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1 Details of Technological Shock

1.1 Pre-existing Technology

Prior to the post-WWII irrigation technology shock, virtually no agricultural land in the Great
Plains was irrigated. What little irrigation existed was typically based on surface irrigation from
seasonal rivers and streams. As the 1920 Agricultural Census section on irrigation in Kansas put
it: “On the High Plains there is ground water, but it occurs at such great depths that the cost of
pumping is too great for a large use of water from wells. (p. 179)”

Agriculture west of the 100th meridian (most of the Great Plains), which is typically taken to
divide arid from subhumid climates in the western United States, was typically unproductive
and highly suceptible to droughts.1 Subsequent Homestead Acts (of 1904 and 1909) following
the original legislation enacted in 1862, revised the law to grant larger landholdings (640 acres,
equivalent to a quarter-section in the Public Land Survey System) to farmers settling lands in
the Great Plains, where it was recognized that 160 acres was too small to sustain family farms
on sub-marginal land where only uproductive dryland farming was possible.

Episodic precipitation often brought bumper crops and waves of settlement, followed by
prolonged multi-year droughts which resulted in mass farm failures and mass outmigration.
This culminated in the Dust Bowl, the combination of prolonged drought, dust storms, and soil
erosion that devastated agriculture in the region between 1930 and 1936 and resulted in mass
outmigration to more agriculturally productive regions.2

The pre-existing technology for accessing groundwater was the windmill pump, which was
typically limited to drawing water from a maximum of 30 feet under the ground. The per-acre
foot cost did not justify the windmill’s deployment in large-scale crop irrigation. As one scholar
puts it: “the average windmill kit a farmer could buy from a local manufacturer cost $75 for
an eight-foot mill, $100 for a ten-foot mill, and $135 for a twelve-foot mill. As costs declined,
in 1909 a farmer could build his own reservoir and install two twelve-foot windmills with ten-
inch pumps for $330...farmers learned regretfully that their costly $330 investment might at best
water a total of eight acres...the inherent pumping limits of windmill technology were quickly
reached and did little to aid the wheat farmer on his 640-acre section.”’3.

In the 1920s, new and improved pumping technologies emerged, but remained prohibitively
expensive to provide large-scale crop irrigation. These included, for example, steam-powered
centrifugal pumps. More cost-efficient electric irrigation pumps existed, but farmers typically
lacked widespread access to electricity connections. In any case, by the time these technologies
became available in the 1920s, farmers in the Great Plains were at the beginning of a 20-year
depression in crop prices that made it uneconomical to employ either technology on a large
scale for irrigation given their still exorbitant pumping costs.

1Seager, Richard, et al. "Whither the 100th meridian? The once and future physical and human geography of
America’s arid–humid divide. Part I: The story so far." Earth Interactions 22.5 (2018): 1-22.

2See e.g. Cook, Benjamin I., Ron L. Miller, and Richard Seager. "Dust and sea surface temperature forcing of the
1930s “Dust Bowl” drought." Geophysical Research Letters 35.8 (2008).; Gregory, James Noble. American exodus:
the dust bowl migration and Okie culture in California. Oxford University Press, USA, 1991.

3Opie, John. Ogallala: Water for a Dry Land. University of Nebraska Press, 2000, p. 117
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1.2 Image of Windmill Pump

FIGURE A1. Image of Windmill Pump

Notes: From Opie, John. Ogallala: Water for a Dry Land. University of Nebraska Press, 2000, p. 118. Please note

that caption immediately beneath image is from the source cited.
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1.3 Post-war Technology Shock

Post-WWII advances in groundwater pumping technology finally made it economical for the
typical farmer to irrigate crops on a large scale. Improved petroleum-powered groundwater
pumps based on the adaptation of used automobile engines originated in the late 1930s, but
did not become widely available until commercialization and mass production, and diffusion
through demonstration effects led to widespread uptake in areas overlying the Ogallala aquifer
the 1950s. These new pumps were much more efficient in terms of per acre-foot cost than the
pre-existing technology: "Compared to earlier operating expenses of about $6.00 per acre-foot,
the 1938 irrigator could flood his field for $3.20 to $4.50, including installed well and equipment,
interest and depreciation, and fuel and maintenance...Advances in technology would soon give
the ordinary farmer access to irrigation, but it would be two more decades before it would be
commonplace.”4

The ability to draw from the Ogallala aquifer on a large scale led to a second problem – how
to distribute this water efficiently across a typical 640-acre quarter-section farm. Flood and
ditch irrigation systems were both costly to build, in terms of labor and materials, and were
also water inefficient as they depended upon immersing fields in water in a context of loamy,
permeable soils that are susceptible to rapid dissipation of moisture. A solution arrived in the
form of center-pivot irrigation, a system for irrigating large circular fields with a rotating arm
affixed with sprinklers. Designed initially to irrigate a 640-acre quarter-section (with a rotating
arm about a quarter mile in length), over time center-pivot irrigation systems evolved in scale
so that the largest units could irrigate an entire PLSS section (with a rotating arm about a half
mile in length).

The main benefit of center-pivot irrigation was that it eliminated the need to build labor-
intensive irrigation systems and was much more water efficient, providing water evenly across
large circular fields at a rate that could be controlled by the farmer. Center-pivot irrigation was
patented in 1952 by its inventor Frank Zybach and spread rapidly across the Great Plains from
the 1950s and 1960s onward. The patent for center-pivot irrigation was purchased by Valmont
in 1954, which played a major role in the commercialization, mass production and diffusion of
the new technology across the Great Plains. In the state of Nebraska, much of which intersects
with the Ogallala aquifer, a team of researchers utilizing manual counting of circular fields from
Landsat satellite imagery found that the number of center-pivot irrigation systems in the state
increased rapidly, from over 4000 in 1973 (when satellite images are first available) to nearly
10,000 in 1976.5

The spread of center-pivot irrigation supplied by petroluem-powered deepwell pumps trans-
formed the Great Plains, resulting in the signature irrigated crop circles that are visible from
space as well as the quasi-industrial revolution in agriculture that made the Great Plains one
of the most agriculturally productive regions in the world. As one observer in the 1970s put it:
"What is being observed is perhaps the most significant mechanical innovation in agriculture
since the replacement of draft animals by the tractor."6

4Opie, John. Ogallala: Water for a Dry Land. University of Nebraska Press, 2000, p. 132
5Splinter, William E. "Center-pivot irrigation." Scientific American 234.6 (1976): 90-99.
6Splinter, William E. "Center-pivot irrigation." Scientific American 234.6 (1976): 90.
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FIGURE A2. Image of Petroleum-powered Pumps

Notes: From Opie, John. Ogallala: Water for a Dry Land. University of Nebraska Press, 2000, p. 135. . Please

note that caption immediately beneath image is from the source cited.

