′,t − Yi′,t−1)

)
NJ

=
1

NJ

∑
t≥2

∑
i:Ji,t=1

(
(Yi,t − Yi,t−1)−

1

|Mi,t|
∑

i′:Di′,t=Di′,t−1=0

(Yi′,t − Yi′,t−1)
)

=
1

NJ

∑
t≥2

∑
i:Ji,t=1

(
(Yi,t − Yi,t−1)−

1

N0,0,t

∑
i′:Di′,t=Di′,t−1=0

(Yi′,t − Yi′,t−1)
)

=
1

NJ

∑
t≥2

( ∑
i:Ji,t=1

(Yi,t − Yi,t−1)−
N1,0,t

N0,0,t

∑
i′:Di′,t=Di′,t−1=0

(Yi′,t − Yi′,t−1)

)

=
N1,0,t

NS

DID+,t.

We can alter the definition of the matched set to target “leavers” {(i, t) : Di,t = 0, Di,t−1 =

1} to get an estimate for the contemporaneous effect of leaving τ̂PM−ART
1,1 and similarly

show that τ̂PM−ART
1,1 = N0,1,t

NL
DID−,t, where NL is the number of leavers. Observe that

τ̂M = NJ

NS
τ̂PM
1,1 + NL

NS
τ̂PM−ART
1,1 .
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A.2. Implementation Details

This section elaborates on our reanalysis procedures, which are documented in the replication

Markdown files. For each paper, the reanalysis process consists of five components: (1) a

fundamental summary and visualization, (2) point estimates, (3) dynamic treatment effects,

(4) diagnostic tests, and (5) sensitivity analyses.

A.2.1. Summary of Context and Visualization

Summary Table. We meticulously document various aspects of each paper, including

the outcome variable, treatment variable, unit and time indicators, covariates, treatment

patterns, and the fixed effects used.

Researchers typically motivate the TWFE model in one of two ways: by describing it

as a form of “difference-in-differences” (DID), or by framing it as a method that exploits

“within”-unit (or within-group) variation through fixed effects.

We categorize the treatment pattern into three types:

1. Classic (including 2× 2 and Block): All treated units receive the treatment simul-

taneously, resembling a conventional DID design.

2. Staggered: Different units adopt the treatment at different time points, with no

treatment reversals.

3. General: The treatment can have reversals.

Visualizing Treatment Status: We use the panelView package (Mou, Liu and Xu, 2023)

to visualize each unit’s treatment status over time. Treated observations are shown in a deep

blue, while control observations appear in a lighter shade of blue. Units are reordered based

on the timing of their initial exposure to treatment.

Visualizing the Outcome: Using panelView, we depict the outcome variable’s trajectory

for each unit within the study’s time window. Control units are displayed in gray, while

treated units are shown in blue. For studies involving staggered adoption, we also plot the

average outcome trajectory by cohort.
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A.2.2. Point Estimates

Original (Reported) Results: We employ the fixest package (Berge, Krantz and Mc-

Dermott, 2023) to run a fixed-effects regression that includes the treatment indicator, co-

variates, and fixed effects as specified in the original paper. We present the raw regression

output in the Markdown files.

Replicated Results: The replicated estimates match the originally reported estimates

except for those in Hall and Yoder (2022) and Sanford (2023). Because the datasets in Hall

and Yoder (2022) and Sanford (2023) are very large, we base our analysis on a 1% subsample

for Hall and Yoder (2022) and a 0.2% subsample for Sanford (2023). Consequently, our

estimates deviate slightly from the reported ones. We provide both unit-level clustered

standard errors and standard errors from a 200-round clustered bootstrap, along with their

corresponding confidence intervals.

Goodman-Bacon Decomposition: For analyses with a staggered treatment pattern and

no additional fixed effects beyond unit and time fixed effects, we use the Goodman-Bacon

decomposition (Goodman-Bacon, 2021). This approach decomposes the replicated estimate

into a weighted average of all possible 2× 2 DID estimates across different cohorts. Because

the bacondecomp package is designed for balanced panels, the weighted DID estimates may

not perfectly align with the replicated estimates. Nevertheless, the decomposition provides

a valuable diagnostic for evaluating the possible influence of “invalid” comparisons.

TWFE: While retaining the same regression specification as the replicated estimates, we

modify the sample by excluding always-treated units.

FEct: We use the fect package to implement the imputation methods. When the original

specifications include fixed effects at levels higher than the unit or incorporate unit-specific

trends, we apply the “cfe” method in fect. We estimate uncertainty through a 200-round

cluster bootstrap. The software automatically excludes all always-treated observations.

