
Supplementary Information for Improving

Probabilistic Models in Text Classification via

Active Learning∗

Mitchell Bosley†‡ Saki Kuzushima†§ Ted Enamorado¶

Yuki Shiraito‖

First draft: September 10, 2020
Final submission: April 22, 2024

Contents

A Using Machine Learning for Text Classification 1

A.1 Encoding Text in Matrix Form . . . . . . . . . . . . . . . . . . . . . . . . . 1

A.2 Supervised, Unsupervised, and Semi-supervised Learning . . . . . . . . . . . 2

A.3 Discriminative vs. Generative Models . . . . . . . . . . . . . . . . . . . . . . 3

∗We thank Ken Benoit, Yaoyao Dai, Chris Fariss, Yusaku Horiuchi, Kosuke Imai, Christopher Lucas,
Walter Mebane, Daichi Mochihashi, Kevin Quinn, Luwei Ying, audiences at the 2020 Annual Meeting
of the American Political Science Association, the 2021 Annual Meeting of the Midwest Political Science
Association, the 11th Annual Conference on New Directions in Analyzing Text as Data, the 2022 Summer
Meeting of the Japanese Society for Quantitative Political Science, and the 40th Annual Summer Meeting of
the Society for Political Methodology, and seminar participants at the University of Michigan and members
of the Junior Faculty Workshop at Washington University in St. Louis for useful comments and suggestions.
Enamorado is grateful for the support received from the Incubator for Transdisciplinary Futures Initiative
and the Center for Race, Ethnicity, & Equity (CRE2) at Washington University in St. Louis. We also
appreciate detailed and constructive comments from four anonymous reviewers of the journal. Finally, we
are extremely grateful to the editor, Michelle Dion, for guiding us through the rigorous review process of
APSR.

†These authors have contributed equally to this work.
‡Ph.D. Candidate, Department of Political Science, University of Michigan. Email:

mcbosley@umich.edu. ORCID: 0000-0002-9172-966X.
§Ph.D. Candidate, Department of Political Science, University of Michigan. Email:

skuzushi@umich.edu. ORCID: 0000-0003-3014-5203.
¶Assistant Professor, Department of Political Science, Washington University in St. Louis. Siegle Hall,

244. One Brookings Dr. St Louis, MO 63130-4899. Phone: 314-935-5810, Email: ted@wustl.edu, URL:
www.tedenamorado.com. ORCID: 0000-0002-2022-7646.

‖Assistant Professor, Department of Political Science, University of Michigan. Center for Political Studies,
4259 Institute for Social Research, 426 Thompson Street, Ann Arbor, MI 48104-2321. Phone: 734-615-5165,
Email: shiraito@umich.edu, URL: shiraito.github.io. ORCID: 0000-0003-0264-1138.

mailto:mcbosley@umich.edu
mailto:skuzushi@umich.edu
mailto:ted@wustl.edu
https://tedenamorado.com
mailto:shiraito@umich.edu
https://shiraito.github.io


A.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

B Supplemental Information for “Validation Performance” 6

B.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

B.2 Pre-processing Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

C Binary Classification: EM Algorithm 8

D Multiclass Classification 12

D.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

D.2 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

D.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

E Binary Classification With Multiple Classes 16

E.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

E.2 EM Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

E.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

F A LURE Approach to Remove The Bias of Active Learning 19

F.1 An activeText Model with (LURE) Weights . . . . . . . . . . . . . . . . . . 21

F.2 Simulation Setup to Evaluate the Bias of Active Learning . . . . . . . . . . . 23

G Classification Performance with Mislabels 28

G.1 Mislabeled Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

G.2 Mislabeled Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



A Using Machine Learning for Text Classification

In this section we discuss the process of encoding text data into matrix form for the purpose

of classifying e.g., whether a document refers to politics or not. We describe Supervised

and Unsupervised Learning. In addition, this discussion extends to the selection between

discriminative and generative models, shedding light on the advantages and trade-offs of

each. Finally, we discuss the issue of model evaluation in text classification tasks, with a

focus on using a validation dataset (test data) and evaluation metrics such as accuracy,

precision, recall, and the F1 score.

A.1 Encoding Text in Matrix Form

Suppose that a researcher has a collection of social media text data, called a corpus, and

wishes to classify whether each text in a corpus is political (e.g., refers to political protest,

human rights violations, unfavorable views of a given candidate, targeted political repression,

etc.) or not solely based on the words used in a given observation. Critically, the researcher

does not yet know which of the texts are political or not at this point.

The researcher must first choose how to represent text as a series of tokens, and decide

which tokens to include in their analysis. This involves a series of sub-choices, such as

whether each token represents an individual word (such as “political”) or a combination of

words (such as “political party”), whether words should be stemmed or not (e.g., reducing

both “political” and “politics” their common stem “politic”), and whether to remove stop-

words (such as “in”, “and”, “on”, etc.) that are collectively referred to as pre-processing.1

The researcher must then choose how to encode information about these tokens in matrix

form. The most straightforward way to accomplish this is using a bag-of-words approach,

where the corpus is transformed into a document-feature matrix (DFM) D with n rows and

m columns, where n is the number of documents and m is the number of tokens, which are

more generally referred to as features.2 Each element of the DFM encodes the frequency

that a token occurs in a given document.3 Once the researcher chooses how to encode their

1For a survey of pre-processing techniques and their implications for political science research, see Denny
and Spirling (2018).

2Note that in the machine learning literature, the concept typically described by the term “variable” is
communicated using the term “feature.”

3An alternative to the bag-of-words approach is to encode tokens as word embeddings, where in addition
to the matrix summarizing the incidences of words in each document, neural network models are used to
create vector representations of each token. In this framework, each token is represented by a vector of
some arbitrary length, and tokens that are used in similar contexts in the corpus (such as “minister” and
“cabinet”) will have similar vectors. While this approach is more complicated, it yields considerably more
information about the use of words in the corpus than the simple count that the bag-of-words approach does.
For an accessible introduction to the construction and use of word embeddings in political science research,
see Rodriguez and Spirling (2022). For a more technical treatment, see Pennington et al. (2014).
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corpus as a matrix, she is left with a set of features corresponding to each document D

and an unknown vector of true labels Z, where each element of Z indicates whether a given

document is political or not. Then, we can repose the classification question as follows: given

D, how might we best learn Z, that is, whether each document is political or not?

A.2 Supervised, Unsupervised, and Semi-supervised Learning

Supervised and unsupervised learning are two fundamental approaches in machine learning

for text-as-data (Grimmer et al., 2022). In the supervised approach, the researcher follows

these steps: (1) acquiring accurate labels for a subset of the documents through human cod-

ing, where e.g., the researcher determines that a news headline such as “Biden and Trump

clinch nominations, heading to a general election rematch” refers to politics due to its focus

on a political figures (Presidents Biden and Trump) and their role in the upcoming general

election; (2) establishing a connection between the textual features of each document in the

corpus as represented by a matrix D and the true labels represented by a vector Z for the

labeled documents. This involves understanding how terms like “Biden,” “Trump,” “clinch,”

“nominations,” “general,” “election,” and “rematch” are important in determining the po-

litical nature of the headline; and (3) utilizing the acquired understanding of the relationship

between the text data and the known labels to later predict whether the remaining unlabeled

documents in the corpus are political or not (Hastie et al., 2009).

On the other hand, an unsupervised approach does not require the use of labeled data.