5



FIGURE A3. Image of 1952 Center-pivor Irrigation Patent

Notes: From patent for "Self-propelled Sprinkler Apparatus" (https://patents.google.com/patent/US2604359A/en).
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2 Computer Vision Estimates of Center-pivot Irrigation

2.1 Processing Satellite Imagery in Google Earth Engine

Our goal is to count the area-normalized number of center-pivot irrigation systems in operation
in all counties in the Great Plains states in each year between 1985 and 2000 (Landsat 5 satellite
imagery becomes available from 1984 onwards). We exclude Texas, which does not use the
Public Land Survey System (PLSS) from this exercise as well as Montana and North Dakota,
which do not intersect with the Ogallala aquifer and are not a part of our empirical strategy.
Our focus is therefore on measuring the density of center-pivot irrigation technology adoption
for all counties in Oklahoma, New Mexico, Kansas, Colorado, Nebraska, Wyoming, and South
Dakota between 1985 and 2000.

For each state-year, we compute a state-wide raster layer comprised of the normalized dif-
ference vegetation index (NDVI), which highlights areas of greenery and cropping. The NDVI
is defined as (NIR - R) / (NIR + R), where NIR is Near Infrared surface reflectance values and R
is Red surface reflectance values. In the case of Landsat 5, this is (Band 5 – Band 4) / (Band 5
+ Band 4). We compute this index for each pixel by taking pixel-level median values computed
from all cloud-free images of a given pixel taken between July and August in a given year. Some
pixels are missing due to cloud cover. Computing and processing this satellite imagery required
us to process and analyze terabytes of satellite imagery. All computations were performed on
the cloud in Google Earth Engine (code available on request).

We clip these state-year raster files to the extent of individual PLSS sections, rescaling each to
a 70×70 pixel image. Given Landsat 5 resolution (each pixel is 30 square meters) this is approxi-
mately the typical size in satellite imagery of a PLSS section, which is about 1 mile on a side (with
deviation). Shapefiles of PLSS sections are obtained from the Bureau of Land Management. As
part of our data pre-processing before we feed images to a convolutional neural network, we
also re-scale the NDVI index to a measure that ranges between 0 (minimum possible value) and
1 (maximum possible value).

There are a total of ≈ 621,000 PLSS sections in each of 16 years for which we have imagery or
nearly 10 million images which we wish to make predictions about the number of center-pivot
irrigation systems contained therein. Once we have these predictions, it is possible to aggre-
gate up to the county level by counting all the center-pivot irrigation systems in PLSS sections
contained within a county, and normalizing by total land area to get a measure of the number
of center-pivots per 1000 square kilometers.

2.2 Ground Truth Annotations from the Nebraska Center-pivot Inventory

Manually counting center-pivot irrigation systems in nearly 10 million PLSS sections is beyond
human ability. As a result, we turn to tools from computer vision to automate this process.
We train a convolutional neural network (CNN) that takes as input the 70×70 pixel image of
a PLSS section and as output makes a prediction of the number of center-pivot irrigation sys-
tems contained therein. CNNs are supervised learning algorithms and require labeled training
data where the labels represent “ground truth" estimates of the count of center-pivot irrigation
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systems in an image.
To obtain ground-truth labels, we utilize a geo-coded inventory of center-pivot irrigation

systems that was compiled though hand counting of crop circles in Landsat satellite imagery
by a team of researchers for the state of Nebraska.7 The inventory consists of a spreadsheet of
every center-pivot irrigation system observed manually in Landsat satellite imagery for each
year between 1972 and 1987 with longitude and latitude coordinates.

Since geo-coding was performed by hand, there is some noise in the recorded coordinates
(i.e. when coordinates are overlaid with accurately geo-referenced satellite imagery, they do
not exactly correspond to center-pivot irrigation systems). This makes certain approaches to
counting, for instance those based on dot-annotated density maps,8 difficult to implement.
However, it is possible to obtain highly accurate estimates of the number of center-pivot irriga-
tion systems contained within aggregated spatial units, in our case PLSS sections.

A typical PLSS section contains between 0 and 4 center-pivot irrigation systems in predictable
arrangements (see Figure A4 below). We use three years of ground truth annotations (1985-
1987) overlapping with our years of interest to label the count of center-pivot irrigation sys-
tems in clipped satellite images of all PLSS sections in Nebraska, which comprises our training
dataset (N≈220,000). We use a 80:20 training/testing split, stratified by county-year, where 80
percent of the data is used for traning and validation of the CNN model and 20 percent of the
data is used to test the model’s out-of-sample predictive performance. That is, we randomly
sample 20% of all county-year pairs in Nebraska for the years 1985-1987 and allocate all images
of PLSS sections taken in each of these county-year pairs to the test set and allocate the remain-
ing images to the training set. There are 93 counties in Nebraska observed over three years or
279 county-year pairs; of these, 223 were allocated to the training set and 56 to the test set. This
stratified construction of a test set permits us to measure the predictive of the algorithm at two
levels: at the PLSS section and at the county-year level.