Other HTE-Robust Estimators: For studies that do not include additional fixed effects

beyond unit and time, we also implement PanelMatch (Imai, Kim andWang, 2023). For anal-

yses with a staggered treatment pattern, we implement the stacked DID estimator (Cengiz

et al., 2019), the IW estimator (Sun and Abraham, 2021), the CSDID estimator (Callaway and
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Sant’Anna, 2021), and the DID multiple estimator (De Chaisemartin and d’Haultfoeuille,

2024). In most cases, we present both unit-level clustered standard errors and, if computing

time is manageable, standard errors obtained from a 200-round clustered bootstrap, along

with confidence intervals. All always-treated units are automatically dropped.

StackedDID: Following Bleiberg (2021) and Cengiz et al. (2019), we construct a cohort-

specific dataset for each cohort of ever-treated units, including all never-treated units. We

stack these datasets and estimate an overall effect via a fixed-effects regression that incor-

porates the treatment indicator, covariates, and stack-unit and stack-year interaction fixed

effects.

IW: We use the sunab() command in the fixest package to implement the IW estimator,

setting the att option to TRUE to retrieve the total average treatment effect.

CSDID: We employ the did package to implement the CSDID estimator (Sant’Anna and

Callaway, 2021). Specifically, we set est method = "reg" to use only the outcome model,

rather than the double-robust model, when estimating the ATT. To compare point estimates

under different control groups, we set the control group option to both "notyettreated"

and "nevertreated".

DID multiple: Using the DIDmultiplegtDYN package, we implement the DID multiple

estimator (De Chaisemartin and d’Haultfoeuille, 2024). By setting effects (the number

of event-study effects to be estimated) to its maximum, we compute the average treatment

effects for all post-treatment periods.

PanelMatch: For analyses that do not incorporate additional fixed effects beyond unit and

time, we employ the PanelMatch package. We set the lag option to the maximum value that

avoids errors, ensuring that units are also matched based on missingness patterns by set-

ting match.missing = TRUE. We specify covs.formula = NULL and refinement.method

= "none" to guarantee equal weighting of control units within each matched set. The con-

fidence interval is derived from the built-in bootstrap method.

Balanced FEct: By specifying balance.period in fect, we estimate the ATT for a subset

of units that have certain non-missing pre-treatment and post-treatment periods. We keep

the lag and lead parameters consistent with the PanelMatch command.
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A.2.3. Dynamic Treatment Effects & Event Study Plots

When estimating dynamic treatment effects (DTEs), we label the last pre-treatment period

as relative period 0 and the first post-treatment period as relative period 1. The indexing

rule for cases with treatment reversals follows Liu, Wang and Xu (2024). To implement this,

we may use the get.cohort() command from the fect package. We then employ esplot()

from the same package to visualize the DTEs. All always-treated units are excluded from

these estimations.

TWFE (No Reversals): When the treatment has no reversals, we include interaction

terms between a dummy denoting whether a unit is treated and each lead or lag indicator

relative to the treatment. We then estimate a fixed-effects regression that incorporates the

same fixed effects as in the original specification. We set the last pre-treatment period as

the reference period and obtain a confidence interval using both clustered standard errors

and a 200-round clustered bootstrap.

TWFE (With Reversals): When the treatment has reversals, we first determine each

unit’s relative periods to the treatment using get.cohort(). We then create a binary “treat”

indicator as follows: (1) For never-treated units, we set “treat” to 0. (2) For ever-treated

units that revert to untreated status, we set “treat” to 1 for all observations before the unit’s

final treatment exit. For instance, if the treatment path is 0, 0, 0, 1, 1, 0, 0, then “treat” is set

to 1 for the first five observations. (3) If a unit is already treated in the initial period, we

exclude observations prior to its first treatment exit because relative periods are not clearly

defined. We then interact “treat” with each lead and lag indicator and run a fixed-effects

regression. As before, we set the last pre-treatment period as the reference period and obtain

confidence intervals via clustered standard errors and a 200-round clustered bootstrap.

FEct: The procedure here parallels the steps described in the point estimates section.

For analyses with a staggered treatment pattern, we also apply the previously mentioned

HTE-robust estimators to estimate the DTEs.

stackedDID: We construct and stack cohort-specific datasets the same way we do when

estimating point effects. The difference is that in the regression, we interact a dummy for

whether a unit is ever-treated with each lead and lag indicator, and we include stack-unit

and stack-year interaction fixed effects. We set the last pre-treatment period as the reference
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period and compute confidence intervals using clustered standard errors and a 200-round

clustered bootstrap.

