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A A simple psychological game with anger

In this section we present a simple one-period sequential game modeled loosely off of the interac-
tion described in the main model. Though we focus on a setting with similar features to the model
in the paper, this section is intended to be self-contained. Our purpose here is not to reproduce the
results from the paper but instead to explain the basics of how psychological preferences work in
a more accessible setting. Consider an interaction between two players, 1 and 2. The sequence
of play is that player 1 chooses an action in {a,c} and then player 2 observes player 1’s action
and then chooses an action in {A,C}. As in the model in the main text, we interpret a or A as
“aggressive” and c¢ or C as “conciliatory.”

The material payoffs of the players as well as a depiction of the sequence of the game are
given in Figure A.la. The key features of material payoffs are that Player 1 would most prefer
to get away with being aggressive and receiving a conciliatory response from Player 2, but will
play a conciliatory action if she thinks Player 2 would respond to an aggressive action with an
aggressive response. However, Player 2 has a dominant strategy to play the conciliatory action
at both information sets. Applying backward induction, the unique equilibrium is one in which
player 1 chooses a and player 2 chooses C at both information sets, so the path of play is (a,C)
and the equilibrium payoffs are (2,1).

(0,0) (2,1) (=1,0) (1,2)

(a) Example game with only material payoffs

(0,0) (2,1-2b) (—=1,0) (1,2)

(b) Example game augmented with psychological
payoffs

Figure A.1: Simple example game. Version (a) shows the game with only material payoffs and
version (b) shows the game augmented with psychological payoffs.

However, we augment this game by providing psychological preferences for Player 2. To repre-
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sent these preferences, let b denote player 2’s conjecture about player 1’s probability of playing c.
That is, b denotes player 2’s conjecture about player 1’s mixed strategy. In line with the assump-
tions about anger in the paper, we assume that Player 2 becomes angry when Player 1 unexpectedly
chooses a. Since the difference between Player 2’s best payoff when Player 1 chooses ¢ and Player
2’s best payoff when Player 1 chooses a is 1, the decrease in Player 2’s expected material payoff
due to Player 1’s action is equal to b. We assume that anger creates an aversion to increasing the
payoff of the other player, so Player 2’s decision utility is equal to her material payoff minus her
anger level (equal here to the decrease in her expected material payoff) times the payoff of Player
1. This is captured by replacing Player 2’s payoff of 1 in the game with purely material payoffs
to 1 —2b at the (a,C) terminal node.! Informally, a psychological sequential equilibrium requires
that both players are sequentially rational in the usual sense of backward induction and also that
Player 2’s conjecture about Player 1’s strategy be correct. That is, Player 1 plays ¢ with probability
p, where p is a best response to Player 2’s strategy, and Player 2’s strategy is a best response given
the correct conjecture b = p. A look at the equilibrium concept reveals why the game cannot be
analyzed using classical game theoretic tools: Player 2’s preferences depend on her conjecture b,
but this conjecture is itself endogenous.

We can analyze this game as follows. First, we analyze Player 2’s best response at each infor-
mation set given a particular conjecture b. Clearly, regardless of Player 2’s conjecture, her best
response to c¢ is always C. Furthermore, C is a best response to a if b < % and A is a best response
toaifb> % This captures the idea from the main model in the text that anger can change behavior
only if the observed behavior deviates significantly enough from the expected behavior.

Second, we consider different possible strategies for Player 1 to find equilibria. Notice that this
must go beyond the usual backward induction exercise: we must start from a candidate solution
and then check whether both players are playing best responses given that Player 2’s beliefs are
computed at that strategy. First, consider the possibility that p = 0 as in the unique equilibrium to
the game with only material payoffs. In that case, Player 2’s action off-the-path of play following
a choice of ¢ would be C, which would give Player 1 a payoff of 1. On the path of play, Player
2’s best response remains C since b = p = 0 so anger does not come into play. Thus, the unique
equilibrium in the game with only material payoffs is also an equilibrium to the psychological
game.

Next, consider the other pure strategy for Player 1, p = 1. In this case, Player 1 still knows

' Anger does not appear in the (a,A) terminal node because Player 1’s payoff is zero, though we can
think of this as being implicitly factored in but just equal to zero. Similarly anger does not factor

into either payoff when Player 1 chooses ¢ since Player 2 achieves a maximal material payoff.
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that she can guarantee herself a payoff of 1 by choosing c. If she chooses a, then Player 2’s best
response will require her to play A since b = p = 1. Thus, Player 1 expects a payoff of 0 from
choosing a and 1 from choosing c¢. Thus, there is also a pure strategy equilibrium in which Player
1 chooses ¢ and Player 2 chooses A in response to a and C in response to C.

For there to be any equilibrium with p € (0,1), Player 1 must be indifferent between choosing
a or c. Since Player 2 always must play C in response to ¢, this implies that Player 2 must play C
in response to a with probability one half. This also requires that Player 2 is indifferent between
playing A and C in response to a, which is true when 1 —2b =0, i.e. when b = % Thus, there
is also a mixed strategy equilibrium in which Player 1 chooses ¢ with probability % and a with
probability % and Player 2 chooses C in response to ¢ and chooses A with probability % and C with
probability % in response to a.