2.3 Model Architecture, Training, and Testing Accuracy

We utilize a modified version of the VGG16 network architecture to design our convolutional
neural network.9 We modify it in the following ways. First, we modify the input dimensions of
the model so that it takes as input the 70×70×1 dimension image (i.e. a 70 by 70 pixel image in
a single color channel) of a PLSS section. Second, we replace the softmax activation layer with a
linear activation layer so that as output the model make a continous regression estimate of the
number of center-pivots in the image. Third, since we have a relatively focused task, we replace
the two 4096 neuron dense layers at the bottom of the standard VGG16 network architecture
with a much smaller single 128 neuron dense layer. This convolutional neural network model
has a total of 14,975,937 trainable parameters.

7Carlson, Marvin P. "The Nebraska Center-Pivot Inventory: An example of operational satellite remote sensing
on a long-term basis." Photogramm. Eng. Remote Sens 55 (1989): 587-590.

8Arteta, Carlos, Victor Lempitsky, and Andrew Zisserman. "Counting in the wild." European conference on
computer vision. Springer, Cham, 2016.

9Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recogni-
tion." arXiv preprint arXiv:1409.1556 (2014).
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FIGURE A4. Example of Labeled Training Data

Notes: Images represent examples of Landsat 5 satellite imagery (NDVI index) of PLSS sections from Nebraska

with “ground truth" labels corresponding to the number of center-pivot irrigation systems in the image ac-

cording to the Nebraska center-pivot inventory.

FIGURE A5. Visualization of CNN architecture
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Notes: Image represents layers of convolutional neural network which takes as input a 70 by 70 pixel image of a

PLSS section in a single channel and as output makes a linear regression estimate of the number of center-pivot

irrigation systems in the image. Our approach treats counting center-pivot irrigation systems as a regression

problem, requiring as labels only the total number of objects per training image.

Our general approach is in the spirit of “learning to count" objects in images with deep neu-
ral networks without object localization, in which counting is treated as a regression problem,
requiring as labels only the total number of objects per training image. Similar approaches have

9



been taken to counting objects ranging from fruits and leaves to animals in imagery.10 While
there may be some degree of idisyncratic error in the predictions in the case of individual PLSS
sections, as we aggregate to the county-year level, much of this prediction error ‘cancels out’
(in the sense that the variance of the sum of at least partially uncorrelated random variables
is less than the sum of their variances). This is also why we opt for a linear activation layer
that makes a continuous estimate of the number of center-pivots in supplied images rather
than softmax classification of the image into whole integer categories. Numerical over- and
under-predictions relative to an integer-valued target label contain useful information about
classification ambiguity that improves overall predictive power when we aggregate up to the
county-year level.

In terms of a loss function, we minimize the mean squared error (MSE) of predictions. The
model was trained on the Nebraska training data for a total of 10 epochs using a the Root Mean
Squared Propagation (RMSprop) optimizer and a learning rate of 1e-4. Training was imple-
mented in the keras package in R which uses TensorFlow in Python as a backend. In test data for
the state of Nebraska 1985-87, when “ground truth" labels were regressed on predicted counts
in PLSS sections in Nebraska, the coefficient on the predicted count variable was 0.98 and the
R2 was 0.73. This implies a high level of accuracy at the PLSS section level. But accuracy is even
better when counts are aggregated to the county-year level and the idiosyncratic prediction er-
ror in PLSS section counts cancel each other out as we aggregate to higher levels.

Using the trained model, we can make predictions for a massive number of PLSS sections
(approximately 10 million) across all of the Great Plains states for each year between 1985 and
2000. We then aggregate up to the county level and divide by total county land area (omitting
PLSS sections missing predictions due to cloud cover) to get a panel dataset on center-pivot
irrigation density (center-pivots/1000 sq kilometers) at the county-year level. We achieve near-
human predictive accuracy at this level. When we regress ground-truth measures (based on
manual counts from the Nebraska center-pivot inventory) of center-pivot irrigation density for
the 56 county-year pairs in Nebraska that were allocated to the test set to our computer vision
estimates of center-pivot irigation density, the coefficient on the predicted density variable is
1.1 and and the R2 is 0.94. The accuracy of our computer vision estimates is even higher (R2 =
0.98) when we predict total center-pivots (see Figure A6).

Below we provide images of predicted center-pivot irrigation counts at the PLSS section and
county level for Oklahoma, New Mexico, Kansas, Colorado, Nebraska, Wyoming, and South
Dakota between 1985 and 2000. Figure A7 provides a map of counties shaded by the quar-
tile of center-pivots per 1000 square kilometers averaged between 1985 and 2000. As the map
illustrates, center-pivot irrigation was overwhelmingly concentrated within the boundaries of
the Ogallala aquifer.

10Rahnemoonfar, Maryam, and Clay Sheppard. "Deep count: fruit counting based on deep simulated learn-
ing." Sensors 17.4 (2017): 905; Hoekendijk, Jeroen, et al. "Counting using deep learning regression gives value to
ecological surveys." Nature scientific reports 11.1 (2021): 1-12.
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2.4 State-by-State Center-pivot Counts

FIGURE A7. County Estimates Across Great plains

Notes: Map depicts county-level quartile of center-pivots per 1000 sq km averaged between 1985-2000. Note

that Texas is excluded because it does not use the PLSS system. Red polygon is Ogallala aquifer boundary.
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3 Notes on GIS Analysis

3.1 Source of Shapefiles

To measure county boundaries, we utilize shapefiles published by the IPUMS National His-
torical Geographical Information System (NHGIS).11 NHGIS provides decennial shapefiles of
county boundaries. These files contain polygons representing county boundaries at 10-year
intervals corresponding to population censuses.

To measure the boundaries of the Ogallala aquifer, we utilize a shapefile produced by the
US Geological Survey.12. This shapefile contains a polygon representing the boundaries of the
Ogallala aquifer, as synthesized from a range of historical and local geological surveys.13

3.2 Software and Packages Used in GIS Analysis

All GIS and spatial analyses are performed in the R programming language. The rgdal package
is used to load, store, and project shapefiles into a coordinate reference system (WGS84 is used
throughout).