IW: We use the same sunab() command described in the point estimates section, except

we set att = FALSE to aggregate treatment effects by relative period without binning. The

reference period remains the last pre-treatment period.

CSDID: We use a similar command to that described in the point estimates section, but

specify type = "dynamic" to aggregate treatment effects by relative period. We also set

cband = FALSE to obtain period-wise confidence intervals and designate base period =

"universal" so that the last pre-treatment period is used as the base period.

DID multiple: We use a similar command to the one described previously, but set placebo

to its maximum feasible value, enabling a comparison of pre-treatment trends between

treated units and their controls.

PanelMatch: We employ the same approach as in the point estimates section, except we

specify placebo.test = TRUE to obtain pseudo-treatment effects for pre-treatment periods.

Balanced FEct: We use the same procedure as in the point estimates section.

A.2.4. Diagnostic Tests

For studies with more than three pre-treatment periods, we use the F -test and a placebo

test to evaluate the parallel-trend (PT) assumption. For studies with treatment reversals

and more than three post-exit periods, we also perform a carryover-effects test. All these

tests rely on estimates obtained from FEct, and further details appear in Liu, Wang and Xu

(2024). We report the corresponding p-values in a test-results table.

F -Test: We use an F -test to detect the presence of a pretrend. We define “residuals” as

the differences between Y (0) and Ŷ (0). The null hypothesis posits that the mean of these

residuals in each pre-treatment period is (jointly) zero. This test is conducted over those

pre-treatment periods for which the number of ever-treated units exceeds 30% of the total

treated units. A small p-value, causing rejection of the F -test, suggests a potential failure

of the PT assumption.
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Placebo Test: Using the fect package’s placebo feature, we set placebo.period = c(-2,0)

and exclude the last three pre-treatment periods during model fitting. For studies with only

three pre-treatment periods, we set the number of placebo periods in their placebo tests to

2. We then check whether the estimated ATT in these “placebo periods” is significantly

different from zero. The null hypothesis is that the mean pseudo-treatment effect in this

range is zero. A small p-value, prompting rejection of the placebo test, indicates a potential

violation of the PT assumption.

(No) Carryover Effects Test: We utilize the fect package’s carryover-effects test. By

specifying carryover.period = c(1,2), we exclude the first two periods following a unit’s

return to untreated status from model fitting and assess whether the estimated ATT in these

periods is significantly different from zero. The null hypothesis is that the mean pseudo-

treatment effect over these periods is zero. A small p-value, leading to rejection of the test,

suggests a potential failure of the no-carryover-effects assumption.

A.2.5. Robust Confidence Set & Sensitivity Analysis

Finally, we implement the sensitivity analysis developed by Rambachan and Roth (2023)

to evaluate robustness against potential violations of the PT assumption. Specifically, we

allow for differences in trends between treatment and control groups but constrain how large

those differences can be. Suppose the dynamic treatment effects (DTE) vector, µ, can be

decomposed into the true treatment effects, τ , and a violation-of-PT component, δ:

µ =

(
0

τpost

)
+

(
δplacebo

δpost

)
.

Following Rambachan and Roth (2023), we impose a relative magnitude (RM) restriction on

δ:

|δt+1 − δt| ≤ M̄ ·max
{∣∣δ−1 − δ−2

∣∣, ∣∣δ0 − δ−1

∣∣} for all t ≥ 0,

where P = {−2,−1, 0} is the set of placebo periods. Hence, the maximum observed change

in δ between consecutive placebo periods is

max
{∣∣δ0 − δ−1

∣∣, ∣∣δ−1 − δ−2

∣∣}.
We introduce two modifications to the original Rambachan and Roth (2023) framework.

First, our placebo periods are estimated with the same imputation method used for the post-
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treatment DTEs to maintain comparability and consistency (Roth, 2024). Second, since the

imputation method does not fix a specific reference period, we explicitly incorporate the

PT violation observed in the last pre-treatment placebo period (t = 0). Thus, if M̄ =

0, the PT violation from the final placebo period extends into all post-treatment periods

(δt = δ0 for t > 0). Letting M̄ > 0 allows the PT violation to change between consecutive

post-treatment periods, but keeps that change bounded by M̄ times the largest consecutive

placebo discrepancy.