This simple example deliberately leaves out certain components of the game in text that are
crucial to the main results, namely the presence of incomplete information and the possibility
of mistakes. However, it provides an illustration of how anger might operate in a much simpler

setting.

B Examples of computing psychological payoffs

We now characterize the psychological motives of the players. Anger depends on three factors.
First, agents are angry when there is a deviation between their expected payoff and actual payoff.
Agents can therefore only be angry when ¥;_; = a and anger from ¥,_; = a is greater the more the
agent initially expected a conciliatory outcome. Second, agents are angry when a negative outcome
is blamed on the actions of another. The agent’s anger therefore depends on the probability that the
aggressive outcome was caused by an aggressive intended action rather than being unintentional.
Finally, anger, once triggered, causes agents to negatively weight the payoffs of players from the
other group which motivates aggression.

Detailed calculations of anger motivations for general strategies are provided in Appendix C.1
but the following examples illustrate the mechanisms that drive anger. For illustration we consider
three illustrative strategy profiles in order to show how anger is derived in the model and how it
depends on the agents’ conjectures about the strategies played by others. The purpose here is not
to illustrate equilibria — in fact we will compute psychological preferences for strategy profiles that
will turn out not to be equilibria — but instead to show the mechanics of how emotional responses
to the same situation are driven by beliefs about the context.

As highlighted in Proposition 2, when Friendly types are always aggressive in response to ag-
gressive outcomes, agents do not get angry because observing an aggressive outcome does not

constitute a deviation between actual and expected payoffs.
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Example 1 (Certain conflict). Suppose an agent’s conjecture is that Friendly types always take
aggressive actions toward the next player in response to aggressive outcomes. As we have dis-
cussed, the long-run probability of an aggressive action in an arbitrary time period is one given
these strategies. Therefore, the psychological component of payoffs is zero in this situation since
Pr{fi—1 = clbf', bf] = 0.

As we show in Proposition 2, the strategy profile analyzed in Example 1 is not an equilibrium
to the psychological game. The example shows why perpetual conflict cannot be an equilibrium
outcome even if sensitivity to anger is very large, since an aggressive outcome never produces a
deviation between expected and actual payoffs.

Next we consider a situation in which the agent believes that Friendly types never behave aggres-
sively. When Friendly types are always conciliatory, observing an aggressive outcome constitutes a
deviation between expected and actual payoffs. Since it is possible that the other group has Hostile

types, an aggressive outcome was possibly caused by the deliberate actions of another agent.

Example 2 (Friendly types are always conciliatory). Suppose an agent’s conjecture is that Friendly
types always take conciliatory actions toward the next player. Then in any period Pr[y,_; =
c|b?,bP] = (1 — up)(1 — &). Furthermore, agents are not angry if they believe aggressive out-
comes occur purely unintentionally, so our calculation of the agent’s anger must compute Pr[y,_| =
aly;—1 = al, the probability that an aggressive outcome followed from an aggressive intended ac-
tion. If Friendly types are always conciliatory, then the only time y,_; = a is when 6,_| = H,
so Pr[y;—1 = a|y;—1 = a] = W, where ; is the updated belief that the other groups is made up
of Hostile types given the outcome y;_; = a. Additionally, since only Hostile types could have
intentionally caused an aggressive outcome given these strategies, only the payoffs of Hostile
types are negatively weighted in the agent’s psychological payoff. The expected gain to a Hos-
tile player 7 4+ 1 from choosing y; = ¢ rather than y; = a is (1 — x)r(H). Therefore, the agent’s

psychological payoffs reduce the expected decision utility of taking the conciliatory action by
0j(1— o) (1 = m)e (1 — )r(H)).

Though the extremes of Example 1 and 2 are useful benchmarks, the typical equilibrium to the
game occurs in mixed strategies. We illustrate how psychological payoffs are derived in this case

using an example in which an agent believes that the groups play symmetric mixed strategies.

Example 3 (Friendly types retaliate with probability one half). Suppose an agent’s conjecture is
that Friendly types in both groups retaliate against player 7 + 1 in response to aggressive results
from interacting with player r — 1 with probability % We want to compute each player’s anger level
when they observe J;, | = a, which we will first do for a Friendly member of group A and then show

how it extends to a Friendly member of group B. As before, the first component of this anger level
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is the deviation between this outcome and the expected outcome, so we need to know the agent’s
prior probability that they would have observed ;1 = ¢ instead. We can compute this probability
as follows. First, if the other group is made up of Hostile types, then the agent will observe y;_1 =a
with probability one. Thus, the probability that 5, | = c is (1 — o) (1 — Pr[;_1 = a|pp = 0]). To
compute this last probability, let g4 denote the probability that a group A member observes y;,_| =a
when both groups are made up of Friendly types and let gp denote the comparable probability for
group B. Then we have g4 = w4+ (1 — w)gpl/2. That is, when both groups are made up of Friendly
types, a member of group A observes J;_| = a either when there was a mistake, which happens with
probability 7, or when there was not a mistake but the previous member of group B also observed
an aggressive result and chose to retaliate. Given the conjectured strategy profile, this retaliation
happens with probability % Since the conjectured strategy profile is symmetric, we should have
ga = gqp and this probability reduces to % Thus, Pr[y,_ = c|b!, b5 = (1 — o) (1 — 12+_n7r) .