The package rgeos, which provides an R interface to GEOS (an open-source C package for
analyzing spatial geometries), is used to perform spatial operations, including computation of
county centroids and the intersection county and aquifer boundaries in order to compute the
degree to which a county overlaps with the Ogallala aquifer.

The packages geosphere is used to measure spatial distances and areas. This package is used
to compute the geodesic distance of county centroids from the Ogallala aquifer boundary in
each state as well as to compute the share of each county’s surface area that overlies the Ogallala
aquifer.

3.3 Defining Stable County Boundaries

To identify counties that possessed “stable" boundaries between 1920 and 2000, we compute
polygons representing the union and intersection of the boundary of a given county (identified
by name and ICPSR code) in 1920 and in 2000. If the county exists in both years and the inter-
section is at least 99 percent of the union in terms of land area, it is considered to have stable
boundaries over this time period (and not if either condition is not satisfied).

11https://www.nhgis.org/
12Qi, Sharon. Digital Map of Aquifer Boundary for the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska,

New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. No. 543. US Geological Survey, 2010
13For details, see: https://water.usgs.gov/GIS/metadata/usgswrd/XML/ds543.xml
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4 Additional Data Description

4.1 Soil Conservation Service Map

FIGURE A8. Exposure to Dust Bowl Computed from Soil Erosion Map

Notes: Map represents Soil Conservation Service’s estimates of areas exposed to different degrees of soil erosion

by 1937. Exposure to the Dust Bowl is defined as the share of county land exposed to severe wind erosion based

on geo-referenced map. This map was geo-referenced in ArcGIS and polygons were manually constructed to

represent areas of "severe wind erosion" in the Great Plains states. The measure of exposure to the Dust Bowl

is the share of county land that was exposed to severe wind erosion according to this measure. For comparable

analyses, see: Hornbeck, Richard. "The enduring impact of the American Dust Bowl: Short-and long-run

adjustments to environmental catastrophe." American Economic Review 102.4 (2012): 1477-1507. Source:

National Archives.

4.2 Descriptive Statistics
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5 Full Tables for Selected Tables and Figures in Main Paper

5.1 Full Results for Table 1 in Main Paper

TABLE A2. Impact of Technological Shock on Conservative Voting: Panel A (Full Sample)

Republican Share of Two-party Vote

Baseline Reweighted Time-interacted Covariates Pure Treatment/Control

President Senator Governor President Senator Governor President Senator Governor President Senator Governor

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Aquifer 0.007 0.003 0.012 0.005 0.001 0.013 0.013 0.009 0.010 0.005 0.007 0.015
(0.015) (0.013) (0.012) (0.020) (0.017) (0.020) (0.013) (0.014) (0.012) (0.018) (0.010) (0.009)

Aquifer×Post-shock 0.117∗∗∗ 0.103∗∗∗ 0.086∗∗∗ 0.115∗∗∗ 0.104∗∗∗ 0.079∗∗ 0.087∗∗∗ 0.073∗∗∗ 0.058∗∗∗ 0.122∗∗∗ 0.100∗∗∗ 0.088∗∗∗

(0.022) (0.022) (0.015) (0.031) (0.028) (0.027) (0.018) (0.019) (0.014) (0.022) (0.020) (0.012)

Erosion −0.003 −0.0001 −0.001
(0.010) (0.006) (0.010)

Erosion×Post-shock 0.015 0.025 0.028
(0.021) (0.018) (0.018)

New Deal −0.00005∗∗ −0.00003 −0.00000
(0.00002) (0.00003) (0.00003)

New Deal×Post-shock 0.0001∗∗∗ 0.0001∗∗ 0.00004
(0.00003) (0.00003) (0.00003)

Residential stability 0.105∗∗ 0.132∗∗ 0.099
(0.048) (0.055) (0.057)

Residential stability×Post-shock −0.003 −0.102 −0.066
(0.069) (0.070) (0.068)

Droughts −0.009 0.013 0.020
(0.060) (0.037) (0.042)

Droughts×Post-shock −0.034 −0.114 −0.038
(0.137) (0.122) (0.114)

White 0.209∗∗∗ 0.077∗∗∗ 0.105∗∗∗

(0.050) (0.024) (0.022)

White×Post-shock −0.021 0.083 0.075
(0.108) (0.080) (0.074)

WW2 0.00000 0.00000 0.00000
(0.00000) (0.00000) (0.00000)

WW2×Post-shock 0.00000 0.00000 0.00000
(0.00000) (0.00001) (0.00000)

Observations 1,350 1,350 1,350 1,350 1,350 1,350 1,336 1,336 1,336 1,072 1,072 1,072
Adjusted R2 0.774 0.857 0.815 0.710 0.809 0.773 0.785 0.862 0.821 0.765 0.855 0.816

Notes: Unit of analysis is county-period average (pre-period is 1920-1940 and post-period is 1980-2000). Re-

publican Vote is the Republican party’s share of the two-party vote in presidential, senatorial, or gubernatorial

elections, depending on specification. Aquifer is a cross-sectional measure of the share of county land overly-

ing Ogallala aquifer. Post-shock is a time dummy variable taking a value of one for the post-shock period and

zero otherwise. Control variables are per capita New Deal spending and share of county land exposed to severe

wind erosion during the Dust Bowl, interacted with time. Analysis estimated by OLS. Standard errors adjusted

for clustering by county and state-period reported in parentheses: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Conley stan-

dard errors adjusted for serial correlation and spatial correlation within a 200km radius of county centroids

reported in brackets.
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TABLE A3. Impact of Technological Shock on Conservative Voting: Panel B (200km sample)

Republican Share of Two-party Vote

Baseline Reweighted Time-interacted Covariates Pure Treatment/Control

President Senator Governor President Senator Governor President Senator Governor President Senator Governor

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Aquifer 0.006 0.007 0.014 0.001 0.004 0.011 0.014 0.013 0.012 0.003 0.010 0.018
(0.019) (0.015) (0.015) (0.021) (0.017) (0.018) (0.016) (0.016) (0.015) (0.023) (0.013) (0.014)