Instead, the researcher employing an unsupervised approach would select a model that groups

documents in the corpus based on shared patterns in the features as represented by the matrix

D. After assigning documents to clusters, the researcher would determine which cluster

corresponds to the desired outcome of interest, namely whether a document is political or

not. However, it is important to note that there is no guarantee that there will be a direct

connection between clusters and the outcomes of interest (Knox et al., 2022).

Semi-supervised learning combines supervised and unsupervised approaches (Miller and

Uyar, 1996; Nigam et al., 2000), making it particularly useful when there is a large amount

of unlabeled data and labeling is expensive. In a semi-supervised model, the relationship be-

tween the text data matrix D and the classification outcome Z is learned using both labeled

and unlabeled data. Although Z is not known for unlabeled data, it still provides infor-

mation about the joint distribution of the features in D. Thus, by incorporating patterns

recovered from the unlabeled data and using the labeled data as a foundation for measure-

ment, semi-supervised learning produces more accurate and robust predictions compared to

purely supervised or unsupervised methods (Nigam et al., 2000).
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A.3 Discriminative vs. Generative Models

In addition to choosing a supervised, unsupervised, or semi-supervised approach as described

in Section “Machine Learning Approaches to Text Classification,” a researcher must also

choose whether to use a discriminative or generative model. As noted by Ng and Jordan

(2001) and Bishop and Lassarre (2007), when using a discriminative model (e.g., logistic

regression, SVM, etc.), the goal is to directly estimate the probability of the classification

outcomes Z given the text data D i.e., directly estimate p(Z|D). In contrast, when using a

generative model (e.g., Naive Bayes), learning the relationship between the Z and D is a two-

step process. In the first step, the likelihood of the matrix of text data D and outcome labels

Z is estimated given the data and a set of parameters θ that indicate structural assumptions

about how the data is generated. In other words, p(D,Z|θ) is directly estimated. In the

second step, the researcher uses Bayes’ rule to calculate the probability of the outcome vector

given the features and the learned distribution of the parameters i.e., p(Z|D; θ).

In addition to allowing for the use of unlabeled data (which reduces labeling costs), one of

the main benefits of a generative rather than a discriminative model is that the researcher can

include information they know about the data generating process by choosing appropriate

functional forms.4 This can help prevent overfitting when the amount of data in a corpus is

small.5 Conversely, because it is not necessary to model the data generating process directly,

the main benefit of a discriminative rather than generative model is simplicity (in general

it involves estimating fewer parameters). Discriminative models are therefore appropriate in

situations where the amount of data in a corpus is very large, and/or when the researcher

is unsure about the data-generating process, which could lead to mis-specification (Bishop

and Lassarre, 2007).6

A.4 Model Evaluation

A researcher must also decide when she is satisfied with the predictions generated by the

model. In most circumstances, the best way to evaluate the performance of a classification

algorithm is to reserve a subset of the corpus for validation, which is sometimes referred to

4This is particularly true when e.g., the researcher knows that the data has a complicated hierarchical
structure since the hierarchy can be incorporated directly into the generative model.

5Overfitting occurs when a model learns to predict classification outcomes based on patterns in the
training set (i.e., the data used to fit the model) that does not generalize to the broader universe of cases
to be classified. A model that is overfitted may predict the correct class with an extremely high degree of
accuracy for items in the training set, but will perform poorly when used to predict the class for items that
the model has not seen before.

6Another benefit of generative models is that they can yield better estimates of how certain we are
about the relationship between the outcome and the features. This is the case when a researcher uses an
inference algorithm like Markov Chain Monte Carlo (MCMC) that learns the entire distribution for each of
the parameters, rather than only point estimates.
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as validation and/or test set. At the very beginning of the classification process, a researcher

puts aside and label a set of randomly chosen documents that the active learning algorithm

does not have access to.7 Then, after training the model on the remainder of the documents

(often called the training set), the researcher should generate predictions for the documents

in the validation set using the trained model. By comparing the predicted labels generated

by the model to the actual labels, the researcher can evaluate how well the model does at

predicting the correct labels.

A common tool for comparing the predicted labels to the actual labels is a confusion

matrix. In a binary classification setting, a confusion matrix will be a 2 by 2 matrix, with

rows corresponding to the actual label, and the columns corresponding to the predicted

label. Returning to our running example, imagine that the classification is to predict whether

documents are political or not, Table A.1 shows the corresponding confusion matrix. In this

scenario, True Positives (TP) are the number of documents that the model predicts to be

about politics and that is in fact labeled as such. Correspondingly, True Negatives (TN), are

the number of documents that the model predicts to be non-political and is labeled as such

in the validation set. A False Negative (FN) occurs when the model classifies a document

as non-political, but the document is about politics. Similarly, a False Positive (FP) occurs

when the model classifies as political a document that is non-political.

Predicted Label
Political Non-political

Actual Label
Political True Positive (TP) False Negative (FN)

Non-political False Positive (FP) True Negative (TN)

Table A.1: Confusion Matrix: Comparison of the Predictions of a Classifier to
Documents’ True Labels

Using the confusion matrix, the researcher can calculate a variety of evaluation statistics.

Some of the most common of these are accuracy, precision, and recall. Accuracy is the

proportion of documents that have been correctly classified. Precision is used to evaluate

the false positivity rate and is the proportion of the model’s positive classifications that are

true positives. As the number of false positives increases (decreases), precision decreases

(increases). Recall is used to evaluate the false negativity rate, and is the proportion of the

actual positive documents that are true positives. As the number of false negatives increases,

recall decreases, and vice-versa. Accuracy, precision, and recall can be formally calculated

7It is important to use a set-aside validation set for testing model performance, rather than a subset of
the documents used to train the model, to avoid overfitting.

4



as:

Accuracy =
TP + TN

TP + TN+ FP + FN
; Precision =

TP

TP + FP
; Recall =

TP

TP + FN

When the proportion of political and non-political documents in a corpus is balanced,

accuracy is an adequate measure of model performance. However, it is often the case in text

classification that the corpus is unbalanced, and the proportion of documents associated

with one class is low. When this is the case, accuracy does a poor job at model evaluation.

Consider the case when 99 percent of documents are non-political, and 1 percent are about

politics. A model which simply predicts that all documents belong to the non-politics class

would have an accuracy score of 0.99, but would be poorly suited to the actual classification

task. In contrast, the precision and recall rates would be 0, which would signal to the

researcher that the model does a poor job at classifying documents as political. Precision

and recall are not perfect measures of model performance, however. There is a fundamental

trade-off involved in controlling the false positivity and false negativity rates: you can have

few false positives if you are content with an extremely high number of false negatives, and

you can have few false negatives if you are content with an extremely high number of false

positives.

Recognizing this trade-off, researchers often combine precision and recall scores to find a

model that has the optimal balance of the two. One common way of combining the two is

an F1 score, which is the harmonic mean of precision and recall. Formally, the F1 score is

calculated as:

F1 = 2 · Precision · Recall
Precision + Recall

The F1 score assigns equal importance to precision and recall, and so a high F1 score would

indicate that both the false negativity and false positivity rate are low. It is worth noting

these evaluation measures (accuracy, precision, recall, and the F1 score) are computed using

labeled data (“ground truth”), which in practice, are available only for a limited subset of

the records.
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B Supplemental Information for “Validation Perfor-

mance”

We describe the data, explain decisions regarding pre-processing steps, and present additional

results supplementing those presented in the Section “Validation Performance.”

B.1 Data Description

The following four datasets are used to validate the performance of activeText :

BBC News: The BBC News Dataset is a collection of 2,225 documents from 2004 to

2005 available at the BBC news website (Greene and Cunningham, 2006). This dataset is

divided equally into five topics: business, entertainment, politics, sport, and technology. For

example, the binary classification exercise is to correctly predict whether or not an article

belongs to the ‘politics’ topic.