The next component of the agent’s anger is the likelihood that the observed outcome of ;| = a
resulted from a truly aggressive intended action from the previous player. If player r — 1 is Hostile,
they always choose an aggressive action. If player r — 1 was Friendly, the probability that they
took an aggressive action conditional on observing an aggressive result is one half.?> Finally, a
conciliatory action gives player ¢ + 1 an expected payoff of (1 — 7)r(H) if that player is Hostile
and an expected payoff of 1 — 7 if that player is Friendly. Putting these together, anger reduces the
Friendly group A member’s decision utility for choosing the conciliatory action when ¥, = a by

aa(l—po) (1— £%) (1= 7) (r(H) + (1 — )3) -

These examples only derive preferences for a given conjectured strategy profile. The equilibrium
concept adds to this that the conjectured strategy profile is correct. Thus, the full process for
computing equilibria first computes preferences as in the examples above for all possible strategy
profiles. Then, this process is nested in a larger fixed point problem: the equillibrium strategy
profile must involve all agents playing a best response given preferences computed at that strategy

profile.

C Proof of Proposition 1

We begin by proving parts (1) and (2) of Proposition 1 which do not depend on Assumption 1. The

result for Hostile types is stated in Lemma 1.

Lemma 1. Hostile types play x; = a and y; = a at any information set in any equilibrium.

2This can be computed via Bayes rule as follows: Pr[y,_; = a|y,-1 = aand 6, = F] =

1 1
4B7> _ 4q9A7 __

Pl —aand 6 =F — @ — % where the last step follows from the fact that g4 = gp.
t—1= t—1=
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Proof. In either interaction, if the other player chooses a then the payoff to the Hostile type from
choosing a is 0 and the payoff from choosing ¢ is —s < 0. Similarly, if the other player chooses ¢
then the payoff for choosing a is r(H) > 1 and the payoff for choosing c is 1. Thus, Hostile types

have a dominant strategy to play x; =y, = a.l
Lemma 2 concerns a Friendly type’s choice of x;.
Lemma 2. Friendly types at allt > 0 play x; = J,_1 in any equilibrium.

Proof. If y;_1 = a then a Friendly type’s payoff for choosing x; = a is 0 and her payoff for choosing
x; =cis —s < 0. If §,_| = ¢ then a Friendly type’s payoff for choosing x, = a is r(F) < 1 and her
payoff for choosing x; = ¢ is 1. Thus, in both cases the Friendly type’s best response is to choose

x=y—1. 1

Remark 1. Notice that Lemma 1 and Lemma 2 do not depend on anger. In the case of Lemma
1, anger would only make aggressive responses more attractive, but we show that Hostile types
already have a dominant strategy to play a. In the case of Lemma 2, anger only increases the
Friendly types incentive to play a following a signal of a, but it is already true that their best

response is to play x; = a in that situation.

The rest of the results concern the optimal choice of y; for Friendly types. We start with the

benchmark of no anger (a4 = o =0).
Lemma 3. Let 4 = ap = 0 or let B; = 0. Then a Friendly type of player t plays y; = c if

I—(1+s)(mr+(1-m)p)
(1+s)(1-7)(p—p)

Hr <

and plays y; = a otherwise.

Proof. A Friendly type’s expected payoff for playing y; = ¢ given a belief 1 is

w((1=P)(1 = 7) — (1=p)ms —ps) + (1 — ) (1 = p) (1 —m) = (1 = p)ms —ps). (1)

That is, for a Friendly type of player ¢ from group j and denoting the other group as —j, the
probability that a conciliatory action produces a conciliatory signal and that player # + 1 is Friendly
is (1 —p—;)(1 — ) and this leads to a payoff of 1. If either player ¢ + 1 is Hostile (probability p_ ;)
or player ¢ + 1 is Friendly but a conciliatory action produces an aggressive signal (probability
(1 —p_;)m then player  + 1 will play x;41 = a and player ¢ will get a payoff of —s. Finally, taking
expectations over values of p; where p_; = p with probability i, and p_j = p with probability
(1 — ) yields (1).
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A Friendly type’s expected payoff for playing y; = a is zero since this action induced a response
of x;1.1 = a with probability one. Thus, setting (1) to be weakly positive and solving the inequality
for U, yields the following incentive compatibility condition for a Friendly type to play y; = c:

1—(1+s)(x+(1-7)p)
(1+s)(1-m)(p—p)

M < )

This completes the proof. B

Lemma 3 immediately implies that Friendly types at + = 0 choose the conciliatory action given

the assumptions of the model.
Lemma 4. Under Assumption 1, Friendly types at t = 0 always choose yy = c.