Aquifer×Post-shock 0.097∗∗∗ 0.078∗∗∗ 0.064∗∗∗ 0.091∗∗∗ 0.073∗∗ 0.058∗∗ 0.072∗∗∗ 0.056∗∗ 0.047∗∗ 0.108∗∗∗ 0.081∗∗∗ 0.067∗∗∗

(0.024) (0.021) (0.017) (0.030) (0.026) (0.023) (0.020) (0.020) (0.017) (0.025) (0.020) (0.014)

Erosion −0.007 −0.007 −0.007
(0.012) (0.011) (0.011)

Erosion×Post-shock 0.015 0.030 0.030
(0.018) (0.017) (0.018)

New Deal −0.00002 −0.00001 0.00003∗

(0.00002) (0.00003) (0.00002)

New Deal×Post-shock 0.0001∗∗ 0.0001 0.00001
(0.00003) (0.00004) (0.00004)

Residential stability 0.081 0.079 0.047
(0.058) (0.063) (0.069)

Residential stability×Post-shock −0.061 −0.104 −0.097
(0.087) (0.085) (0.096)

Droughts −0.009 0.012 0.005
(0.078) (0.047) (0.058)

Droughts×Post-shock −0.056 −0.152 −0.065
(0.133) (0.127) (0.130)

White 0.198∗∗ 0.085 0.102
(0.079) (0.068) (0.064)

White×Post-shock 0.361∗∗∗ 0.371∗∗∗ 0.386∗∗∗

(0.083) (0.079) (0.082)

WW2 0.00000 0.00000 0.00000
(0.00000) (0.00000) (0.00000)

WW2×Post-shock −0.00000 0.00000 0.00000
(0.00001) (0.00000) (0.00001)

Observations 826 826 826 826 826 826 826 826 826 548 548 548
Adjusted R2 0.788 0.861 0.806 0.701 0.793 0.732 0.803 0.870 0.817 0.780 0.859 0.807

Notes: Unit of analysis is county-period average (pre-period is 1920-1940 and post-period is 1980-2000). Re-

publican Vote is the Republican party’s share of the two-party vote in presidential, senatorial, or gubernatorial

elections, depending on specification. Aquifer is a cross-sectional measure of the share of county land overly-

ing Ogallala aquifer. Post-shock is a time dummy variable taking a value of one for the post-shock period and

zero otherwise. Control variables are per capita New Deal spending and share of county land exposed to severe

wind erosion during the Dust Bowl, interacted with time. Analysis estimated by OLS. Standard errors adjusted

for clustering by county and state-period reported in parentheses: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Conley stan-

dard errors adjusted for serial correlation and spatial correlation within a 200km radius of county centroids

reported in brackets.
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TABLE A4. Impact of Technological Shock on Conservative Voting: Panel C (100km sample)

Republican Share of Two-party Vote

Baseline Reweighted Time-interacted Covariates Pure Treatment/Control

President Senator Governor President Senator Governor President Senator Governor President Senator Governor

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Aquifer 0.017 0.019 0.024 0.014 0.016 0.023 0.019 0.017 0.017 0.015 0.022 0.029
(0.019) (0.014) (0.016) (0.018) (0.015) (0.016) (0.016) (0.015) (0.015) (0.024) (0.014) (0.016)

Aquifer×Post-shock 0.072∗∗ 0.055∗∗ 0.042∗∗ 0.070∗∗ 0.053∗∗ 0.042∗ 0.055∗∗ 0.041∗∗ 0.032∗ 0.082∗∗ 0.057∗∗ 0.042∗∗

(0.025) (0.021) (0.018) (0.027) (0.023) (0.020) (0.020) (0.019) (0.018) (0.029) (0.023) (0.017)

Erosion −0.005 −0.006 −0.007
(0.012) (0.013) (0.012)

Erosion×Post-shock 0.021 0.036∗ 0.037∗

(0.017) (0.019) (0.020)

New Deal −0.00001 0.00001 0.00005∗

(0.00002) (0.00004) (0.00002)

New Deal×Post-shock 0.0001∗ 0.00002 −0.00001
(0.00003) (0.00005) (0.00004)

Residential stability 0.060 0.049 0.023
(0.047) (0.047) (0.055)

Residential stability×Post-shock −0.037 −0.081 −0.078
(0.068) (0.072) (0.084)

Droughts 0.028 0.032 0.022
(0.081) (0.050) (0.068)

Droughts×Post-shock −0.013 −0.100 −0.041
(0.124) (0.140) (0.143)

White 0.211∗∗∗ 0.145∗∗ 0.120∗∗

(0.067) (0.065) (0.050)

White×Post-shock 0.435∗∗∗ 0.377∗∗∗ 0.379∗∗∗

(0.078) (0.075) (0.074)

WW2 −0.00001 −0.00001 −0.00001
(0.00001) (0.00001) (0.00001)

WW2×Post-shoc 0.00001 0.00001 0.00001
(0.00001) (0.00001) (0.00001)

Observations 562 562 562 562 562 562 562 562 562 284 284 284
Adjusted R2 0.821 0.880 0.829 0.789 0.858 0.802 0.841 0.891 0.843 0.819 0.884 0.839

Notes: Unit of analysis is county-period average (pre-period is 1920-1940 and post-period is 1980-2000). Re-

publican Vote is the Republican party’s share of the two-party vote in presidential, senatorial, or gubernatorial

elections, depending on specification. Aquifer is a cross-sectional measure of the share of county land overly-

ing Ogallala aquifer. Post-shock is a time dummy variable taking a value of one for the post-shock period and

zero otherwise. Control variables are per capita New Deal spending and share of county land exposed to severe

wind erosion during the Dust Bowl, interacted with time. Analysis estimated by OLS. Standard errors adjusted

for clustering by county and state-period reported in parentheses: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Conley stan-

dard errors adjusted for serial correlation and spatial correlation within a 200km radius of county centroids

reported in brackets.
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5.2 Table Version of Figure 6 in Main Paper

TABLE A5. Pre- and Post-technological Shock Trends

Dependent variable:

President (Republican share) Senator (Republican share) Governor (Republican share) Irrigation (% Farmland)

Aquifer×1910s 0.010 0.005 −0.004 −1.230
(0.014) (0.014) (0.014) (1.673)

Aquifer×1920s 0.037∗∗∗ 0.011 −0.008 −0.060
(0.008) (0.015) (0.014) (1.314)

Aquifer×1940s 0.032∗∗∗ 0.002 −0.014 0.488
(0.009) (0.013) (0.011) (1.316)

Aquifer×1950s 0.049∗∗∗ 0.022 −0.014 6.286∗∗∗

(0.012) (0.014) (0.012) (1.847)

Aquifer×1960s 0.070∗∗∗ 0.046∗∗∗ 0.015 11.279∗∗∗

(0.015) (0.016) (0.015) (2.154)

Aquifer×1970s 0.048∗∗∗ 0.042∗∗∗ 0.015 15.658∗∗∗

(0.012) (0.015) (0.019) (1.844)

Aquifer×1980s 0.082∗∗∗ 0.055∗∗∗ 0.034∗ 14.991∗∗∗

(0.014) (0.016) (0.019) (1.765)

Aquifer×1990s 0.107∗∗∗ 0.068∗∗∗ 0.042∗∗ 16.338∗∗∗

(0.016) (0.016) (0.017) (1.811)

State-year FE Yes Yes Yes Yes
County FE Yes Yes Yes Yes
Sample 100-km 100-km 100-km 100-km
Observations 6,438 8,824 10,122 5,050
Adjusted R2 0.920 0.885 0.910 0.720

Notes: Unit of analysis is county-year (election year in the case of electoral outcomes and agricultural census

year in the case of irrigation). Coefficients represent decadal relationship between aquifer coverage and out-

come relative to relationship existing in 1930s (which is left out as reference category). Analysis estimated by

OLS. Standard errors adjusted for clustering by county and state-year reported in parentheses.
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5.3 Table Version of Figure 7 in Main Paper

TABLE A6. Potential Channels (Table Version of Figure 7 in Main Paper)

Dependent variable:

Machinery Log Average Farms Agricultural Crop Production Livestock Population Urbanization Religosity White
Per Farm $ Farm Value per 1000 Acre Employment % Per Farm $ Per Farm Density Rate Share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Aquifer×1910s −8,673.277 −0.131 −0.292 −4,824.334∗∗∗ 30.183 0.454 −0.171
(8,819.765) (0.253) (0.183) (0.000) (1,747.929) (26.842) (2.746) (1.072) (0.000) (0.000)

Aquifer×1920s −6,792.439 0.036 −0.108 6,917.297∗∗∗ 10.752 −0.186 0.824 −0.014
(6,777.719) (0.158) (0.139) (0.000) (2,296.122) (13.972) (2.103) (1.043) (0.032) (0.000)

Aquifer×1940s −1,904.120 −0.095∗∗ 0.133 −0.703∗ 3,973.136 11.021 0.461 −1.307∗∗∗ −0.003
(6,351.129) (0.042) (0.157) (0.369) (5,558.204) (12.080) (1.078) (0.375) (0.000) (0.005)

Aquifer×1950s 0.289∗∗∗ 0.451∗∗∗ −0.787∗∗ 50,348.110∗∗∗ 17.000 0.698∗∗ 1.594 −0.006 −0.002
(0.000) (0.070) (0.154) (0.273) (12,926.990) (13.130) (0.236) (1.022) (0.025) (0.006)

Aquifer×1960s 32,850.730∗∗∗ 0.318∗∗∗ 0.715∗∗∗ 1.375∗ 52,584.400∗∗∗ 31.829∗∗ −1.956 0.095 0.002
(6,649.863) (0.070) (0.152) (0.613) (15,773.530) (14.943) (2.786) (1.827) (0.000) (0.007)

Aquifer×1970s 85,493.670∗∗∗ 0.223∗∗∗ 0.823∗∗∗ 0.217 120,115.200∗∗∗ 60.808∗∗∗ −5.212 2.402 0.017 0.009
(11,841.440) (0.068) (0.172) (0.776) (24,484.850) (17.162) (5.342) (2.114) (0.027) (0.009)

Aquifer×1980s 65,625.160∗∗∗ 0.179∗ 0.866∗∗∗ 0.322 72,368.160∗∗∗ 88.997∗∗∗ −8.307 5.186∗ 0.043 −0.010
(8,630.330) (0.099) (0.188) (1.024) (13,605.250) (18.453) (6.728) (2.326) (0.031) (0.009)

Aquifer×1990s 62,659.690∗∗∗ 0.133 0.917∗∗∗ 0.823 80,350.130∗∗∗ 135.978∗∗∗ −15.492 6.276∗∗ 0.027 −0.022
(8,324.530) (0.087) (0.202) (1.238) (15,153.900) (23.251) (9.349) (2.509) (0.030) (0.013)

State-year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sample 100-km 100-km 100-km 100-km 100-km 100-km 100-km 100-km 100-km 100-km
Observations 3,644 3,926 4,769 2,248 4,142 4,657 2,800 2,796 1,672 2,248
Adjusted R2 0.842 0.959 0.587 0.468 0.507 0.287 0.004 0.089 0.333 0.406

Notes: Unit of analysis is county-year (agricultural, population or religious census year depending on out-

come). Note that 1930s left out as reference category. Machinery is market value of machinery. Average farm

value is market value of farm land and buildings. Farm density is the number of farms per 1000 acres of county

land. Agricultural employment is the percentage of workforce employed in farms. Crop production per farm

is total value of crop production divided by number of farms. Livestock is total number of cattle and pigs di-

vided by number of farms. All dolar amounts adjusted for inflation to 2016 dollars. Population density is the

number of people per 1000 acres of county land. Urbanization is the percentage of the county population liv-

ing in census-defined urban areas. Religiosity is church membership per capita. Data from the US Census of

Religion Bodies conducted in 1926, 1936; the survey of Churches and Church Membership conducted by the