Point Estimates: Let the ATT of interest be θ = l′attδpost, where latt =
[

n1∑Tpost
t=1 nt

, . . . ,
nTpost∑Tpost
t=1 nt

]′
and nt is the number of observations in post-treatment period t. From Lemma 2.1 in

Rambachan and Roth (2023), define the set of θ values consistent with a given µ under

δ ∈ ∆RM(M̄):

S(µ,∆RM) =
[
θlb(µ,∆RM), θub(µ,∆RM)

]
,

where

θlb(µ,∆RM(M̄)) = l′attµpost −max
δ

{
l′attδpost : δ ∈ ∆RM(M̄), δplacebo = µplacebo

}
,

θub(µ,∆RM(M̄)) = l′attµpost −min
δ

{
l′attδpost : δ ∈ ∆RM(M̄), δplacebo = µplacebo

}
.

Under a finite-sample normal approximation for the estimated DTEs µ̂, i.e., µ̂ ∼ N(τ+δ,Σn),

Rambachan and Roth (2023) define the confidence set for θ, Cn
(
µ̂n,Σn

)
, by

inf
δ∈∆RM (M̄), τ

inf
θ∈S(δ+τ,∆RM (M̄))

P
µ̂n∼N

(
δ+τ,Σn

)(θ ∈ Cn
(
µ̂n,Σn

))
≥ 1− α.

They also show that for a broad class of distributions P such that δP ∈ ∆RM(M̄) for all

P ∈ P , one can replace Σn with a consistent estimate Σ̂n and obtain

lim inf
n→∞

inf
P∈P

inf
θ∈S(δP+τP ,∆RM (M̄))

PP

(
θ ∈ Cn(µ̂n, Σ̂n)

)
≥ 1− α.

We use the createSensitivityResults relativeMagnitudes function from the Honestdid

package to compute Cn(µ̂n, Σ̂n) for different values of M̄ . We obtain the estimated DTE µ̂n

and its variance-covariance matrix Σ̂n from fect. When M̄ = 0, the resulting confidence

interval can be viewed as a “de-biased” interval that adjusts for the PT violation observed

at t = 0. If this confidence set excludes zero, we further evaluate robustness by computing

the “breakdown value” M̃ , the smallest M̄ for which zero enters the confidence interval.
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Dynamic Treatment Effects: We further examine the robustness of the estimated DTEs

by computing confidence intervals at M̄ = 0 and M̄ = 0.50 for each post-treatment period.

This follows the same approach described above for point estimates but uses a different

weighting vector l.

A.3. More Replication Results

A.3.1. Sample Selection Criteria

We collect our replication sample from three leading journals in political science, APSR,

AJPS, and JOP. We screen all full research articles published in these journals during 2017-

2023 using the following four criteria:

1. The paper uses panel data analysis as a critical piece of evidence to support a causal

argument. Specifically, either the abstract or the introduction of the paper needs to

mention the results from the panel analysis.

2. The paper uses at least one linear model to analyze panel data, such as DID, TWFE,

or lagged dependent variable (LDV) models, and the treatment variable has to be

binary. In other words, papers that use only discrete outcome models or continuous

treatments are excluded. We include this criterion because most of the analytical

tools the literature has developed so far are designed for linear models with binary

treatments.

3. We exclude papers that use a regression discontinuity design or an instrumental vari-

ables (IVs) design, including Bartik IVs, as their primary identification strategy.

4. We exclude papers that do not exploit within-unit variation despite the longitudinal

structure of the data. These designs are drastically different from the rest of the panel

studies in their estimand, their identification assumptions, and the properties of their

estimators and are worth investigating separately.
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A.3.2. Replicability

For papers that meet our four screening criteria, we try to find replication materials from

public data-sharing platforms, such as the Harvard Dataverse, and the authors’ personal

websites. For each paper, we choose one model that we think can best represent the paper’s

central claim. Specifically, we sequentially go through the following two criteria: (1) the

authors claim that it is the preferred model; and (2) the model uses the most complete

dataset (i.e., with the least missing values). Using data and code from the replication

materials, we are able to successfully replicate the main results of 49 of 64 papers that meet

our criteria. By successful replication, we mean that we can replicate the point estimate of

the chosen specification up to the second decimal point. Figure A1 shows the number of

replicable and non-replicable papers by year.

