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S1 Other models

In the main text of the paper we discuss the performance of model (8). There are, of course, many other

ways that we could specify models that examine the response rate and polarization relationship. In this

appendix we examine the performance of the original CF1 model, OLS estimates of model (8), and three

other models proposed by MP.

CF1 model the relationship between survey response rates and polarization as follows:

yit = β0 + β1rrit + β2congresst + ϵit (S1)

Where rrit is the response rate of a survey i observed at time t and congresst is congressional polarization

measured at time t. For the contact and cooperation rate versions of these models the β1rrit term in each

model is replaced with two terms, β4contactit and β5cooperationit respectively. In their critique of CF1,

MP show that, because both response rates and polarization trend over time, using model (S1) will produce

spurious results for the effect of response rates on polarization, even if there is no real causal relationship

between yit and rrit. MP suggest a number of ways to control for this possibility, and that once they do so,

there is no statistical evidence of a relationship between response rates and polarization.

The first specification suggested by MP adds a yeart term, which is model (8) discussed in the main paper:

yit = β0 + β1rrit + β2congresst + β3yeart + ϵit (8)

In the main text of the paper we report the estimates for this model using OLS and variety of regularization

approaches. Here we focus on unregularized estimators.

Second, MP suggest a year fixed-effects model with a separate dummy αt for each year in the data:

yit = β1rrit + β2congresst + αt + ϵit (S2)

Third, MP suggest a year random intercepts model, which includes random intercepts, γt, for each year

and the year mean of the response rate r̄rt as a predictor in order to satisfy the requirement of conditional

independence of fixed and random components of the model:5

yit = β1rrit + β2congresst + γt + β6r̄rt + ϵit (S3)
5Bafumi, Joseph, and Andrew Gelman. 2007. “Fitting Multilevel Models When Predictors and Group Effects Correlate.”

SSRN Electronic Journal.
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Finally, MP suggest using a flexible function form for time, which we implement using a generalized additive

model (GAM) with a smoothed term S(yeart) for year:

yit = β0 + β1rrit + β2congresst + S(yeart) + ϵit (S4)

In addition to the models suggested by MP, we estimate a model suggested by Lebo and Weber (2015)

for repeated cross section (RCS) data—the ARIMA-MLM. Lebo and Weber focus their discussion on the

ARFIMA-MLM model, but suggest that for shorter time series (such as CF2’s), the ARIMA approach is

more appropriate. The ARIMA-MLM approach takes two stages. First, the RCS data is summarized at the

level of each timepoint. In our case this means collapsing polls into yearly averages for each variable. Each

variable in the model (independent and dependent variable) is then represented by an ARIMA(p, d, q) model

where p is the number of time lags for the autoregressive part of the model, d is the number of differencing

steps required to achieve a stationary time series, and q is the order of the lagged errors term in the moving

average model (the number of lagged parameters used to predict the current value). The values of p, d, and

q are picked to minimize AIC (with small sample size correction) for each variable.

The ARIMA model for each variable is then used to predict the values for each timepoint, and these fitted

values are used to render the time series stationary. The individual level observations are then filtered using

the ARIMA filtered data and estimated using a multilevel model, in much the same way as model (8).

The response, contact, and cooperation rate coefficients from these models are shown in figure S1. The

OLS estimates for model (S1) using CF2’s data are very similar to CF1’s original results. The additional

observations in the CF2 data make very little difference—in all cases the CF1 estimate for β1rrit is well

within the 95% CIs for the new estimate.

Across the models suggested by MP the CIs either overlap zero or the results are in the opposite direction to

those claimed by CF2. The only results in line with the broad theory that survey response bias has inflated

estimates of polarization are the contact rate coefficients in the FE (S2) and HLM (S3) models for civil

rights—–the type of response bias that is not theoretically expected to induce bias (because people who are

not reached do not know the survey’s content) for an issue area that CF2 say they do not expect to see

affected by response bias. Even this result is inconsistent between models and is statistically insignificant

in models (8), (S4), and the ARIMA-MLM. It is notable that the most advanced method of accounting for

time-series issues (ARIMA-MLM) uniformly finds null results for response rate and cooperation rate.