National Council of Churches in 1952, 1971, 1980 and 1990. White Share is white share of population. Analysis

estimated by OLS. Standard errors adjusted for clustering by county and state-year.
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6 Additional Results

6.1 Main Results with County Fixed Effects

TABLE A7. Impact of Technological Shock on Conservative Voting (County Fixed Effects)

Republican Share of Two-party Vote

Baseline Time-interacted Covariates Pure Treatment/Control

President Senator Governor President Senator Governor President Senator Governor

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Full Sample
Aquifer×Post-shock 0.117∗∗∗ 0.103∗∗∗ 0.086∗∗∗ 0.087∗∗∗ 0.073∗∗∗ 0.058∗∗∗ 0.122∗∗∗ 0.100∗∗∗ 0.088∗∗∗

(0.013) (0.017) (0.012) (0.012) (0.015) (0.012) (0.013) (0.015) (0.013)

Observations 1,350 1,350 1,350 1,336 1,336 1,336 1,072 1,072 1,072
Adjusted R2 0.850 0.897 0.871 0.852 0.901 0.873 0.849 0.900 0.880

Panel B: 200km Sample
Aquifer×Post-shock 0.097∗∗∗ 0.078∗∗∗ 0.064∗∗∗ 0.072∗∗∗ 0.056∗∗∗ 0.047∗∗∗ 0.108∗∗∗ 0.081∗∗∗ 0.067∗∗∗

(0.012) (0.012) (0.014) (0.012) (0.013) (0.014) (0.013) (0.010) (0.014)

Observations 826 826 826 826 826 826 548 548 548
Adjusted R2 0.855 0.893 0.850 0.862 0.903 0.859 0.858 0.896 0.870

Panel C: 100km Sample
Aquifer×Post-shock 0.072∗∗∗ 0.055∗∗∗ 0.042∗∗∗ 0.055∗∗∗ 0.041∗∗∗ 0.032∗∗ 0.082∗∗∗ 0.057∗∗∗ 0.042∗∗∗

(0.012) (0.013) (0.014) (0.012) (0.012) (0.013) (0.012) (0.012) (0.014)

Observations 562 562 562 562 562 562 284 284 284
Adjusted R2 0.878 0.906 0.858 0.887 0.914 0.868 0.888 0.915 0.885

State-period Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
County Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time-interacted Controls No No No Yes Yes Yes No No No
Pure treatment/Control No No No No No No Yes Yes Yes

Notes: Unit of analysis is county-period average (pre-period is 1920-1940 and post-period is 1980-2000). Re-

publican Vote is the Republican party’s share of the two-party vote in presidential, senatorial, or gubernato-

rial elections, depending on specification. Aquifer is a cross-sectional measure of the share of county land

overlying Ogallala aquifer (lower order term absorbed by county fixed effects). Post-shock is a time dummy

variable taking a value of one for the post-shock period and zero otherwise. Control variables interacted with

time. Analysis estimated by OLS. Standard errors adjusted for clustering by county and state-period reported

in parentheses: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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6.2 Main Results with 2000-2020 endline

TABLE A8. Impact of Technological Shock on Conservative Voting (2000-2020 Endline)

Republican Share of Two-party Vote

Baseline Reweighted Time-interacted Covariates Pure Treatment/Control

President Senator Governor President Senator Governor President Senator Governor President Senator Governor

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: Full Sample
Aquifer×Post-shock 0.121∗∗∗ 0.111∗∗∗ 0.103∗∗∗ 0.115∗∗∗ 0.096∗∗∗ 0.097∗∗∗ 0.083∗∗∗ 0.078∗∗∗ 0.075∗∗∗ 0.122∗∗∗ 0.104∗∗∗ 0.103∗∗∗

(0.022) (0.021) (0.017) (0.021) (0.016) (0.012) (0.023) (0.022) (0.017) (0.020) (0.014) (0.010)

Aquifer 0.007 0.003 0.012 0.005 0.006 0.012 0.013 0.009 0.010 0.005 0.007 0.015
(0.015) (0.013) (0.012) (0.018) (0.011) (0.010) (0.013) (0.014) (0.012) (0.018) (0.010) (0.009)

Observations 1,350 1,350 1,350 1,350 1,350 1,350 1,336 1,336 1,336 1,072 1,072 1,072
Adjusted R2 0.796 0.879 0.844 0.894 0.946 0.915 0.810 0.885 0.851 0.793 0.876 0.844

Panel B: 200km Sample
Aquifer×Post-shock 0.088∗∗ 0.073∗∗∗ 0.072∗∗∗ 0.085∗∗ 0.069∗∗∗ 0.070∗∗∗ 0.059∗ 0.052∗∗ 0.054∗∗ 0.095∗∗∗ 0.073∗∗∗ 0.077∗∗∗

(0.032) (0.023) (0.024) (0.030) (0.018) (0.022) (0.029) (0.024) (0.022) (0.031) (0.017) (0.021)

0.006 0.007 0.014 0.006 0.008 0.015 0.014 0.013 0.012 0.003 0.010 0.018
(0.019) (0.015) (0.015) (0.020) (0.013) (0.014) (0.016) (0.016) (0.015) (0.023) (0.013) (0.014)

Observations 826 826 826 826 826 826 826 826 826 548 548 548
Adjusted R2 0.813 0.897 0.857 0.877 0.939 0.903 0.840 0.908 0.874 0.812 0.896 0.861

Panel C: 100km Sample
Aquifer×Post-shock 0.048 0.038 0.041 0.052 0.039∗ 0.044∗ 0.032 0.026 0.031 0.056 0.038∗ 0.047∗

(0.033) (0.023) (0.024) (0.033) (0.021) (0.023) (0.033) (0.025) (0.024) (0.035) (0.019) (0.022)

Aquifer 0.017 0.019 0.024 0.017 0.019 0.026 0.019 0.017 0.017 0.015 0.022 0.029
(0.019) (0.014) (0.016) (0.020) (0.013) (0.016) (0.016) (0.015) (0.015) (0.024) (0.014) (0.016)