Wikipedia Toxic Comments: The Wikipedia Toxic Comments dataset is a dataset made

up of conversations between Wikipedia editors in Wikipedia’s internal forums. The dataset

was made openly available as part of a Kaggle competition,8 and was used as a principle

dataset of investigation by Miller et al. (2020). The basic classification task is to label a

given speech as toxic or not, where toxicity is defined as including harassment and/or abuse

of other users.9 The complete dataset is comprised of approximately 560,000 documents,

where roughly 10 percent of which are labeled as toxic.

Supreme Court Cases: The Supreme Court Rulings dataset is a collection of the text

of 2000 US Supreme Court rulings between 1946 and 2012. We use the majority opinion of

each case and the text was obtained through Caselaw Access Project.10 For the classification

label, we use the categories created by the Supreme Court Database.11 The classification

exercise here is to correctly identify rulings that are categorized as ‘criminal procedure’,

which is the largest category in the corpus (26% of all rulings).

Human Rights Allegation: Human Rights Allegation dataset contains more than 2

million sentences of human rights reports in 196 countries between 1996 and 2016, produced

by Amnesty International, Human Rights Watch and the US State Department (Cordell

et al., 2022). The classification goal is to identify sentences with physical integrity rights

8See https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
9While the dataset also contains finer gradation of ‘types’ of toxicity, we like Miller et al. (2020) stick to

the binary toxic-or-not classification task.
10https://case.law
11For a full list of categories, see http://www.supremecourtdatabase.org/documentation.php?var=

issueArea.
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allegation (16% of all reports). Example violations of physical integrity rights include torture,

extrajudicial killing, and arbitrary arrest and imprisonment.

B.2 Pre-processing Steps

We employ the same pre-processing step for each of the four datasets using the R package

Quanteda.12 For each dataset, we construct a document-feature matrix (DFM), where each

row is a document and each column is a feature. Each feature is a stemmed unigram. We

remove stopwords, features that occur extremely infrequently, as well as all features under 4

characters.

To generate datasets with a fixed proportion p (e.g. 5% or 50%) of the main class of

interest, we randomly sample documents from the original dataset so that it achieves the

proportion p. Let’s use the BBC dataset as an example. Suppose the number of documents

in the BBC dataset is N with N1 and N0 representing the total number of documents about

politics and non-politics in the original data, respectively. We compute M1 = floor(Np) and

M0 = N −M1 as the number of sampled politics and non-politics documents, respectively.13

When M1 > N1 or when M0 > N0, we decrement M1 and M0 keeping the politics proportion

(p ) to its target value. When M1 < N1 and M0 < N0, we sample M1 politics documents and

M0 non-politics documents from the original dataset. Finally, combine the sampled politics

and non-politics documents to obtain the final dataset. This sampling scheme is applied to

all the other datasets when generating the validation datasets with a fixed proportion p.

12See https://quanteda.io
13The floor function takes as input a real number x and returns the greatest integer larger or equal to x.

For example, the floor(3.1415) is 3.
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Note that in the main text, to facilitate exposition, we use the terms political

and non-political to describe the problem of binary classification. Without loss of

generality, in the sections below, we use the (more generic) positive vs. negative class

dichotomy instead.

In addition, note that for a matrix X, we denote its ath row by Xa·. In other words,

we use the subscript a· to denote the ath row of X. Similarly, we use the subscript ·b
to refer to the bth column of X.

C Binary Classification: EM Algorithm

We now describe how we estimate the parameters of the probabilistic model behind our

approach. As mentioned in the main text, our approach is built upon the work of Nigam

et al. (2000), which showed that probabilistic classifiers can be enhanced by integrating

information from both labeled and unlabeled data.

Let’s consider the task of classifying documents into one of two classes (e.g., positive vs.

negative). However, as we discuss below, our approach can be extended to accommodate:

1) a multi-class classification setting where K > 2 and each document is assigned to one of

K classes, such as classifying news articles into politics, business, and sports (refer to SI D),

and 2) modeling more than two classes while maintaining a binary final classification output

(refer to SI E).

Under the same model structure defined in Section “The Method” of the main text,

let Dlp, Dln and Du be the document feature matrices for documents with positive labels,

documents with negative labels, and unlabeled documents, respectively. Also let N lp, N ln,

and Nu be the number of documents with positive labels, negative labels, and documents

without labels.14 Likewise, Clp and Cln be the vectors of positive and negative labels. Then,

the observed-data likelihood is:

14Consequently, the number of labeled documents N l is equal to N lp +N ln.
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p(π,η|D,Clp,Cln)

∝ p(π)p(η)p(Dlp,Clp|π,η)p(Dln,Cln|π,η)
[
p(Du|π,η)

]λ
= p(π)p(η)×

N lp∏
i=1

p(Dlp
i· |Zi = 1,η·1)p(Zi = 1|π)×

N ln∏
i=1

{
p(Dln

i· |Zi = 0,η·0)p(Zi = 0|π)
}

×
[

Nu∏
i=1

{
p(Du

i·|Zi = 1,η·1)p(Zi = 1|π) + p(Du
i·|Zi = 0,η·0)p(Zi = 0|π)

}]λ

∝
{
(1− π)α0−1

V∏
v=1

ηβv0−1
v0

}
×
{
πα1−1

V∏
v=1

ηβv1−1
v1

}
︸ ︷︷ ︸

prior

×
N lp∏
i=1

{ V∏
v=1

ηDiv
v1 × π

}
︸ ︷︷ ︸

positive labeled doc. likelihood

×
N ln∏
i=1

{ V∏
v=1

ηDiv
v0 × (1− π)

}
︸ ︷︷ ︸
negative labeled doc. likelihood

×
[

Nu∏
i=1

{ V∏
v=1

ηDiv
v0 × (1− π)

}
+
{ V∏

v=1

ηDiv
v1 × π

}]λ
︸ ︷︷ ︸

unlabeled doc. likelihood

(1)

As described in Section “The Method” of the main text, we weigh the part of the observed

likelihood that refers to the unlabeled document with λ ∈ [0, 1]. This is done because we

typically have many more unlabeled documents than labeled documents. By downweighting

the information from the unlabeled document (i.e., setting λ to be small), we can use more

reliable information from labeled documents than from unlabeled documents.

We estimate the parameters using EM algorithm Dempster et al. (1977). Note that by

taking the expectation of the complete-data log-likelihood function (Q function), we have

that:

Q ≡ EZ|π(t),η(t),D,C [log p(π,η,Z|D,C)]

= (α0 − 1) log(1− π(t)) + (α1 − 1) log π(t) +
V∑

v=1

{
(βv0 − 1) log η

(t)
v0 + (βv1 − 1) log η

(t)
v1

}
+

N lp∑
i=1

{ V∑
v=1

Div log η
(t)
v1 + log π(t)

}
+

N ln∑
i=1

{ V∑
v=1

Div log η
(t)
v0 + log(1− π(t))

}
+ λ

[
Nu∑
i=1

pi0

{ V∑
v=1

Div log η
(t)
v0 + log(1− π(t))

}
+ pi1

{ V∑
v=1

Div log η
(t)
v1 + log π(t)

}]
(2)

where pik is the probability of a document i being assigned to the kth class, k = {0, 1},
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given data and the parameters at t th iteration. If a document has been hand-coded and

has a positive label, we have that pi1 = 1. If a document has been hand-coded and has been

assigned a negative label, we have that pi0 = 0. If a document has no label, then:

pi0 = 1− pi1

pi1 =

∏V
v=1 η

Div
v1 × π∏V

v=1

{
ηDiv
v0 × (1− π)

}
+
∏V

v=1

{
ηDiv
v1 × π

} (3)

Equation 3 also works as the prediction equation. The predicted class of a document i is

k that maximizes this probability.