Figure A1. Replicability by Year
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Note: The above figure shows the number of papers that meet our criteria. The grey

and black bars represent the number of replicable papers and the number of papers

that cannot be replicated.
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A.3.3. Reported vs TWFE and FEct Estimates

To assess how the imputation estimator differs from TWFE, we depict the ratio of the

FEct estimates to the TWFE estimates, after excluding the always-treated units (ensuring

identical sample sets), using solid circles in Figure A2. We also juxtapose the cited TWFE

estimates with those omitting the always-treated units, represented by hollow circles. The

red circles denote studies where the FEct estimates are not statistically significant at the

5% level. Notably, both the mean and median of these ratios are close to one. This finding

suggests that, although there are noticeable differences in individual cases, TWFE does not

systematically under- or over-estimates the ATT. Figure A2 also shows that the presence

of always-treated units is not the primary driver of these differences. When these units are

excluded, the TWFE estimates align closely with the reported estimates in most cases.

Figure A2. TWFE vs. Imputation Method: Estimates
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Grumbach & Hill (2022)
Clarke (2020)

Fouirnaies & Hall (2022)
Payson (2020a)

Eckhouse (2022)
Cox & Dincecco (2021)

Caughey, Warshaw & Xu (2017)
Hainmueller & Hangartner (2019)

Trounstine (2020)
Jiang (2018)

Hall & Yoder (2022)
Beazer & Reuter (2022)

Grumbach (2023)
Hirano et al. (2022)

Payson (2020b)
Kilborn & Vishwanath (2022)

Sanford (2023)
Magaloni, Franco−Vivanco & Melo (2020)

TWFE
(always treated removed)

Imputation Method

Note: In the above figure, solid circles represent the ratios of the estimates from the imputation method

(FEct) to TWFE coefficients with always-treated units removed; hollow circles represent the ratios of reported

TWFE coefficients to TWFE coefficients with always-treated units removed. Statistically insignificant FEct

estimates at the 5% level are painted in red.
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A.3.4. Inferential Methods

The following figures show that cluster-robust SEs, which were used by almost all authors

in the original studies, yield SE estimates similar to those obtained from cluster-bootstrap

procedures in the majority of studies. One exception is Cox and Dincecco (2021) in which

the number of units is very small (N = 10).

Figure A3. Robustness to Inferential Methods

1 1.96 5 10 20

1
1.

96
5

10
20

| TWFE Estimate / Reported SE |

| T
W

F
E

 E
st

im
at

e 
 / 

B
oo

ts
tr

ap
pe

d 
T

W
F

E
 S

E
 |

(a) TWFE w/ cluster-robust SEs

1 1.96 5 10 20

1
1.

96
5

10
20

| TWFE Estimate / Reported SE |

| T
W

F
E

 E
st

im
at

e 
 / 

C
lu

st
er

−
R

ob
us

t T
W

F
E

 S
E

 |

(b) TWFE w/ cluster-bootstrapped SEs

Note: The left panel compares the absolute values of the original z scores and replicated z scores using
cluster-robust SEs. The right panel compares the absolute values of the original z scores and replicated z
scores using cluster-bootstrapped SEs. Both axes are on log scales. The original estimate in Zhang et al.
(2021) is statistically insignificant at the 5% level. Our replication analysis finds that, additionally, Eckhouse
(2022) and Grumbach and Hill (2022) are statistically insignificant at the 5% with the cluster-robust SE;
Bischof and Wagner (2019) and Blair, Christensen and Wirtschafter (2022) are statistically insignificant at
the 5% with cluster-bootstrapped SEs. Bootstrap percentile methods yield similar findings.
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Figure A4 shows that, for studies with staggered adoption settings in our sample, cluster-

bootstrapped SEs are generally larger than analytically derived SEs for five HTE-robust

estimators (with smaller z-scores). We use cluster-bootstrapped SEs throughout the main

text.

Figure A4. Analytical vs. Bootstrapped SEs
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Note: In each figure, the x-axis represents the absolute value of z-scores calculated using analytical SEs,
while the y-axis represents the absolute value of z-scores calculated using cluster-bootstrapped SEs.
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A.3.5. Imputation vs. Other Methods

Figure A5 demonstrates that, for studies with staggered adoption settings in our sample, the

imputation estimator (FEct) is generally more efficient than other HTE-robust estimators

(with bigger z-scores). All SEs are calculated using cluster-bootstrapping.

Figure A5. Imputation and Other HTE-Robust Estimators: Z-Scores
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Note: In each figure, the x-axis represents the absolute value of z-scores from FEct, while the y-axis
represents the absolute value of z-scores from an alternative HTE-robust estimator.