Proof. Player 0 is not angry since there is no history at time 0. Thus, the incentive compatibility
condition for choosing yg = c is the same as in the case of oy = o = 0. By Lemma 3, the Friendly

type of player O chooses yp = c if

3)

b < 1—(1+s)(n+(1 —7[))2)“

(+9(1-n)(p—p

Under Assumption 1 this always holds at the prior, which proves that Friendly types always choose

y=c.

We next derive beliefs at each information set. By Lemmas 1, 2, and 4, we may limit conjectures
to strategies that differ only in values of b?(F,a) and b3 (F,a), the probability that Friendly types
from each group play an aggressive intended action y, given that j,_; = a. To derive beliefs, we
first derive, for members of each group, the probability of observing J;,—; = a for given values of

pa and pp. Since the the agents do not know the value of ¢ they use the long-run probability of

observing J; 1 = a which is given by g; for members of group j and is defined as follows:
qa(Pa,ps) =ps+ (1—pp) [T+ (1 — 7)qp(ps, pa)b} (F,a)] “4)
qB(PB:PA) =Ppa—+ (1 —pa) [7T+ (1—m)ga(pa, pB)b; (F, a)} : (5)

The explanation for these equations is as follows: With probability p_; player z — 1 was Hostile in
which case §;_1 = a is observed with probability one. With probability (1 — p_;) player t — 1 was
friendly. In this case, with probability 7 a conciliatory action y;_; = ¢ would have still resulted in
$:—1 = a. With probability (1 — ) the signal is equal to the action. In this case, with probability
(1 —g—j) player r — 1 observed j;_» = ¢ in which case she chose y,_; = c leading to J;_; = c.
With probability ¢g_; player t — 1 observed J;_» = a in which case with probability b, J (F,a) she
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chose y,_1 = a leading to J;,_| = a and with probability 1 — b, J (F,a) she chose y;_| = ¢ leading

to ¥;_1 = c¢. Solving these equations for g4 and gp gives equations for these long-run probabilities:

ps+m(1—pp) + (1 —m)(1 — pp)b7 (F.a)(x+ pa(l — 7))
1= (1=m)%(1 = pa)(1 — pp)bi (F,a)bf (F,a)
pa+m(1—pa)+(1—m)(1—pa)bf(F.a)(x+ ps(1 — 7))

1= (1=m)*(1 = pa)(1 — pp)b; (F,a)bf (F,a) '

qa(pa,pB) = (6)

q8(PB,Pa) = (7

Two implications of (6) and (7) is that ¢;(p;,p—;) converges to 1 as p_; goes to one or as both
b (F,a) and bB(F,a) go toward one. That is, the long-run probability of observing aggressive
actions goes to one as either the other group is sure to be Hostile or when Friendly types from both

groups always respond to aggressive actions by choosing aggressive actions going forward.
Lemma 5. For each j € {A,B}, qj(pj,p—;) has the following properties:

1. qj(pj,p—;) is increasing in pj and p_;

2. qj(pj,p—;) is increasing in b (F,a) and b3 (F,a)
Proof. Proof of part 1 We start by showing that g; is increasing in p;. Using 6 or 7 and differenti-

ating with respect to p; gives:

2, PFEQU-mA(1—p ) [1-bl(F.a) [(1—p )+ (1 - m)b, (Fa))+p ]|
op; (1—(1-1)2(1— pa) (1 - pp)b (Fra)bF (F.a))?

®)

The numerator is a product of probabilities and is therefore positive. The denominator is a squared
probability and is therefore positive. Hence, g o; > 0.
Next, we show that g; is increasing in p_ ;. Using 6 or 7 and differentiating with respect to p_;
gives:
o, (1=m[1=67(F.a) (1= p)(x+ (1= mpb](F.) +p))] ;
- (- mP-p(_pebAFapF(Fa): )

The numerator is positive because it is the product of probabilities and the denominator is a squared

probability so is also positive. Hence, 5 p_

Proof of part 2 Next, we show that g; is increasing in the value of b{ (F,a). We have

g, b/ (F,a)(1 =12 (1= p))(1 = p-;) | by (F.a) (1 = 1) (1 = p— ) (1 = ®)p; + 1)z (1 = p-;) +p;

b (Fa) (1= (1=m)2(1 = pa)(1 - pp)bf (F.a)bf (F,a))
(10)
The numerator is positive since it is a product of sums of probabilities and the denominator is also
dq;
positive since it is a squared probability, hence,
ob! (F.a)
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Finally, we show that ¢g; is increasing in the value of b, J (F,a). We have

9q, _(1—%)(1—pfj)[Pj+(1—Pj) bl (F.a)(1~m)(pj+ (1 - p_pm) + 7| (11)
ob (Fa) (1= (1=m)*(1 = pa)(1 — p)bi' (F,a)b} (F.a))? '

The numerator is positive since each term is positive and the numerator is positive as in the previous

parts of this argument.