In the M-step, we maximize the Q function, and obtain the updating equations for π,

ηv1, and ηv0. The updating equation for π is the following:

π̂(t+1) =
α1 − 1 +N lp + λ

∑Nu

i=1 pi1(
α1 − 1 +N lp + λ

∑Nu

i=1 pi1

)
+
(
α0 − 1 +N ln + λ

∑Nu

i=1 pi0

) (4)

The updating equations for each ηvk for k ∈ {0, 1} and v ∈ {1, . . . , V }, are as follows:

η̂
(t+1)
v0 ∝ (βv0 − 1) +

N ln∑
i=1

Div + λ
Nu∑
i=1

pi0Div, v = 1, . . . , V

η̂
(t+1)
v1 ∝ (βv1 − 1) +

N lp∑
i=1

Div + λ
Nu∑
i=1

pi1Div, v = 1, . . . , V

(5)

We continue cycling between the E-step and M-step until we reach convergence. In

Figure C.1, we graphically present the mixture model at the core of our active learning

algorithm. In this representation, hyperparameters are shown in shaded rectangles, random

variables and parameters in unshaded circles, and observed data in shaded circles. The larger

unshaded rectangular plates are used to indicate the scope of indices for various types of

data and parameters.

In Section “An Active Learning Algorithm,” we explain how we integrate this model into

our algorithm. In each iteration, we follow these steps: first, we fit the model, then we learn

its parameters, next, we label the most uncertain cases, and finally, we refit the model with

the newly labeled data. We repeat this cycle until a stopping rule is met. We present the

implementation of our active learning algorithm as pseudocode in Algorithm 1.

10
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Figure C.1: Graphical Representation of the Mixture Model with Two Classes.
Hyperparameters are represented by shaded rectangles, while unobserved random variables
and parameters are depicted by unshaded circles. Observed data is displayed within shaded
circles. Larger unshaded rectangular plates are used to denote the range of indices for
different types of data and parameters.

Algorithm 1: EM algorithm to classify text

Result: Maximize p(π(t),η(t) | Dl,Zl,Du,α,β)
if In the first iteration of Active learning then

Initialize π and η by Naive Bayes;

π(0) ← NB(Dl, Z l,α);

η(0) ← NB(Dl, Zl,β);

else
Inherit π(0) and η(0) from the previous iteration of Active learning;

end

while p(π(t),η(t) | Dl,Zl,Du,α,β) does not converge do
(1) E step: obtain the probability of the class for unlabeled documents;

p(Zu | π(t),η(t)Dl,Zl,Du)← E step(Du, π(t), η(t));
(2) Combine the estimated classes for the unlabeled docs and the known classes
for the labeled docs;

p(Z | π(t),η(t),Dl,Zl,Du)← combine(Dl, Du, Z l, p(Zu | π(t),η(t),Dl,Zl,Du));
(3) M step: Maximize Q ≡ E[p(π,η,Zu | Dl,Zl,Du,α,β)] w.r.t π and η;

π(t+1) ← argmax Q;

η(t+1) ← argmax Q;

(4) Check convergence: Obtain the value of p(π(t+1),η(t+1) | Dl,Zl,Du,α,β);

end
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D Multiclass Classification

The model outlined in Section “The Method,” assumes a binary outcome for the classification

task. However, consider a scenario where researchers aim to categorize news articles into

various classes such as political news, business news, entertainment news, sports news, and

technology news. This section introduces a solution specifically designed for this multi-class

classification task (where K ≥ 2) and each document is assigned to one of K classes.

D.1 Model

Let K be the number of the classes and is equal to the number of classes to be classified,

with K ≥ 2. In other words, the model presented below is a generalization of the model

presented in the main text. The multiclass classification model can be summarized by the

following equations:

π ∼ Dirichlet(α) (6)

Zi
i.i.d∼ Categorical(π) (7)

η·k
i.i.d∼ Dirichlet(β·k), k = {1, . . . , K} (8)

Di·|Zi = k
i.i.d∼ Multinomial(ni,η·k) (9)

In this model setup, we consider a probability vector denoted by π = (π1, π2, . . . , πK),

where each πk represents the proportion of documents in the corpus belonging to class k.

This vector π is sampled from a Dirichlet distribution with parameters defined by the K-

dimensional vector α = (α1, α2, . . . , αK). Then, for each document i, we generate its features

from a multinomial distribution based on the total word count ni and the vector η·k, which

represents the kth column of the V ×K matrix η. Here, each entry ηvk of η·k is the probability

of observing word v given that the document belongs to class k. The prior distribution of

η·k is specified by a Dirichlet distribution with hyperparameter vector β·k of length V . The

word counts of document i are represented by the row vector Di· of length V . Given that

document i belongs to class k (i.e., Zi = k), Di· is drawn from a multinomial distribution

with parameters ni and η·k.

In the case where document i is labeled, the sampling of Zi is not based on a Bernoulli

distribution as in the scenario with unlabeled data. Instead, its value is manually assigned.

However, apart from this difference, the model structure remains the same for both la-

beled and unlabeled data. Notably, to give more weight to the information from labeled

documents, we introduce a downweighting factor λ when incorporating information from

unlabeled documents.
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Figure D.1 graphically presents the multiclass mixture model. In this representation,

hyperparameters are shown in shaded rectangles, random variables and parameters in un-

shaded circles, and observed data in shaded circles. The larger unshaded plates are used to

indicate the scope of indices for various types of data and parameters.

↵ ⇡

⌘·k �·k

Zi

Zj Dj·

Di·
K

k 2 1, 2, . . . , K

N

�Nu

Nl

Figure D.1: Graphical Representation of the Model for Multiclass Classification.
Hyperparameters are represented by shaded rectangles, while unobserved random variables
and parameters are depicted by unshaded circles. Observed data is displayed within shaded
circles. Larger unshaded rectangular plates are used to denote the range of indices for
different types of data and parameters.

D.2 EM Algorithm

Equations (6) to (9) result in the following observed likelihood:

p(π,η|D,Cl) ∝ p(π)p(η)p(D,C|π,η)
[
p(Du|π,η)

]λ
= p(π)p(η)×

K∏
k=1

Nk∏
i=1

p(Dl
i·|Zi = k,η·k)p(Zi = k|π)

×
[

Nu∏
i=1

K∑
k=1

{
p(Du

i·|Zi = k,η·k)p(Zi = k|π)
}]λ

∝
K∏
k=1

{
παk−1
k

V∏
v=1

ηβvk−1
vk

}
︸ ︷︷ ︸

prior

×
K∏
k=1

Nk∏
i=1

{ V∏
v=1

ηDiv
vk × πk

}
︸ ︷︷ ︸

labeled doc. likelihood

×
[

Nu∏
i=1

K∑
k=1

{ V∏
v=1

ηDiv
vk × πk

}]λ
︸ ︷︷ ︸

unlabeled doc. likelihood

(10)
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The Q function (the expectation of the complete-data log-likelihood) is

Q ≡ EZ|π(t),η(t),D,C [log p(π,η,Z|D,C)]

=
K∑
k=1

[
(αk − 1) log π

(t)
k +

V∑
v=1

{
(βvk − 1) log η

(t)
vk

}]