Observations 562 562 562 562 562 562 562 562 562 284 284 284
Adjusted R2 0.856 0.921 0.883 0.888 0.941 0.908 0.886 0.933 0.904 0.867 0.927 0.893

State-period Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time-interacted Controls No No No No No No Yes Yes Yes No No No
Pure treatment/Control No No No No No No No No No Yes Yes Yes

Notes: Unit of analysis is county-period average (pre-period is 1920-1940 and post-period is 2000-2020). Out-

come is the Republican party’s share of the two-party vote in presidential, senatorial, or gubernatorial elec-

tions, depending on specification. Aquifer is a cross-sectional measure of the share of county land overlying

Ogallala aquifer. Post-shock is a time dummy variable taking a value of one for the post-shock period and zero

otherwise. Columns (1)-(3) reports baseline specification. In columns (4)-(6) regression weights are applied

to recover pooled average of within-state difference-in-difference estimates weighted by number of observa-

tions in each state. Controls (see text) included as lower-order terms and interacted with post-shock variable

in columns (7)-(9). Columns (10)-(12) include only counties fully inside/outside aquifer. Analysis estimated

by OLS. Standard errors adjusted for clustering by county and state-period reported in parentheses: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.
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6.3 Controlling for county-specific time trends

FIGURE A9. Pre- and Post-shock Trends Controlling for County-specific Linear Trends
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Notes: Plot depicts coefficient on aquifer coverage variable interacted with decadal dummy variables, with the

1930s left out as the reference category. Vertical bars are 95% confidence intervals. Vertical axis range is plus

or minus one standard deviation of the outcome. All specifications control for state-year and county fixed

effects and are based on 100km buffer sample of counties. All specifications also control for county-specific

linear time trends. Analysis estimated by OLS. Standard errors adjusted for clustering within counties and

state-years.
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7 Campaign Finance Patterns

7.1 Data

We utilize data from the Database on Ideology, Money in Politics, and Elections (DIME): Pub-
lic version 2.0 (https://data.stanford.edu/dime), which consists of a database containing
over 130 million political contributions made by individuals and organizations to local, state,
and federal elections spanning the period from 1979 to 2014. Our main measures focus on con-
tributions in the period 1980-2000 (which corresponds to the endline period in our difference-
in-differences analysis).

To link contributions to counties, we use the contributor database and subset the data to
contributors’ whose most recent state address corresponds to one of the 10 Great Plains states
(1,946,355 records). We then use the zipcode attached to each row to assign a contributor to a
zipcode, and then use shapefiles of zip codes and county boundaries (circa 1990) to assign each
contributor to a county. Approximately 87 percent of contributors could be linked to a zip code
using this procedure (in future work, other address information could be utilized to address
some of the missingness).

To measure the “partisan bias" of campaign contributions in a county for the period 1980-
2000, we use the contributor CFscore – which represents a common-space scaling of contrib-
utors’ ideological ideal point inferred from patterns of giving (see Bonica, Adam. 2014. “Map-
ping the Ideological Marketplace." American Journal of Political Science, 58 (2): 367- 387.). In
one measure, we simply average contributor CF scores. In another measure, we construct a
dollar-weighted average of contributor CF scores.

7.2 Descriptive Analysis

Our interest is in whether campaign contributions originating inside the boundaries of the
Ogallala aquifer, where capital-intensive agriculture and agribusiness thrive, have a more con-
servative bias than campaign contributions originating outside of the aquifer. We investigate
this proposition by regressing mean CF score and dollar-weighted mean CF score on the share
of county land overlapping the Ogallala aquifer, controlling for state fixed effects and pruning
the sample in some specifications to 200km and 100km buffer zones along the boundary of the
Ogallala aquifer in each state. This means that comparisons are between counties in the same
state in proximity to the Ogallala aquifer boundary. In Figure A21 we provide maps of the data.
In Table A8 we report regression results.

7.3 Interpretation and Future Work

The findings indicate that on average campaign contributions/contributors in counties with
greater overlap with the Ogallala aquifer have a higher CF Score (where a higher CF score cor-
responds to a higher level of conservatism). This could reflect the conservative bias of agribusi-
ness interests and affluent farmers and landowners that are concentreated in areas of capital-
intensive agriculture.
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TABLE A9. Partisan Bias in Campaign Contributions

Dependent variable:

Mean CF score Dollar-weighted CF

(1) (2) (3) (4) (5) (6)

Aquifer 0.300∗∗∗ 0.239∗∗∗ 0.187∗∗∗ 0.199∗∗∗ 0.161∗∗ 0.096
(0.031) (0.032) (0.034) (0.059) (0.069) (0.080)

Observations 713 424 289 712 423 289
Adjusted R2 0.445 0.444 0.420 0.105 0.105 0.101

Notes: Unit of analysis is county. Outcome is mean CF score of contributors or dollar-weighted mean CF score.

Aquifer is share of county land overlapping the Ogallala aquifer. Analysis estimated by OLS: ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.

However, this is likely to represent just a small fraction of the total role of agribusiness money
in politics, which may flow not just from but into districts where agribusiness is a major activity
as past studies have found in the case of other geographically concentrated industries (see e.g.
"DiSalvo, Richard W., and Zhao Li. 2022. “Economic Geography and Corporate Political Activity:
Evidence from Fracking and State Campaign Finance.” Working Paper).

Future studies might use a different unit of analysis – for instance state legislative constituen-
cies – and systematically track agribusiness firm donations, both in-district and out-of-district,
to constituencies where agribusiness is concentrated to explore the role of agribusiness money
in politics, which may be used to shape the political agenda, persuade voters, and elect friendly
legislators in areas susceptible to legislation and regulation.

Such designs might potentially investigate time variation arising from technology-related
shocks to the geograhical location of capital-intensive agriculture and agribusiness intensity
occuring since 1979, when campaign finance data becomes systematically available due to
disclosure laws. Alternatively, future work could take a pursely cross-sectional approach that
exploits highly spatially disaggregated campaign contribution (which can potentially be geo-
located down to the address and firm level).
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