The beliefs of the Friendly types are derived in two steps. First, each player updates on their
own group j’s value of p; based on their own type realizations. For Friendly types this interim
belief is

N Ho(1—p)
B =P + (=) (1 —p)’ 1

Second, the player updates based on the realization of y;_ as follows:

o A uog(p,p) + (1 - /) poq(p,p)

" Bueq(p.p)+ (1= ) og(p,p) + (1= to)g(p.p) + (1= 7)(1—o)g(p, p)
e Auo(1—q(p.p)) + (1 - A)po(1 —q(p.P))

" uo(1-q(p.p)) + (1 - A)Ho(1 = q(p.P)) + AI(1— o) (1 —4(P.p)) + (1 - ) (1~ po) (1 — g(p, p))’

Each of these beliefs is a marginal probability of p_; = p given the outcome.

The next result establishes the order of the agents’ beliefs.
Lemma 6. For any friendly player t, we have Ui > o > /.

Proof. We prove this result by comparing the likelihood ratio LR, = with respect to each

u
—u
beliefs, which has the same order as the beliefs. We have:

LRy =~ — — (15)
17 (1 —to)g(p,p) + (1 —p7)(1 —uo)q(p,p)
_ o Aq(Pp)+(1-')q(p,p) 16)
1—po pig(p,p)+(1—[/)q(p,p)
(J p,p)+(1— i/ D
1Ry P .q(g p)+( A Ja(p,P) an
fig(p.p)+(1—al)g(p.p)
_ _ _ 2q(p.p)+(1-)q(p,p)
By Lemma 5 part 1, we have ¢(p,p) > q(p,p) and g(p,p) > q(p,p)- Hence 1460 T a0 p) >

1 which implies that LR« > LRy,,.
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Likewise, we have:

o1 —q(p,p)) + (1= /) uo(1 —g(p,p))
M = 00— p0) (1 —a.p)) + (1— ) (1 — o)1 —q(p.p)) (19
o W-g(p)+ (- (1 —g(p.p)) )
[ i1 —a(.p) + (1)1 _qlp.p))
B —q(m.p) + (1 - 1)1 —a(p.p))
R0 (143 p)) + (1— i) (1 —a(p.p))’ <0

Lemma 5 part 1 implies that 1 —¢g(p,p) < 1 —¢q(p,p) and 1 —¢g(p,p) < 1 —q(p,p). Thus,
ﬂj(l_q(ﬁvﬁ))+(l_ﬂj)(]_q(B7ﬁ))
1 (1—¢(p.p))+(1-A7)(1—4(p.p))

< 1 which implies that LR;c < LR;,,. B

Lemma 7. Under Assumption 1, Friendly types at timest > 0 always choose y; = ¢ when §;_| = c.

Proof. Agents’ anger is zero when J;,_| = ¢, so Lemma 3 shows that a Friendly type plays y; = ¢
if
l—(1+s)(n+(1—m)p)
He < —. (2D
(1+)(1-m)(p—p)

Lemma 4 shows that this condition holds when y; = g under Assumption 1. Lemma 6 shows that

K’ < o, which implies that Friendly agents will always play y, =c. B

Finally, we must characterize Friendly type’s choices of y; following ¥;_; = a. Two considera-
tions arise. First, since we established in Lemma 6 that u > g, it may be the cause that beliefs
change enough following an aggressive signal that Friendly types should choose y; = a for some re-
alizations of s even in the absence of anger. Second, agents may become angry following y; | = a

which could make them more inclined to choose y; = a at a given belief.

C.1 Anger derivations

We will begin by characterizing anger motivations when ;| = a given the strategies of the players.
Informally, recall that anger motivations are a product of (a) the deviation between the expected
and actual payoff, (b) the extent to which this deviation is blamed on the actions of player r — 1,
and (c) the expected payoff to player # + 1 (as well as player r — 1 but this is not affected by the
choice of y; so we will ignore it).

To compute (a) recall that player #’s payoff from the interaction with t — 1 is O when J;,_| = a
and 1 when J;_| = c. Thus, the deviation from the between the expected and actual payoff when

Ji—1 =ais simply Pr[§,_; = c|b},bB] = 1 — Pr[§,_1 = a|b!, bP]. Since Pr[§,—1 = a|b?, b, p;,p—;] =
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q;(pj,p-;), the interim probability of J,_; = a for Friendly type is found by taking expectations
with respect to o and {1/. We define this interim belief for a Friendly type below:

Q;=Prls1=alb},bf]= Y, Y Prpj,p_l6q(pj.p-)) (22)
pielp.p} p-;€{p.p}
where .
/1o itpj=p-j=p
17 (1= po ifpj=pandp_j=p
Py slo = F) = P U R jmpmap =l @3)
(1—=0)po ifpj=pandp_;=p
(1=f)(1-po) ifpj=p-_;=p.

Then the deviation between expected and actual outcomes for a Friendly type from group j is
Prji_1 =c]=1-0;.