The cumulative result of the models suggested by MP is that there is no evidence that declining re-

sponse/cooperation rates have inflated our estimates of polarization.
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Figure S1: Key coefficients for response/cooperation/contact rates using different model specifications and
estimators . See appendix R7 for full tables.
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S2 Random walks and correlation with time

In order to demonstrate that random walk processes are likely to be correlated with time, we simulate

a random walk process starting at zero, where each step is a random draw from the standard normal

distribution, such that the position of variable X at time t can be calculated as follows:

Xt = X0 +
n∑

t=1
Zt

X0 = 0

Zt ∼ N (0, 1)

(S5)

We draw 10,000 simulations of 15 periods each. To illustrate the nature of these random walks, we show a

random subset of 100 of these walks in S2. As this illustration shows, although the expected value of our

random walk process is zero, the walks spread out as time increases. In our case, because we have simulated

the random steps to have a variance of one, and the variance sum law states that the combined variance of

independent processes is their sum, V ar(Xt) = t.
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Figure S2: Random walks
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Because the expected value of the random walk process is zero, the expected correlation between X and time

is also zero. However, because variance increases as a function of time, many individual random walks will

be highly correlated with time, as illustrated in figure S3. In aggregate these correlations will cancel out.

However the average absolute correlation is quite high (0.6).
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Figure S3: Random walk correlation histogram

If two variables are correlated with time, then they will also be correlated with one another, even if they are

independent processes. This is illustrated in figure S4, which shows the distribution of correlations between

10,000 randomly chosen pairs of random walks in our simulations. Again the expected correlation is zero

because positive and negative correlations cancel out, but the average absolute correlation is quite high

(0.43).
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Figure S4: Random walk correlation histogram
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S3 Demonstration of regularization inducing effects via the back-

door path

As we discuss in the main text, and show in our simulations, one of the consequences of using regularized

regression is that it can induce effects in correlated variables that would otherwise be zero. Our own

experience suggests it may not be immediately obvious to many readers why this is the case, and so to aid

intuition we have constructed some simple demonstrations using simulated data.

S3.1 Reopening backdoor paths with ridge regression

First, we examine the case of ridge regression, using a single simulated dataset. We simulate 130 observations

using a similar DGP as our other simulations:

X
Z

 ∼ N

(0

0

 ,
 1 −0.9

−0.9 1

)

Y ∼ βxX + N (0, 0.5)

(S6)

The only difference compared to our earlier DGP (5) is that we use a lower error variance in order to make

the demonstration clearer. Key to our demonstration is that X has a positive effect on Y , and Z is negatively

correlated with X but has no effect on Y . We estimate the same model as in our main simulations, using

OLS and ridge regression with a λ penalty of one:

yi = β0 + βXXi + βZZi + ϵi (6)

The six panels of figure S5 illustrate the way in which ridge regression induces an apparent effect of Z on

Y . Panel A shows the relationship between X and Y and the regression lines that would be fit to this data

by OLS and ridge regression. While the OLS provides the best fitting line to the data, the regularized ridge

line is considerably shallower (i.e. the slope is closer to zero, as you would expect from the ridge penalty).

The consequences of this for the residual variance become clear if we compare panel B and C. In each

case, we look at the residual variance remaining in yi after accounting for the estimated intercept and β̂X

coefficient from model (6) (but crucially not the estimated β̂z coefficient). We define this residual variance

as ψ̂i = yi − (β̂0 + β̂XXi).
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Panels B and C show the relationship between X and the residual variance ψ̂i for the OLS and ridge regression

estimates. As we would expect given the properties of OLS, ψ̂OLSi
is uncorrelated with X. However, panel

C shows that ψ̂regularizedi
is strongly (positively) correlated with X (which is what we would expect given

the ridge regression line in panel A, i.e. positive values of X tend to be higher than the ridge regression line

and negative values of X tend to be below it).

The consequences of the correlated ridge residual variance becomes apparent in the second row of figure S5.

Panel D shows the unconditional relationship between Z and Y . Because Z and X are negatively correlated,

there is a clear negative correlation between Z and Y . By construction, we know that this correlation is

spurious, and that conditional on X, Z and Y should be uncorrelated. This is what we see in panel E, which

shows the relationship between Z and ψ̂OLSi
—once we account for the X → Y relationship, Z and Y are

essentially uncorrelated. We define the slope of this relationship γ̂OLSZ
as the slope of an OLS regression of

ψ̂OLSi
on Zi: ψ̂OLSi

= γ̂OLS0 + γ̂OLSZ
Zi. In the case of OLS γ̂OLSZ

= β̂OLSZ
.