+
K∑
k=1

Nk∑
i=1

{ V∑
v=1

Div log η
(t)
vk + log π

(t)
k

}
+ λ

[
Nu∑
i=1

K∑
k=1

pik

{ V∑
v=1

Div log η
(t)
vk + log π

(t)
k

}]
(11)

For the unlabeled documents, the probability of Zi = k, pik, is given by

pik =

∏V
v=1 η

Div
vk × πk∑K

k=1

[∏V
v=1 η

Div
vk × πk

] (12)

In the M step, the updating equation for π is the following:

π̂k ∝ αk − 1 +Nk + λ
Nu∑
i=1

pik (13)

The updating equation for each ηvk is the following:

η̂vk ∝ (βvk − 1) +
Nk∑
i=1

Div + λ
Nu∑
i=1

pikDiv (14)

D.3 Results

To evaluate how well activeText performs in classifying out-of-sample in a multiclass sce-

nario, we utilize two datasets: BBC news articles and Supreme Court Cases (see SI B for

more details about these datasets). In the BBC dataset, the classes are “Politics,” “Enter-

tainment,” “Business,” “Sports,” and “Technology.” Here, “Politics” represents 5% of the

entire dataset, while the remaining 95% is evenly distributed among the other four classes.

In the Supreme Court Cases dataset, the classes are “Criminal Procedure” (32.4% of the

corpus), “Civil Rights” (21.4%), “Economic Activity” (22.2%), “Judicial Power” (15.4%),

and “First Amendment” (8.6%).

We compare the performance of four models: 1) activeText, 2) a passive learning variant

of activeText(Random Mixture), 3) Active Learning with Support Vector Machines (Active

SVM), and 4) Passive Learning with Support Vector Machines (Random SVM). Our analysis,
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illustrated in Figure D.2, demonstrates that activeText outperforms the other models across

both datasets, even with just 100 labeled documents. Not only does activeText exhibit

superior classification performance in our validated datasets, but this result is confirmed in

the reanalysis of Gohdes (2020) and Park et al. (2020) – both empirical applications involve

multi-class classification.

BBC Supreme Court
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Figure D.2: Multiclass Classification Results.
The darker lines show the results with activeText and the lighter lines show the results
with SVM. The solid lines use active sampling to decide the next set of documents to be
labeled, and the dashed lines use random (passive) sampling. The y-axis indicates the out-
of-sample F1 score and the x-axis show the number of sampling steps. The left column
shows the results on BBC corpus, where the target classes are “Politics,” “Entertainment,”
“Business,” “Sports,” and “Technology.” “Politics” class has 5% of the total dataset, and
the rest 95% is evenly split across the rest of classes. The right column shows the results on
the Supreme Court corpus, where the target classes are “Criminal Procedure” (32.4% of the
corpus), “Civil Rights” (21.4%), “Economic Activity” (22.2%), “Judicial Power” (15.4%),
“First Amendment (8.6%).” In our model, we set the number of classes to be the same as
the classification categories and linked each class to one classification category. activeText
performs the best across the four specifications on both corpora.
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E Binary Classification With Multiple Classes

The model outlined in the main text (see Section “The Method”) assumes that there are

two classes (a positive and negative class). However, this assumption can be relaxed to link

multiple classes to the negative class. In the world of mixture models, the simplest setup

is to let K = 2 since the classification goal is binary, and we can link each class to the

final classification categories. A more general setup is to use K > 2 even when a goal is

a binary classification. If K > 2, but our focus is to uncover the identity of one class, we

can choose one of the class to be linked to the “positive” class and let all other classes be

linked to the “negative” class (see e.g., Larsen and Rubin 2001 for a similar idea in the

realm of record linkage). In other words, we collapse the K − 1 classes into one class for the

classification purpose. Using K > 2 makes sense if the “negative” class consists of multiple

sub-categories. For instance, suppose researchers are interested in classifying news articles

into political news or not. Then, it is reasonable to assume that the non-political news

category consists of multiple sub-categories, such as technology, entertainment, and sports

news. Note that differently than in SI D, in this section, we impose hierarchies between

classes and the end goal is binary classification of documents. However, as described below,

the model structure is the same, with the collapsing of classes happens at the estimation

stage.

E.1 Model

This section presents a model and inference algorithm when we use more than 2 classes in

estimation but the final classification task is binary. In other words, we impose a hierarchy

where many classes are collapsed into the negative class. In contrast, the positive class is

made out of just one class. The model presented is as follows:

π ∼ Dirichlet(α) (15)

Zi
i.i.d∼ Categorical(π) (16)

η·k
i.i.d∼ Dirichlet(β·k), k = {1, . . . , K} (17)

Di·|Zi = k
i.i.d∼ Multinomial(ni,η·k) (18)

It is important to note that if a document is labeled, then we have that the value assigned

to Zi is determined by hand-coding. The model structure is identical to the one presented in

SI D. The difference, as described below is that the collapsing of the K−1 classes that make

the negative class happens during the estimation stage. As before, note that we downweight

16



the information from the unlabeled documents by λ, to utilize more information from labeled

documents.

E.2 EM Algorithm

Let k∗ be the class index linked to the positive class. Then, under the structure imposed by

equations (15) to (18), the observed likelihood is the following:

p(π,η|D,Clp,Cln)

∝ p(π)p(η)p(Dlp,Clp|π,η)p(Dln,Cln|π,η)
[
p(Du|π,η)

]λ
= p(π)p(η)×

N lp∏
i=1

p(Dlp
i· |Zi = k∗,ηvk∗)p(Zi = k∗|π)

×
N ln∏
i=1

∑
k ̸=k∗

{
p(Dln

i· |Zi = k,ηv,k)p(Zi = k|π)
}
×
[

Nu∏
i=1

K∑
k=1

{
p(Du

i·|Zi = k,η)p(Zi = k|π)
}]λ

∝
K∏
k=1

{
παk−1
k

V∏
v=1

ηβvk−1
vk

}
︸ ︷︷ ︸

prior

×
N lp∏
i=1

{ V∏
v=1

ηDiv
vk∗ × πk

}
︸ ︷︷ ︸

positive labeled doc. likelihood

×
N ln∏
i=1

∑
k ̸=k∗

{ V∏
v=1

ηDiv
vk × πk

}
︸ ︷︷ ︸
negative labeled doc. likelihood

×
[

Nu∏
i=1

K∑
k=1

{ V∏
v=1

ηDiv
vk × πk

}]λ
︸ ︷︷ ︸

unlabeled doc. likelihood

(19)

The Q function (the expectation of the complete log likelihood) is:

Q ≡ EZ|π(t),η(t),D,C [log p(π,η,Z|D,C)]

=
K∑
k=1

[
(αk − 1) log π

(t)
k +

V∑
v=1

{
(βvk − 1) log η

(t)
vk

}]

+
N lp∑
i=1

{ V∑
v=1

Div log η
(t)
vk∗ + log π

(t)
k∗

}
+

N ln∑
i=1

∑
k ̸=k∗

pik

{ V∑
v=1

Div log η
(t)
vk + log π

(t)
k

}
+ λ

[
Nu∑
i=1

K∑
k=1

pik

{ V∑
v=1

Div log η
(t)
vk + log π

(t)
k

}]
(20)
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For the unlabeled documents, the probability of Zi = k, pik, is:

pik =

∏V
v=1 η

Div
vk × πk∑K

k=1

[∏V
v=1 η

Div
vk × πk

] (21)

In the M step, the updating equation for πk is the following:

π̂k ∝

αk − 1 +
∑N ln

i=1 pik + λ
∑Nu

i=1 pik if k ̸= k∗

αk − 1 +N lp + λ
∑Nu

i=1 pik∗ if k = k∗
(22)

The updating equation for ηvk is the following.