Parts (b) and (c) of the anger calculation each depend on beliefs about p_ ;.For part (b) we must
compute the probability that y;_; = a given J;_1 = a. We compute the joint prior probability of
(yi—1 = a,pj, p—;) for each value of p; and p_; below:

Pr[pj =pAp—j=pAy—1 =d (l—ﬁf)(l—uo)[p+(l—p)qu(g,g)b?’(F,a)} (24)

Pr[p; =P Ap_j=pAy—1 =a] =0/ (1 — ) [3+(1—g)qu(g,ﬁ)bf"(F,a)] (25)
Py =pAP-j =P Ayt =a] =(1 = W )po [P +(1=P)g-(P.p)bi * (F.a) (26)
Prlpj =P AP =P Avi1 =a =Rito [P+ (1-P)a-,(P.P)b; (Fa)| 27)

To explain these probabilities first note that p; and p_; are independent so the prior probability of
each combination of these proportions is simply the product of probabilities. Furthermore, given
p—; the probability of y;_| = a is computed in the following way: with probability p_; a given
member of group —j is Hostile and then player y,_; = a with probability 1. With probability
1 — p_; a given member of group — is Friendly. In this case player t — 1 never plays y;_1 = a
when j;_» = c¢. When §;_» = a, which happens with probability ¢_;(p_;,p;), player t — 1 be-
haves according to the mixed strategy b, J (F,a), which implies playing y,_; = a with probability
b, J (F,a). Marginalizing over p; by summing (24) and (25) as well as (26) and (27) gives the joint



probability of p_; and y, 1 = a:

Prlp—j = p A1 =a] =(1 = po) [p + (1= p)b;  (F.a)(Bq-(p,P) + (1~ 7)q-(p.p)]

Prlp ;=P Ay =a] =o [P+ (1-P)b, /(Fa) (g (p.p) + (1-))a_;(P.p)] . (29)

The conditional probabilities are then:

. Prlp_j=pAyi-1 =aAF-1 =d Prlp_j=pAy-1 =d
Prlp_j=pAyi1 =alfi1 =d = Pry, 1 = d] N 0
-1 = j

(30)

_ N Prip_i=pAy,—1=alAy;_1=a Prip_i=pAy—1=a

Prlp_j =pAyi—1=alfi-1 =a] = P pPr[sz 1_a] i=a _ Prp pQ -1 ]7
-1 = j

(31)

since Pr[y;_1 = aly,—1 =a] =1 and Pr[j,_; = a] = Q.

For part (c), we must compute the expected utility to player ¢ 4 1 if player ¢ chooses y; = c.
There are three possibilities: with probability 7 we have J; = a which gives player v, = 0. With
probability 1 — 7 we have J; = ¢ in which case a Hostile type plays x;+; = a and gets a payoff of
vi+1 = r(H) and a Friendly type plays x;+1 = ¢ and gets a payoff of v, = 1. Thus, the expected
payoff to player  +1 when y; = c is

Evepilye = ¢,p-jl = (1 =m)(p—jr(H) + (1= p-)). (32)

Additionally, E[v,1|y; = a,p—;] =0.
Putting these elements together, a Friendly type of player ¢ from group j experiences the follow-

ing psychological cost to playing y; = ¢ when y;_| = a:

1-0Q;
Q;

Y. Prlp—j=pAyio1 =alE[ily =c.p—;=pl.
pe{p.p}

oGE[B (5,5, J1—1 =a,yr-1 = C)vrs1] =

(33)
where Pr[p_j = p Ay,—1 = a] is defined according to (28) and (29) and E[v;11|y; = ¢,p—j] is
defined according to (32).

D-12



D Proof of Proposition 2

The perpetual conflict equilibrium amounts to a profile in which py = pp = 1. We show that this
equilibrium cannot exist under Assumption 1. We first establish that the long-run probability of
being in a state where y;_| = a must be one if a player’s conjecture is that both groups play such a

strategy.

Lemma 8. If b} (F,a) = bB(F,a) = 1 then q;(p;, p—;) = 1 for both j € {A,B} and any (p;,p—,) €
{p.P}*

Proof. Plugging in b?(F,a) = 1 and b3(F,a) = 1 to (6) and (7) yields

ar(pa,pi) =220 —1;?2?_(;)—26)9;‘58)(_%[);?(1 - (34)

- 1—m)(1— s(1—
as(ps,pa) =T 1pf)(1+£n)zfi(_pﬁzi)ﬁ:)p( 7). (35)

We will show the result just for g4 since the functions are symmetric. We start by expanding the

numerator:

__PB— PAPBT +2PAPET — PAPE + PAT” — 2PAT +Pa + PpT —2ppT — W+ 27
1= (1—m)2(1 —pa)(1—p5) '

qa(Pa,PB)
(36)

Next, we expand the denominator:

__PB—PAPBT +2PAPET — PAPE +PAT> —2PAT +Pa+ P — 2ppM — T 2T _
PB — PAPBT? + 2PAPBT — PAPB + PAT? — 2PAT + Pa + Pp7% — 2ppT — 2 + 27
(37)