A.3.6. Placebo Tests & Robust Confidence Sets
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Figure A6. Placebo Tests & Robust CSs
Beazer and Reuter (2022)
p-value = 0.72, M̃ = 0.00

Bischof and Wagner (2019)
p-value = 0.71, M̃ = 0.14

Blair, Christensen and
Wirtschafter (2022)

p-value = 0.52, M̃ = 0.00

Bokobza et al. (2022)
p-value = 0.00, M̃ = 0.00

Caughey, Warshaw and Xu
(2017)

p-value = 0.41, M̃ = 0.12

Christensen and Garfias
(2021)

p-value = 0.76, M̃ = 0.00

Clarke (2020)
p-value = 0.16, M̃ = 0.00

Clayton and Zetterberg
(2018)

p-value = 0.24, M̃ = 0.00

Cox and Dincecco (2021)
p-value = 0.53, M̃ = 0.30

Dahlström and Holmgren
(2023)

p-value = 0.17, M̃ = 0.00

Dipoppa, Grossman and
Zonszein (2023)

p-value = 0.91, M̃ = 0.00

Distelhorst and Locke (2018)
p-value = 0.00, M̃ = 0.40

Eckhouse (2022)
p-value = 0.22, M̃ = 0.00

Esberg and Siegel (2023)
p-value = 0.02, M̃ = 0.03

Fouirnaies (2018)
p-value = 0.01, M̃ = 1.75

Fouirnaies and Hall (2018)
p-value = 0.47, M̃ = 1.00

Fouirnaies and Hall (2022)
p-value = 0.00, M̃ = 1.20

Fresh (2018)
p-value = 0.86

Garfias (2019)
p-value = 0.32, M̃ = 0.00

Grumbach (2023)
p-value = 0.03, M̃ = 0.00

Grumbach and Sahn (2020)
p-value = 0.54, M̃ = 2.50

Grumbach and Hill (2022)
p-value= 0.33, M̃ = 0.15

Hainmueller and Hangartner
(2019)

p-value = 0.47, M̃ = 0.45

Hankinson and Magazinnik
(2023)

p-value =0.29, M̃ = 0.00
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Figure A6. Placebo Tests & Robust CSs (Cont.)
Hall and Yoder (2022)

p-value =0.00, M̃ = 0.80
Hirano et al. (2022)

p-value = 0.88, M̃ = 0.10
Jiang (2018)

p-value = 0.63, M̃ = 0.00

Kilborn and Vishwanath
(2022)

p-value = 0.00, M̃ = 0.10

Kogan (2021)
p-value = 0.39, M̃ = 0.00

Kroeger and Silfa (2023)
p-value = 0.17, M̃ = 0.05

Kuipers and Sahn (2023)
p-value = 0.42, M̃ = 0.00

Latura and Weeks (2023)
p-value = 0.76, M̃ = 0.10

Liao (2023)
p-value = 0.00, M̃ = 1.50

Magaloni, Franco-Vivanco
and Melo (2020)

p-value = 0.19, M̃ = 0.00

Marsh (2023)
p-value = 0.00, M̃ = 0.00

Paglayan (2022)
p-value = 0.45, M̃ = 0.12

Payson (2020b)
p-value = 0.80, M̃ = 0.00

Payson (2020a)
p-value = 0.78, M̃ = 0.00

Pierskalla and Sacks (2018)
p-value = 0.29, M̃ = 0.00

Sanford (2023)
p-value = 0.00, M̃ = 0.10

Schafer et al. (2022)
p-value = 0.97

Schuit and Rogowski (2017)
p-value = 0.62, M̃ = 0.80

Trounstine (2020)
p-value = 0.00, M̃ = 0.50

Weschle (2021)
p-value = 0.79, M̃ = 0.00

Note: We report p-values from the placebo test (hiding two or three pre-treatment periods for each switch from the control
condition to the treatment condition). Four cases with only one pre-treatment period are excluded. M̃ , the breakdown value
for M̄ is calculated for studies with more than three pre-treatment periods; two additional studies, Fresh (2018) and Schafer
et al. (2022), are not included.
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A.3.7. Carryover Effects

Figure A7. Test for (No) Carryover Effects

Beazer and Reuter (2022)
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Clarke (2020)
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Cox and Dincecco (2021)
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Dahlström and Holmgren
(2023)
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Distelhorst and Locke
(2018)
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Fouirnaies (2018)
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Fouirnaies (2018)
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Fouirnaies and Hall (2018)
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Fouirnaies and Hall (2022)
p-value: 0.24

Grumbach (2023)
p-value: 0.07

Grumbach and Sahn (2020)
p-value: 0.28

Grumbach and Hill (2022)
p-value: 0.00

Hall and Yoder (2022)
p-value: 0.00
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Figure A7. Test for (No) Carryover Effects (Cont.)