In panel F, however, we can see that Z and the ψ̂regularizedi
residual variance is negatively correlated, as we

would expect given that these residuals are correlated with X, and X and Z are also correlated. The OLS line

in panel F shows the estimated slope γ̂regularizedZ
, which is the slope of an OLS regression of ψ̂regularizedi on

Zi: ψ̂regularizedi
= γ̂regularized0 +γ̂regularizedZ

Zi. In the ridge regression setting, γ̂regularizedZ
̸= β̂regularizedZ

,

because β̂regularizedZ
, shown with the dashed line, is regularized, pulling the slope closer towards zero.

In summary, because the ridge regression estimate of the relationship between X and Y leaves residuals

that are correlated with X, any variable that is correlated with X (in our case Z) will also be correlated

with those residuals. This process is akin to the effect of measurement error in causal inference: by inducing

measurement error in accounting for the X → Y path, ridge regression partially reopens the Z X → Y

backdoor path, that would otherwise be blocked by conditioning on X. Reopening this backdoor path leads

to the spurious conclusion that there exists a Z → Y relationship.
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Figure S5: Process by which ridge regression spuriously estimates a significant negative effect of Z on Y .
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S3.2 Differences between ridge regression and LASSO in reopening backdoor

paths

Next we turn to subtle differences between ridge regression and LASSO in how they reopen backdoor paths.

To do so we repeat the DGP outlined in (S6), this time varying the correlation between X and Z across

a range of values from -0.9 to 0.9, simulating 500 datasets for each level of correlation, and again estimate

model (6) using OLS, ridge, and LASSO with a λ of 0.05.

Figure S6 shows the mean estimate of β̂regularizedZ
for ridge regression and LASSO for different correlations

between X and Z. Both the ridge and LASSO estimates show a consistent bias in the direction of the

correlation between X and Z although the magnitude of the ridge bias is substantially larger.
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Figure S6: Average value of β̂regularizedZ
for different correlations between X and Z estimated with ridge

regression or LASSO.

For ridge regression it is relatively straightforward to understand why the estimator will transfer some

coefficient mass from the estimate of βX to βZ (which is always simulated as zero). Ridge regression uses a

squared penalty term. This means that the estimator will “prefer” adding mass to a smaller coefficient than a
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larger one. Suppose that β̂X is currently 1 β̂Z is -0.1. That would create a ridge penalty of 12 +−0.12 = 1.01.

If we add 0.1 to β̂X , that increases the total ridge penalty to 1.12 + −0.12 = 1.22 whereas if we added -0.1 to

β̂z it would only increase the ridge penalty to 12 + −0.22 = 1.04. That means the ridge loss function tends

to find solutions where the parameter for a correlated variable gets some mass at the expense of the larger

variable’s parameter.

However, it is less obvious why the LASSO estimator will spuriously add mass to β̂z rather than increasing

the magnitude of β̂X since the LASSO penalty is proportional to the absolute value of the coefficients.

Taking our previous example, adding 0.1 to β̂X , increases the total LASSO penalty to |1.1| + | − 0.1| = 1.2

exactly the same as if we added -0.1 to β̂Z |1| + | − 0.2| = 1.2. In other words, the LASSO penalty should be

indifferent between adding mass to β̂X and β̂Z . Given that we simulated βZ to be zero, it seems odd that

the LASSO estimates exhibit a consistent bias.

The solution to this puzzle is that the value of β̂regularizedZ
reflects four things: 1) the true value of βZ

(which is zero in our simulations), 2) the variance available due to the regularization of other variables in

the model, 3) the regularization of β̂regularizedZ
, and 4) sampling variation. On any given simulation, β̂OLSZ

will take a non-zero value because of sampling variation. We therefore need to look at not only the average

value of β̂regularizedZ
but how it compares to the unregularized estimate β̂OLSZ

in each simulation.