1.

qa(pa,pB)

The same argument holds for gp. B

Proof of Proposition 2. We will show that under Assumption 1 there cannot exist an equilibrium
in which p4 = pp = 1. Consider a strategy profile with p4 = pp = 1. In equilibrium, players’
conjectures must set b\ (F,a) = b3(F,a) = 1. By Lemma 8 we have ¢;(p;,p—;) = 1 for any pair of
values for p; and p_; under this strategy profile. As a result, 4 = Qp = 1. Plugging this into (33)
we have zero anger motivation following y,_1 = a for all players. Thus, by Lemma 3, a Friendly

type of player ¢ plays y; = c if
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Recall that a Friendly player’s belief following y;_| = a is

po— .ﬁjuoq(ﬁ,ﬁ)f(l—ﬂj)uoq(g,_) | 38)
" Wuog(p,p) 4+ (1— ) pog(p,p) + 7 (1 — to)g(p,p) + (1— /) (1 — to)gq(p, p)
_ Ao+ (1= A7) po | (39)
ﬂfuozo(l—ﬂf)uo+ﬁf(1—uo)+(1—ﬂf)(1—uo)
~ po+ (1 — o) “0)
=Ho. 41)

By Assumption 1,
_ - (1+5)(r—(1-7m)p)
HETO e -p)

Thus, a Friendly type’s best response is to always play y; = ¢, which shows that this strategy profile

is not an equilibrium. W

E Proof of Proposition 3 and Corollary 1

Proof of Proposition 3. The proof of Proposition 3 concentrates on the case in which p = 0 and
p = 1. Consider an increase in 4. We need to show that py is increasing in o4 and that pp is

decreasing in 4. The argument for ap works symmetrically.

We have:
ga =+ (1 —7m)gpps (42)
g =n+ (1 —m)gapa (43)
(44)

which is solved by

_ n? (pB) —Tmpp—T
T2paps —27paps + paps — 1
_ T2 (pa) —pa—T

CIB - 2 .
T“pApB — 2TpapB + papp — 1

qa (45)

(46)

A Friendly agent j's decision utility for playing y; = ¢ following y;_1| = a is

US = e —s—aju—uo)(l—qj)qupj<1—n>r<H>]+<1—u,“> [”H'(l—”)(1—0‘j(1—#0)(1—4j)qq_jjpj)]~
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We first consider non-degenerate mixed strategies. At a pair of equilibrium strategies we have, for
both j € {A,B}, that Uj = 0. Let (g (s),qp(s;)) be critical values of g4 and gp that satisfy this
equation. By the implicit function theorem we have

9Ua1
8aA 9Un1
dqa
g
—= =0. 49
o, (49)
Since %léa‘ < 0and %LqAAl > 0 this tells us that 3% > 0. By (45) and (46) the strategies must satisfy
2
n(pB) —Tpp—T
3 (ps) —qy =0 (50)
T=pApB —27paps + paps — 1
2
T°(pA) —ipa— T
o) ~ g5 =0. (51
T°papB —2wpapB + papp — 1
By the implicit function theorem:
9pa 9 n?(pp)—Tpp—T J_ n?(pp)—Tpp—T - g
dog | _ _ | 9ra W’papp—2mpap+pars—1  9PB W’ papp—27Tpapp+papr—1 doy (52)
Ips R 7 (pa)—mpa—7 R w°(pa)—mpa—7 0
doy Ipa W2 paps—27papp+rape—1  9pB W2 papp—27papp+paps—1
_ pa(l—papp(1-m)* 1—papp(1-7)? a4,
—— ”(I*PA(I*@) (1-pp(l-m))(1-m)x 0oy (53)
1—papp(1—m) _ p(1—paps(1—-m)> 0
(I=pa(1—m))(1-m)7 n(1-pp(1-m))
_ pa(1—paps(1-7)%)
- 9q, (1-ps(1-7)) (54)
day 1—papp(1—m) '

(I=pa(l=m))(1-7)7

This shows that % > 0 and g%i < 0.

Our reliance on the implicit function theorem assumes interior cutpoints, so to complete the
proof we must consider the possibility that p4 = 0 or pp = 0 (that is, at least one group is always
conciliatory). In these cases increasing a4 weakly increases (decreases) p4 (pp). In this case, the
analysis above shows that increasing o4 either increases p4 or leaves it unchanged. This in turn
weakly decreases pp, also by the analysis above. Similarly, if p4 = 1 then increasing o4 has no
effect. &

Corollary 1. This corollary follows from the calculations for the equilibrium values of g4 and gp
in the previous proof. As (48) shows, the long-run probability of y;_; when player 7 is a member
of group A and both groups are Friendly is increasing in o4. Furthermore, the prrobability that