Jiang (2018)
p-value: 0.50

Kilborn and Vishwanath
(2022)

p-value: 0.65

Marsh (2023)
p-value: 0.00

Payson (2020b)
p-value: 0.64

Payson (2020a)
p-value: 0.35

Pierskalla and Sacks (2018)
p-value: 0.66

Sanford (2023)
p-value: 0.02

Schafer et al. (2022)
p-value: 0.93

Schuit and Rogowski (2017)
p-value: 0.53

Skorge (2023)
p-value: 0.05

Weschle (2021)
p-value: 0.00

Zhang et al. (2021)
p-value: 0.39

Note: We report p-values from the test for no carryover effects for 22 studies with treatment reversal. The test hides two
posttreatment periods for each exiting from the treatment condition to the control condition.
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The figure below illustrates that the substantive findings obtained from FEct remain un-

changed even after excluding two periods following the treatment’s reversion to untreated

status in six studies that reject the no-carryover-effects test. This suggests that, while car-

ryover effects are commonly observed in applied settings, the cost of addressing them—such

as by excluding a few potentially affected periods after the treatment reverts to untreated

status—is typically minimal.

Figure A8. Robustness to Removing Two posttreatment Periods
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Note: The figure compares the z-scores from FEct using all data and z-scores from FEct after removing two

posttreatment periods in six studies that reject the no carryover effects test. We observe no sign flipping.

Both axes are on log scales.

A.3.8. Summary of Findings
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Table A1. Summary of Findings

Paper Journal Subfield T N #Obs Setting Specification
ATT

p < 0.05

F Test

p > 0.05

Placebo

test

p > 0.05

Carryover

effect test

p > 0.05

M̃

Beazer and Reuter (2022) JOP CP 11 199 2,027 General u+t ✓ ✓ ✓ ✓ 0.00
Bischof and Wagner (2019) AJPS CP 42 17 534 Staggered u+ht ✓ ✓ n.a. 0.14
Bisgaard and Slothuus (2018) AJPS CP 2 570 1,140 2× 2 u+t ✓ n.a. n.a. n.a. n.a.
Blair, Christensen and Wirtschafter (2022) JOP IR 18 177 3,186 General u+t ✓ ✓ ✓ 0.00
Bokobza et al. (2022) JOP CP 50 115 3,715 General u+t ✓ ✓ 0.00

Caughey, Warshaw and Xu (2017) JOP AP 79 50 3,586 General u+t ✓ ✓ ✓ ✓ 0.12
Christensen and Garfias (2021) JOP CP 12 3,289 25,536 Staggered u+t ✓ ✓ n.a. 0.00
Clarke (2020) AJPS AP 17 702 3,603 General u+t ✓ ✓ ✓ 0.00
Clayton and Zetterberg (2018) JOP CP 17 139 2,227 Staggered u+t ✓ n.a. 0.00
Cox and Dincecco (2021) JOP CP 259 10 1,361 General u+t ✓ ✓ ✓ ✓ 0.30

Dahlström and Holmgren (2023) JOP CP 43 371 5,316 General u+t ✓ ✓ ✓ ✓ 0.00
Dipoppa, Grossman and Zonszein (2023) JOP CP 159 7,922 1,259,477 Block u+t ✓ ✓ ✓ n.a. 0.00
Distelhorst and Locke (2018) AJPS CP 4 2,447 6,915 General u+t ✓ 0.40
Eckhouse (2022) AJPS AP 24 47 1,023 Staggered u+t ✓ ✓ n.a. 0.00
Esberg and Siegel (2023) APSR CP 89 357 22,669 Staggered u+t ✓ n.a. 0.030

Fouirnaies (2018) AJPS AP 23 16,404 45,639 General u+hu*t ✓ ✓ 1.75
Fouirnaies and Hall (2018) AJPS AP 20 161,820 443,490 General u+hu*t ✓ ✓ ✓ ✓ 1.00
Fouirnaies and Hall (2022) APSR AP 130 4,642 11,109 General u+hu*t ✓ ✓ 2.75
Fresh (2018) JOP AP 17 100 1,695 Block u+t ✓ ✓ ✓ n.a. n.a.
Garfias (2019) JOP CP 29 17 445 Block u+t ✓ ✓ ✓ n.a. 0.00