η̂vk ∝

(βvk − 1) +
∑N ln

i=1 pikDiv + λ
∑Nu

i=1 pikDiv if k ̸= k∗

(βvk − 1) +
∑N lp

i=1 Div + λ
∑Nu

i=1 pik∗Div if k = k∗
(23)

E.3 Results

In this section, we first evaluate the out-of-sample performance of the model for binary

classification, with multiple classes. Then, we evaluate the combined performance of the

multiple class approach for binary classification and keyword upweighting.

Figure E.1 shows the results of a model with just two classes vs. a model with 5 classes.

In both instances, the final output of the classification task are two classes (positive vs.

negative). The darker lines show the results with 5 classes and the lighter lines show the

results with 2 classes. Overall, the model with 5 classes performs better or as well as the

model with 2 classes. The gain from using 5 classes is the highest when the proportion of

positive labels is small and when the size of labeled data is small.

Figure E.2 shows the results when the multiple class approach for binary classification

and keyword upweighting approaches are combined. We find that the model with 5 classes

yields performance comparable to or slightly better than using 2 classes. The most significant

performance improvement occurs with the BBC corpus, comprising 5 news topic categories.

Thus, our findings suggest that the classification performance of our method is improved

when employing multiple classes, particularly when the number of classes aligns with the

data generating process. Finally, regardless of the number of classes, our mixture models

incorporating keywords demonstrate superior performance compared to models without key-

words. The most notable improvement is observed in the human rights corpus, characterized

by the smallest number of words per document.
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Figure E.1: Binary Classification Results with 2 and 5 Classes.
The darker lines show the results with 5 classes and the lighter lines show 2 classes. The
columns correspond to various proportions of positive labels in the corpus. The y-axis
indicates the out-of-sample F1 score and the x-axis show the number of sampling steps. For
binary classification, using multiple classes improves the classification performance when the
number of classes matches the data generating process.

F A LURE Approach to Remove The Bias of Active

Learning

As described in Section “The Bias of Active Learning” in the main text, active learning

introduces statistical biases in training. This problem arises because active learning se-

lects non-i.i.d. data by choosing the most “informative” data points. Farquhar et al.

(2021) propose a framework to address this bias, especially in scenarios where each ob-

servation has a chance of being actively sampled. Farquhar et al. (2021) proposal, the

Levelled Unbiased Risk Estimator (LURE), addresses this bias by adjusting the empirical

risk computation using weighted averages based on sampling probabilities of actively se-

lected documents. More specifically, the LURE estimator is defined as follows: R̃lure =
1
M

∑M
m=1[vmL(Zm− Ẑm)], where L is a loss function (e.g., the L2 norm), and vm is calculated

as 1 + N−M
N−m

(
1

(N−m+1)p(indexm|index1:m−1,Du)
− 1

)
. Here, p(indexm|index1:m−1,D

u) represents

the likelihood that the index associated with the mth document is actively sampled, given

that the indices of m− 1 documents have already been actively sampled and Du represents

the pool of unlabeled documents. In essence, the LURE estimator for the empirical risk

computes a weighted average, where the weights are adjusted to account for the sampling

probabilities of all actively selected documents.

In this section, we first describe how to incorporate such weights in training the model

and recover model parameters that are not subject to these issues. Then, we provide addition

details the simulation setting used to test the in-sample and out-of-sample performance of
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Figure E.2: Binary Classification Results with Multiple Classes and Keywords.
The rows correspond to different datasets and the columns correspond to various proportions
of positively labeled documents in the corpus. The y-axis indicates the out-of-sample F1 score
and the x-axis show the number of sampling steps. The linetype show whether keywords
are supplied: the solid lines show the results with keywords and the dashed lines without
keywords. The colors show the number of classes in the mixture model: the darker lines
show the results with 5 classes and the lighter lines with 2 classes. Using 5 classes leads to
as good or slightly better performance than using 2 classes. The performance improvement
is the largest with the BBC corpus, which consists of 5 news topic categories. Likewise,
our mixture models with keywords leads to as good or better performance than the models
without keywords. The improvement is the largest with the human rights corpus, where the
number of words per document is the smallest.
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activeTextand activeText+LURE.

F.1 An activeText Model with (LURE) Weights

We introduce an extension to activeText that enables the use of weights. Let’s revisit the

binary classification problem, where the model structure aligns with the one described in

Section “The Method” in the main text and in SI C. The key distinction here is that each

labeled observation carries a predetermined weight wi. Consequently, integrating the LURE

weights entails expressing our observed-data quasi-likelihood as follows:

p(π,η|D,Clp,Cln, w)

∝ p(π)p(η)p(Dlp,Clp|π,η, w)p(Dln,Cln|π,η, w)
[
p(Du|π,η)

]λ
= p(π)p(η)×

N lp∏
i=1

p(Dlp
i· |Zi = 1,η·1, wi)p(Zi = 1|π,wi)×

N ln∏
i=1

{
p(Dln

i· |Zi = 0,η·0, wi)p(Zi = 0|π,wi)
}

×
[

Nu∏
i=1

{
p(Du

i·|Zi = 1,η·1)p(Zi = 1|π) + p(Du
i·|Zi = 0,η·0)p(Zi = 0|π)

}]λ

∝
{
(1− π)α0−1

V∏
v=1

ηβv0−1
v0

}
×
{
πα1−1

V∏
v=1

ηβv1−1
v1

}
︸ ︷︷ ︸

prior

×
N lp∏
i=1

{ V∏
v=1

ηDivwi
v1 × πwi

}
︸ ︷︷ ︸

positive labeled doc. quasi-likelihood

×
N ln∏
i=1

{ V∏
v=1

ηDivwi
v0 × (1− π)wi

}
︸ ︷︷ ︸
negative labeled doc. quasi-likelihood

×
[

Nu∏
i=1

{ V∏
v=1

ηDiv
v0 × (1− π)

}
+
{ V∏

v=1

ηDiv
v1 × π

}]λ
︸ ︷︷ ︸

unlabeled doc. likelihood

(24)

We estimate the parameters π and each ηvk using EM algorithm. In the E-step, we take

21



the expectation of the log complete likelihood function (Q function),

Q ≡ EZ|π(t),η(t),D,C,w[log p(π,η,Z|D,C, w)]

= (α0 − 1) log(1− π(t)) + (α1 − 1) log π(t) +
V∑

v=1

{
(βv0 − 1) log η

(t)
v0 + (βv1 − 1) log η

(t)
v1

}
+

N lp∑
i=1

{ V∑
v=1

wi

(
Div log η

(t)
v1 + log π(t)

)}
+

N ln∑
i=1

{ V∑
v=1

wi

(
Div log η

(t)
v0 + log(1− π(t))

)}
+ λ

[
Nu∑
i=1

pi0

{ V∑
v=1

Div log η
(t)
v0 + log(1− π(t))

}
+ pi1

{ V∑
v=1

Div log η
(t)
v1 + log π(t)

}]
(25)

Again, pik is the probability of a document i being assigned to the kth cluster, k = {0, 1},
given data and the parameters at t th iteration. If a document has a positive label, pi0 = 0

and pi1 = 1. If a document has no label,

pi0 = 1− pi1

pi1 =

∏V
v=1 η

Div
v1 × π∏V

v=1

{
ηDiv
v0 × (1− π)