If we take the now familiar case where the correlation between X and Z is -.9, we can see how sampling

variation affects the way β̂regularizedZ
is regularized, resulting in the bias we see above. Panel A of figure

S7 shows the relationship between β̂OLSZ
and γ̂regularizedZ

(the slope of an OLS regression of the residuals

ψ̂regularizedi
on Zi as defined above). The key point here is that as the value of β̂regularizedZ

becomes

lower, γ̂regularizedZ
also becomes lower. Because of the relationship between β̂OLSZ

and β̂regularizedX
this

relationship is non-linear. In repeated samples, β̂OLSX
and β̂OLSZ

are positively correlated, and because

β̂OLSX
is larger when β̂OLSZ

is larger, β̂regularizedX
is more heavily regularized when β̂OLSZ

is larger. As a

result, more residual variance is opened up when β̂OLSZ
is positive, resulting in a greater difference between

β̂OLSZ
and γ̂regularizedZ

when β̂OLSZ
is positive.

When the LASSO penalty is applied, the γ̂regularizedZ
s that are closest to zero are translated into

β̂regularizedZ
s of exactly zero. The net result of this is that all the β̂OLSZ

s which were positive are now

zero β̂regularizedZ
s, but many of the negative β̂OLSZ

s are now negative β̂regularizedZ
s.This means that even

though no coefficients have flipped direction, in expectation β̂regularizedZ
is biased in the same direction as

the correlation.
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We now turn to how different correlations between X and Z affect ridge and LASSO differently. Figure

S8 shows the effects of ridge regression regularization on the estimates of β̂regularizedZ
compared to the

unregularized β̂OLSZ
for different simulated correlations between X and Z. The correlation between X and

Z moves the ridge estimates of βZ in the direction of the correlation—when the correlation is negative, the

ridge βZ estimates are moved in a negative direction relative to the OLS estimates for the same data, when

the correlation is positive, they are moved in a positive direction. In the case when X and Z are negatively

correlated, β̂regularizedZ
estimated with ridge regression is consistently lower than β̂OLSZ

. This leads to

β̂regularizedZ
having a larger magnitude than β̂OLSZ

when β̂OLSZ
is negative, and a flipped sign or smaller

magnitude of the same sign when β̂OLSZ
is positive. When the correlation between X and Z is positive

these effects apply in the opposite direction.

Figure S9 shows the equivalent effects for β̂regularizedZ
estimated using LASSO. Regardless of the strength

or direction of the correlation between X and Z the sign of β̂regularizedZ
never flips compared to β̂OLSZ

, and
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the magnitude of β̂regularizedZ
is always smaller than the magnitude of β̂OLSZ

.6 The main impact of the

correlation between X and Z is to change which estimates are regularized to zero. Changing correlations

have two effects: (1) correlation skews which coefficients are regularized to zero in the opposite direction to

the correlation (e.g. when the correlation is negative, positive coefficients are more likely to be regularized to

zero), and (2) stronger correlations lead to a wider range of values that are regularized to zero. Although the

effects of ridge and LASSO regularization look very different, the end result is very similar—in both cases

the expected value of the βZ estimate is biased in the direction of the correlation, as shown in figure S6.
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lations between X and Z.

6LASSO estimates can flip their sign compared to OLS very occasionally, but none of these flips occurred in the simulations
we report here.
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S4 Can we conclude that response rates do not affect polarization?

We have demonstrated that CF2’s use of ridge regression is not appropriate for the problem they are ad-

dressing, that their results disappear if OLS is used, and that their use of ridge regression nearly guarantees

false positives. But can we use the OLS estimator to conclude that response/contact rates do not affect

mass polarization?

To test the statistical power available in CF2’s data to detect the effect sizes they claim, we simulate further

data using the same approach as outlined in appendix R3, with two differences: (1) we add an additional

term βrrsim
to model (R2) which adds a true simulated effect for the response and cooperation rate variables

(we hold the effect of contact at zero in all simulations), and (2) the variables and coefficients are scaled to

produce standardized coefficients.