Grumbach (2023) APSR AP 17 49 833 General u+t ✓ ✓ ✓ ✓ 0.15
Grumbach and Hill (2022) JOP AP 20 49 980 General u+t ✓ ✓ 0.00
Grumbach and Sahn (2020) APSR AP 17 489 6,847 General u+t ✓ ✓ ✓ ✓ 2.50
Hainmueller and Hangartner (2019) AJPS CP 21 1,209 22,971 Staggered u+t ✓ ✓ ✓ n.a. 0.45
Hall and Yoder (2022) JOP AP 9 9,888,539 88,996,851 General u+t ✓ 0.80

Hankinson and Magazinnik (2023) JOP AP 10 40 397 Staggered u+t ✓ ✓ n.a. 0.00
Hirano et al. (2022) JOP AP 26 33 769 Staggered u+t ✓ ✓ ✓ n.a. 0.10
Jiang (2018) AJPS CP 12 326 3,891 General u+hu*t ✓ ✓ ✓ ✓ 0.00
Kilborn and Vishwanath (2022) AJPS AP 7 347 1,062 General u+t ✓ ✓ ✓ 0.10
Kogan (2021) JOP AP 8 3,005 23,610 Staggered u+hu*t+ult ✓ ✓ n.a. 0.00

Kroeger and Silfa (2023) JOP AP 6 2,835 17,010 Block u+t+ult ✓ ✓ ✓ n.a. 0.05
Kuipers and Sahn (2023) APSR CP 9 294 1,604 Staggered u+t ✓ ✓ ✓ n.a. 0.00
Latura and Weeks (2023) AJPS CP 10 90 761 Block u+t ✓ ✓ ✓ n.a. 0.10
Liao (2023) JOP AP 26 384,462 981,096 Block u+t ✓ n.a. 1.50
Magaloni, Franco-Vivanco and Melo (2020) APSR CP 138 286 36,956 Staggered u+t+ult ✓ ✓ ✓ n.a. 0.00

Marsh (2023) APSR AP 9 2,889 23,952 General u+t ✓ 0.000
Paglayan (2022) APSR CP 40 183 2,882 Staggered u+t ✓ ✓ ✓ n.a. 0.12
Payson (2020a) APSR AP 9 738 6,307 General u+t ✓ ✓ ✓ ✓ 0.00
Payson (2020b) JOP AP 13 467 5,982 General u+t ✓ ✓ ✓ 0.00
Pierskalla and Sacks (2018) JOP CP 9 455 2,524 General u+t ✓ ✓ 0.00

Ravanilla, Sexton and Haim (2022) JOP CP 2 189 378 2 × 2 u+t ✓ n.a. n.a. n.a. n.a.
Sanford (2023) AJPS CP 35 4,633,413 158,423,948 General u+t ✓ 0.10
Schafer et al. (2022) AJPS CP 4 381,256 1,163,307 General u+t ✓ ✓ ✓ ✓ n.a.
Schubiger (2021) JOP CP 2 11,958 23,916 2× 2 u+t ✓ n.a. n.a. n.a. n.a.
Schuit and Rogowski (2017) AJPS AP 5 261 902 General u+t ✓ ✓ ✓ ✓ 0.80

Skorge (2023) AJPS CP 7 569 3,983 General u+t ✓ n.a. n.a. n.a.
Trounstine (2020) APSR AP 43 4,568 182,809 Staggered u+t ✓ ✓ n.a. 0.50
Weschle (2021) JOP CP 7 845 4,714 General u+t ✓ 0.00
Zhang et al. (2021) JOP CP 3 61 166 General u+t n.a. ✓ ✓ n.a.

Note: ✓ and n.a.. stand for “true” and “not applicable,” respectively. The strongest case for the validity of the design is when we have x in all five columns (or the first four columns with staggered adoption). In the
“Specification” column, “u” and “t” represent unit and time fixed effects, respectively; “ht” represents time effects higher than the basic time level; “hu*t” represents group-specific time effects (group is at a higher level than
unit); “ult” represents unit-specific linear time trends. M̃ represents breakdown M̄ value in a sensitivity analysis; a bigger number means the result is more robust to potential PT violations. In Trounstine (2020), the
differential trends are likely linear, making the smoothness restriction (SM) on the confidence set more suitable than the relative magnitudes (RM) restriction; nonetheless, we report the breakdown value M̃ obtained using
the RM restriction in the table for consistency. However, under the SM restriction, the result is not robust at M̄ = 0.
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