}
+
∏V

v=1

{
ηDiv
v1 × π

} (26)

In the M-step, we maximize the Q function, and obtain the updating equations for π and

each ηvk for k ∈ {0, 1}. The updating equation for π is the following:

π(t+1) =
α1 − 1 +

∑N lp

i=1 wi + λ
∑Nu

i=1 pi1(
α1 − 1 +

∑N lp

i=1 wi + λ
∑Nu

i=1 pi1

)
+
(
α0 − 1 +

∑N ln

i=1 wi + λ
∑Nu

i=1 pi0

) (27)

The updating equation for each ηvk are as follows:

η̂
(t+1)
v0 ∝ (βv0 − 1) +

N ln∑
i=1

wiDiv + λ

Nu∑
i=1

pi0Div, v = 1, . . . , V (28)

η̂
(t+1)
v1 ∝ (βv1 − 1) +

N lp∑
i=1

wiDiv + λ
Nu∑
i=1

pi1Div, v = 1, . . . , V (29)

As before, we downweight the information from unlabeled document by λ, to utilize more

reliable information from labeled documents.
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F.2 Simulation Setup to Evaluate the Bias of Active Learning

We now describe in more detail the simulation setting used to produce Figure 7 in the main

text.

The process of generating simulated data is based on the mixture model that we have

defined above (See Section “The Method”). This allows us to systematically vary many

dimensions of datasets and examine the performance of our classifier under different settings.

We vary the following parameters:.

1. The number of documents in the corpus (N): We consider 1000 documents. 800

documents are used for training and 200 documents are used for out-of-sample testing.

2. The size of vocabulary (V ): We consider two setups, 500 and 5000 words.

3. The number of words per document: (ni): We generate ni for i = 1, . . . , N from

Poisson distribution with three different means (10, 50, and 100). This means that the

average number of words per document is 10, 50, and 100, respectively.

4. Proportion of documents in the positive class (π): We consider two setups, 5%

and 10%.

5. Difficulty of classification (β̃): To control the difficulty of classification, we change

the way the vector containing the probabilities of observing words for each class (η·0

and η·1 for negative and positive class, respectively) are generated from the original

model. Note that simulating real corpora poses a challenge due to the presence of

words that occur in both positive and negative classes, as well as words that are more

prevalent in one class compared to the other. For instance, words like “election” and

“democracy” are expected to appear frequently in documents labeled as “political”

compared to those labeled as “non-political.”

To mimic this scenario, we first draw a “base” parameter vector of length V (the size

of the vocabulary), denoted as η̃, from a Dirichlet distribution with parameter vector

β̃ = (β̃1, β̃2, . . . , β̃V ). We initially set η·0 = η·1 = η̃. Subsequently, we exchange the

highest values with those associated with the lowest values in the vector η·1 while

leaving the vector η·0 unchanged. This results in η·1 and η·0 being nearly identical,

except for the swapped elements.

Consequently, the swapped words act as keywords since their values in η·1 are entirely

distinct from their values in η·0. This allows us to control the level of informativeness

of the keywords when manipulating the values in β̃. For instance, lower values in
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β̃ concentrate the values in η̃ towards the edges of the probability space, thereby

making the keywords more informative. Conversely, higher values in β̃ distribute the

values in η̃ more evenly, resulting in less informative keywords and a more challenging

classification task. We have two parameters to control for the difficulty of classification:

The number of keywords and the hyperparameter vector β̃. First, for the number of

keywords, or the number of words swapped, we consider three setups: 1, 5, and 20.

Second, for the hyperparameter vector β̃, we investigate three different values: 0.1,

0.5, and 0.9. As β̃ is a vector with a length of V , for each simulation setting we fix

all elements of β̃ to the same value e.g., ∀v, β̃v = 0.1. Figure F.1 illustrates how the

values in the word-class matrix η = [η·0;η·1] are generated under the different values of

β̃. As the figure reveals, smaller (larger) values for β̃ result in more (less) informative

keywords, and, as a result, easier (more difficult) classification tasks.
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Figure F.1: Values in the Word-class Matrix (η) across Three Different Simulation
Setups by β̃.
The figure displays the word indices on the horizontal axis and the corresponding η values for
each word on the vertical axis. For each v, three values of β̃ are used: 0.1 (left), 0.5 (middle),
and 0.9 (right). In the graph, circles represent values associated with the positive class, while
crosses represent values associated with the negative class. The vocabulary consists of 1000
unique words, and we swap the 10 highest values in η·1 with the 10 lowest values in η·1.
From the figure, it is evident that smaller (larger) values of β̃ lead to more (less) informative
keywords. Consequently, the classification tasks become easier (more difficult).

In our study, we examine a total of 108 distinct simulation setups, obtained by combining
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different values for five parameters: V = {500, 5000}, ni = {10, 50, 100}, π = {0.05, 0.1},
the number of swapped words = {1, 5, 20}, and β̃ = {0.1, 0.5, 0.9}. For each setup, we

generate 100 datasets.15 We then train the model using activeText and activeText with

LURE weights. Because the LURE weights can only be computed when all documents have

non-zero probability of being labeled, we slightly modified our sampling scheme using the

epsilon-greedy algorithm as in Farquhar et al. (2021). In short, we select the document with

the highest probability of being labeled with probability 1 − ϵ and select a document at

random with probability ϵ. We set ϵ = 0.1. This ensures that the modified algorithm is

almost identical to the entropy-based sampling scheme we used throughout the paper, but

allows us to compute the LURE weights.

We report two quantities: the in-sample bias of the empirical risk and the out-of-sample

average classification metrics, following the approach of Farquhar et al. (2021). For the in-

sample bias, we first obtain a sequence of labeled document selected according to our active

learning algorithm. After obtaining the sequence of labeled documents, we calculate the

empirical risk at each active step both with and without LURE weights. The empirical risk

is evaluated at a fixed parameter that do not depend on the training data. This ensures that

the bias is only due to the fact that more difficult documents are labeled more likely. We

then calculate the bias as the difference between the population risk and the empirical risk

with and without LURE weights, respectively.16 For the out-of-sample average classification

metrics, we calculate the average F1 score for each simulation setup using the model trained

with and without LURE weights.

Figure F.2 presents additional results from the simulation study aside from Figure 7 in

the main text. While Figure 7 in the main text presents the results for the easy classification

setting, Figure F.2 presents the results for the difficult classification setting. Specifically,

while the dataset used in Figure 7 in the main text swap 5 keywords, the dataset used in

Figure F.2 swap only 1 keyword. Other simulation settings are the same as the ones used in

Figure 7 in the main text. Similar to Figure 7 in the main text, the results show that the

out-of-sample F1 score is higher without LURE weights.