βrrsim
∼ U(0, 1)

ysim ∼ βintsim
+ βrrsim

rrsim + βconsim
consim + βyearsim

yearsim + N (0, RMSEmodel)
(S7)

Figure S10 shows the estimated level of statistical power (the probability of correctly returning a true positive)

for each outcome according to the simulated effect of response rate and cooperation rate. The results show

that for all but the largest effects, CF2’s data is drastically underpowered, reaching the conventional 80%

power threshold only when effects are large.7

7For effect size benchmarks, see for example, Gignac and Szodorai (2016). ‘Effect size guidelines for individual differences
researchers’ Personality and Individual Differences, 102, pp. 74-78, who suggest benchmarks of 0.1 = ‘small’, 0.2 = ‘medium’,
and 0.3 = ‘large’.
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Figure S10: Estimated statistical power by effect size for an OLS estimator using simulated data based on
CF2’s original data.

We can also use these simulations to examine type S and type M errors.8 A ‘type S’ (sign) error is an error

in the sign of an estimate, that is, the probability of it being in the wrong direction if it is statistically

significant. A ‘type M’ (magnitude) error is the extent to which statistically significant results exaggerate

the true effect size. The type S error rate by effect size is shown in figure S11 and reveals that CF2’s data

is likely to be prone to high levels of type S errors if the underlying true effect size was reasonably small.

Figure S12 shows the type M error rate and likewise indicates that CF2’s data is likely to have problems
8Gelman and Carlin (2014) ‘Beyond Power Calculations: Assessing Type S (Sign) and Type M (Magnitude) Errors’, Per-

spectives on Psychological Science, 9(6), pp. 641-651.
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with type M errors, with statistically significant results exaggerating the true effect considerably.

Response rate Cooperation rate

C
ivil rights

E
conom

y
E

nergy
F

oreign affairs
Im

m
igration

W
elfare

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

simulated β

Ty
pe

−
S

 e
rr

or
 r

at
e

Figure S11: Estimated type S error rate by effect size for an OLS estimator using simulated data based on
CF2’s original data.
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Figure S12: Estimated type M error rate by effect size for an OLS estimator using simulated data based on
CF2’s original data.

CF2’s data is underpowered for two reason, first, the sample size is small, and second, as CF2 acknowledge,

they are estimating models with collinear variables, which inflates the standard errors. The results of these

simulations are clear: CF2’s data is insufficient to test for all but the largest effects. We do not believe there

are good reasons to think that the effects of response and cooperation rates on measured polarization are

large enough to be confident that the data is not returning inflated estimates (at best) or even estimates

with the wrong sign. In fact, these power estimates are likely to be overly conservative as they assume that

the correct DGP is a simple linear time-trend rather than a more complex structure such as ARIMA-MLM

that has even higher data requirements. In short, we cannot draw conclusions about the effect of survey
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response rates on mass polarization either way.

S4.1 Other causal structures and omitted variable bias

In addition to power concerns, there may also be problems with omitted variable bias. In the main text, we

discuss polarization as the key dependent variable. However, it may be more appropriate to split polarization

into its actual level and observed level. When we do this, it may also be appropriate to allow that polarization

could affect cooperation rates (if we posit that polarized individuals are more likely to answer surveys, then

higher levels of polarization should increase cooperation rates). This DAG is shown in equation (S8).

time polarizationactual polarizationobserved

cooperation

(S8)

This DAG creates an additional issue for CF2’s model because the effect of cooperation on measured

polarizationobserved is only causally identified if we condition on time and polarizationactual. We have

discussed numerous methods for appropriately conditioning on time, but this still leaves the question of

adjusting for polarizationactual. CF2 (and our reanalysis) includes a control for congressional polariza-

tion (which should not be affected by response rate mechanisms). If this control is sufficient to adjust for

polarizationactual, then the estimate would still be causally identified. However, to the extent that this

control is inadequate, the estimates will be subject to omitted variable bias. The size of this bias depends

on the strength of the relationship between polarizationactual and polarizationobserved (presumably strong)

and the relationship between polarizationactual and cooperation (likely relatively weak).

Since polarizationactual is theorized to be positively related to cooperation and polarizationobserved, the

effect of omitting polarizationactual would be that we estimate a more positive relationship between

cooperation and polarizationobserved than is actually the case. This is a further reason why we refrain from

making strong substantive claims based on the null or positive results from our revised models/estimators.
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S5 Accounting for scaling when converting between ridge regres-

sion λ and Bayesian priors

The conversion between Bayesian priors and equivalent ridge regression λ is complicated by the idiosyncratic

scaling used in many implementations including the lmridge package. Specifically, the lmridge documentation

states that the predictors are scaled “to correlation form, such that the correlation matrix has unit diagonal

elements”. However, the advice regarding priors typically assumes that all predictor and outcome variables

are scaled to have mean 0 and standard deviation 1 (often referred to as unit-scaled).