Finally, Figure F.3 illustrates the results of applying the LURE bias correction to ac-

tiveText for editors involved in our validation dataset using toxic comment discussions on

Wikipedia’s internal forum. We divided the data into 80% for training and 20% for testing,

conducting 100 Monte Carlo simulations. The left panel displays the in-sample bias of R̃

and R̃lure, while the right panel shows their respective out-of-sample F1 scores. The figure

confirms our simulation-based findings. Initially, R̃ shows a positive bias during the labeling

15Please refer to Supplementary Appendix for the Simulation Studies for the full set of results.
16This is the same approach as Figure 2 in Farquhar et al. (2021)
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Figure F.2: Bias of the Empirical Risk for Labeled Data (left panel) and Out-of-sample
Classification Performance (right panel) of activeText, activeText+LURE. For each panel,
the x-axis represents the number of documents labeled, and the y-axis represents the average
bias and average out-of-sample F1 score across 100 Monte Carlo simulations. Shaded areas
represent the 95% confidence intervals across Monte Carlo simulations.

process, which LURE effectively eliminates. However, the unadjusted activeText outper-

forms its bias-corrected version in out-of-sample classification, as depicted in the right panel

of Figure F.3.Thus, our validation results suggest that although correcting for in-sample

bias improves the performance within the sample, it does not necessarily translate to better

out-of-sample classification for activeText.
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Figure F.3: Wikipedia Toxic Comments: Bias of the Empirical Risk for Labeled Data
(left panel) and Out-of-sample Classification Performance (right panel) of activeText, ac-
tiveText+LURE. The reference class is Toxic comment (9% of all documents). For each
panel, the x-axis represents the number of documents labeled, and the y-axis represents the
average bias and average out-of-sample F1 score across 100 Monte Carlo simulations. Shaded
areas represent the 95% confidence intervals across Monte Carlo simulations.
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G Classification Performance with Mislabels

In this section, we assess the impact of errors introduced during 1) manual document label-

ing and 2) manual labeling of keywords. To ensure a realistic evaluation, we utilize data

derived from our validation studies for binary classification (refer to Section “Validation

Performance” in the main text and SI B for data details). The datasets include: internal

forum conversations of Wikipedia editors (class of interest: toxic comment), BBC News ar-

ticles (political topic), the United States Supreme Court decisions (criminal procedure), and

Human Rights allegations (physical integrity rights allegation). Again, we use 80% of each

dataset for training and and 20% for evaluation. Documents to be labeled are sampled from

the training dataset, and documents to test are not included in training. The out-of-sample

F1 score is calculated to evaluate model performance. We use λ = 0.001 to downweight

information from unlabeled documents.

G.1 Mislabeled Documents

To introduce label noise, we systematically vary the percentage of incorrectly labeled doc-

uments. Specifically, for each dataset and at every active iteration (20 labeled documents

per iteration), we randomly select θ% of documents chosen by our algorithm for labeling

and switch their labels. For example, if a document’s true label is politics, we relabel it

as non-political, and vice versa. We explore different levels of ‘honest’ (random) mistakes

represented by θ, with values ranging from {0, 0.10, 0.20, 0.30, 0.40, 0.50}. Note that this

process of adding noise uniformly at random, is often referred to as classical measurement

error.

As shown in Figure G.1, the classification performance of activeText for binary classifi-

cation, diminishes with an increasing proportion of mislabels. For example, considering the

BBC News articles dataset, the out-of-sample F1 score remains high (approximately 0.90)

after labeling around 200 documents with no measurement error (θ equal to 0). However,

the F1 score decreases to 0.87 when introducing a small amount of measurement error with

θ set to 0.10. Notably, the F1 score experiences a significant drop when θ exceeds 0.20. This

observed trend holds consistently across all datasets.

What is the effect of labeling a document incorrectly on downstream analyses? For

instance, let’s say we want to predict how many documents fall into a specific category, like

politics. In our validation studies, we already know the true proportions of documents in

the classes we are interested in. For example, in the BBC dataset, we find that 19% of the

articles are about politics, while in the Wikipedia corpus, 9% of the documents are toxic.

Similarly, 26% of Supreme Court cases deal with criminal procedure, and 16% of Human
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Figure G.1: Classification Results with Mislabels in Active Document Labeling
The rows correspond to different datasets. The y-axis indicates the out-of-sample F1 score
and the x-axis shows the number of sampling steps. 20 documents are labeled at each sam-
pling step. The colors correspond to different levels of mislabels in the labeling of documents.
We find that as the proportion of mislabels increases, the classification performance of ac-
tiveText decreases.

Rights reports involve allegations of physical integrity rights violations. To understand the

impact of mislabeling, we calculate the absolute value of the bias in the prediction for the

proportion of documents in the reference class made by activeText. In other words, the
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out-of-sample magnitude of the bias in the proportion of documents in the class of interest

is calculate as:
∣∣∣π − ∑N

i=1 pi1
N

∣∣∣.
As shown in Figure G.2, the magnitude of the bias increases as the proportion of mislabels

rises. For example, in the Human Rights allegations dataset, the bias is small if we label

around 200 documents accurately (with no measurement error, θ equal to 0). However,

introducing classical measurement error with θ > 0.30 leads to an increase in bias by 0.25

units. This trend holds consistently across all datasets, similar to what we observe with the

F1 score. In other words, even when there are unintentional (or “random”) errors present,

the performance of activeText is reduced when calculating a simple summary statistic such

as a sample mean.

If our predictions are not accurate, using them either as an outcome or as an explanatory

variable in popular downstream tasks (such a regression analysis) could introduce bias in our

estimates. The extent of this bias varies. In the best-case scenario, in a regression framework,

random errors in explanatory variables result in attenuation bias. However, any departure

from classical measurement error could lead to bias whose direction is difficult to determine.

This underscores the importance of exercising caution when assessing the limitations of

methods based on active learning. Nevertheless, refer to Egami et al. (2023) for an apporach

on how to adjust quantities of interest in situations where prediction outcomes are used as

outcomes in regression.
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Figure G.2: Bias in the Proportion of Documents in the Reference Class as a
result of Mislabels in Active Document Labeling
The rows correspond to different datasets. The y-axis indicates the absolute value of the
out-of-sample bias and the x-axis shows the number of sampling steps. 20 documents are
labeled at each sampling step. The colors correspond to different levels of mislabels in the
labeling of documents. We find that as the proportion of mislabels increases, the magnitude
of the bias increases as well.
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G.2 Mislabeled Keywords

We now evaluate the impact of errors that occur during the manual labeling of keywords.

First, we need a definition of a “true” keyword. To do so, as we discussed in Section “Benefits

of Keyword Upweighting” in the main text, we use all documents and their corresponding

labels to obtain the empirical distributions of observing word v in each class. Then, using

this information, a keyword v is considered a true keyword for the positive class if the ratio

ηv,1/ηv,0 exceeds the 90th percentile. Remember, for each ηvk, the positive class is denoted

by k = 1 and the negative class by k = 0. Similarly, a true negative keyword is defined based

on the ratio ηv,0/ηv,1 and based on the same percentile cutpoint.

Once we have defined the true keywords for each class, the model settings for training and

testing are the same ones used are the same as those described in the previous subsection.

At each iteration of activeText, 10 candidate keywords are suggested. Noise in labeling

keywords is introduced by selecting uniformly at random p% of the candidate keywords to

be mislabeled. In other words, the human introduces an honest (random) mistake in labeling

with a probability of p ∈ {0, 0.10, 0.20, 0.30}. Specifically, if a candidate keyword v is a true

keyword, the human will not label v as a keyword. Conversely, if a candidate keyword v

is not a true keyword, the human will label v as a keyword. We also vary the value of γ

(the parameter representing the upweight for the keywords) to take two values, 10 (small

upweight) and 100 (large upweight).

Figure G.3 presents the results. In contrast to the case where noise is added to the labels

of the actively sampled documents, the classification performance of activeText for binary

classification slightly diminishes with an increasing proportion of mislabels for the keywords

(30% or more). This is result is consistent across datasets and values of γ (the weight given

to each keyword).
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Figure G.3: Classification Results with Mislabels in Active Keywords
The rows correspond to different datasets and the columns correspond to two values of γ,
which controls the degree of keyword upweighting. The y-axis indicates the out-of-sample F1
score and the x-axis shows the number of sampling steps. The lines correspond to different
levels of mislabels at the keyword labeling.
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