To demonstrate how different those scalings are in practice, we simulate a dataset of three predictors with

varying standard deviations: x1 ∼ N (0, 3), x2 ∼ N (0, 5), x3 ∼ N (0, 0.5). We then create our dependent

variable y = 0.25x1 + 0.5x2 + 0.75x3 + σ2, where σ2 N (0, 1).

Table S1 shows the original standard deviations, lmridge scaled standard deviations, and unit-scaled standard

deviations for the four variables in our simulation.

Table S1: Standard deviations of variables under different scalings

Scenario y x1 x2 x3

Raw 3.122 3.293 5.444 0.462
Standard lmridge scaling 3.122 0.082 0.082 0.082
Unit scaling 1.000 1.000 1.000 1.000

For illustration, we estimate the linear model using lmridge with λ = 3 and the standard lmridge scaling.

But how does λ = 3 on the lmridge scaling translate into the standard deviation (σ) of a normal distribution

on unit-scaling? We first use the following formula to convert from λ to the standard deviation of a Bayesian

prior:

σ =
√
V ar(ϵ̂)
λ

where V ar(ϵ̂) is the variance of the residuals from the lmridge estimate.

Substituting in the values from the lmridge estimate

σ =
√

5.67
3 = 1.37

We can confirm that a Bayesian estimate produces nearly identical results to the ridge regression estimates
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in table S2.

Table S2: Ridge regression estimates of linear model on simulated data with Bayesian equivalent estimates.

Ridge Bayes

x1 2.65 2.62
x2 8.55 8.52
x3 2.29 2.26

However, both estimates here use the ridge scaling we saw in table S1. We must convert σ to its unit-scaled

equivalent. To do this, we multiply σ by the standard deviation of the predictor variables and divide by the

dependent variable:

σunit = σ ∗ sd(x1)
sd(y)

Substituting in the values from our simulation, we find that the original ridge regression with λ = 3 and

lmridge default scaling is equivalent to a unit-scaled normal prior with mean 0 and standard deviation of

0.0361: a very informative prior.
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S6 Using LASSO for variable selection

Rather than using LASSO to estimate model parameters, an alternative is to use it for variable selection.9

However, this approach is also prone to reintroducing backdoor confounding, albeit in a slightly different

way to that which we discuss in the main body of the paper. In brief, using LASSO for variable selection is

a two stage process. First we estimate the model using LASSO, and then make an unregularized estimate

of a separate model of the sub-set of variables that are not reduced to zero in the first stage LASSO.

The potential problem with this approach is easy to show. Imagine we have a DGP similar to the one shown

earlier in DAG (4), but this time there is also a Z → Y causal path, as shown in (S9).

X

Y

Z

(S9)

If we fail to condition on one of X or Z, our estimate of the effect of the other variable will be confounded

by the Z X → Y backdoor path. If we allow LASSO to choose which variables to include in the model,

then in expectation our estimate of the effect of X will be biased proportional to the probability of Z being

included in the model (and vice versa) and the correlation between X and Z. We can show that this is the

case with another simulation, which follows a similar DGP to our earlier simulations, but where βX = 0.8,

βZ = 0.2 (the correlation between X and Z is again set at -0.9). We generate 10,000 datasets and randomly

select a λ penalty between 0 and 1.5 (by which point LASSO always sets βZ to 0).

The results of these simulations are shown in figure S13. As the λ penalty increases, the probability Z is

selected by the LASSO decreases steadily until it approaches zero. At the same time, as λ increases, our

estimates of βX are steadily inflated (because the models increasingly do not control for Z), before flattening

out at the point Z is almost always omitted from the model.
9See for example, Zhao, Witten, and Shojaie (2021), In Defense of the Indefensible: A Very Naïve Approach to High-

Dimensional Inference, Statistical Science 36(4): 562-577.
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Probability Z selected by LASSO Estimated βx
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Figure S13: Probability Z is selected and estimated βX by LASSO λ penalty.
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