¥r—1 when player ¢ is a member of group A, group A is Friendly, and group B is Hostile is equal to
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one regardless of the value of ot4. Thus, the overall probability that a Friendly group A observes an
aggressive outcome in an arbitrary time period is increasing in ®4. The same argument holds for

group B. I

F Proof of Proposition 4

Proof. By Lemma 8, the long-run probability of conflict is one if py = pp = 1. We will show
that, for some values of «;, a Friendly type from group j will choose y; = a following J; _; which
implies that ps = pp = 1. Since we only need to find some a* that guarantees perpetual conflict
we consider the hardest case when s = 0 which implies the result for any s > 0 since the expected
utility for choosing a conciliatory action is necessarily decreasing in s. When s = 0 a Friendly type

of player ¢ will choose y; = a following y;_| = a when

pH (1 =p)(1 = m) — a;(1 = 7)(pr(H)) + (1 -p)))
+(1 =) (1 =p)(1 = 7) — o;(1 =) (pr(H)) + (1-p))) <O (55)

The explanation of this condition is as follows: player ¢ beliefs that p_; = p with probability
y' and p_j = p with probability 1 — p’. Given a value of p_j, a Friendly type of player #’s
expected material payoff for playing y; = c is equal to the probability that x;.; = ¢, which is
(1—p—;)(1—m). This is because s = 0 so the payoff when x| = a is equal to zero. Finally, player
t subtracts from this payoff ¢; times the expected benefit to player 7 + 1 from playing y, = c. This
benefit is zero if palyer 4+ 1 mistakenly gets an aggressive signal, which happens with probability
7. With probability 1 — & player # + 1 gets a conciliatory signal, in which case the Hostile type
plays x; = a and bets a benefit of r(H), and the Friendly type plays x; = c and gets a benefit of 1.
This condition always holds if
L—pip—(1—pf)p

% T ) - D+ ) - D —p 0

Let _
. 1= pop — (1—po)p

T 1+ (r(H) = Dop + (r(H) — 1)(1— po)p

(04

(57)

by Lemma 6, p/ > to. Thus, if &¢; > a* then (56) holds for any posterior belief. Thus, py = pp =1

which means the long-run probability of conflict is one.
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G Extension: More information about history

We consider the case in which an agent receives a signal (V;,_3,¥,_1) if # > 3. This resembles a
situation with limited intergenerational transfer of information in which agents learn about expe-
riences of the previous generation of her own group, or a diplomatic context in which knowledge
transfer across, e.g. presidential administrations, does occur, but may become less reliable over
longer time periods.

We assume each agent learns their own type and ¥,_3 first, then updates their beliefs, and then re-
ceive J;_1. This fits our intergenerational transfer interpretation: agents receive information about
history before personally engaging in interactions with the other group. The consequence is that
agents become angry when their expected payoff after learning ¥;_ is low relative to the reference
point of their interim expected payoff after learning about the history of the game. Proposition G.1

states our result.
Proposition G.1. In the model in which agents learn about the history of the game:

1. For small enough values of &, Friendly types from group j € {A,B} play the conciliatory

action y; = ¢ with probability one when either or y;,_3 = c or ;1 = c.

2. For large enough values of «j, Friendly types from group j € {A,B} play the aggressive

action y; = a with probability one when y;_3 = c and y;,_| = a.

Proof. Agents believe that the probability of a Hostile type is zero when either j;_3 =cory,_| =c
since no Hostile type ever plays a conciliatory action. The long-run probability of J;_3 =7¥,_1 =a

for an agent with conjectures % and b? when both groups only consist of Friendly types is

¢ = + (1 —7) <7r+ (1— m)b/(F, a)) b,/ (F,a)

+ (1= m)mg_ b, (F,a) + (1 — 1)2q_ b,/ (F,a)> (7: +(1—m)b] (F,a)) . (58)

The explanation is as follows: with probability 7> player ¢ would observe ¥,_3 = j,_| = a re-
gardless of the actions of the players. With probability 7(1 — ) player ¢ will observe ¥,_3 = a
regardless of the action of that player and will observe §,_; = a only if y,_; = a. Since player
t — 2 always observes an aggressive signal in this circumstance, the probability of this occurring
is <7r—i— (1— n)b{(F, a)) b,_j(F, a), since T+ (1 — n)bf(F, a) is the probability of §;_» = a given
$_3=aandb, ’/ (F,a) is the probability of y; | = a given y,_, = a. Next, with probability (1 — )7
player ¢ observes J;,_; = a regardless of the action chosen and observes y;_3 = a only if y;_3 = a.
The probability that y,_3 = ais g_ b, J (F,a). Finally, with probability (1 — 7)? player ¢ observes
Vr-3=73,-1 =a only if y;_3 = y;_; = a. In this case, probability that y, 3 = a is q_jbt_j(F, a),
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the probability that y,_» = a conditional on J; 3 = ais T+ (1 — ﬂ)btj (F,a), and the probability of
Yi—1 =agiveny,_,=aisb, J (F,a). All of this yields the equation above. Clearly ¢}* > g;, also
implies that beliefs after seeing ;3 = J;_; = a are higher than y/ in the baseline model. Part 1 of
the proposition follows from the fact that, for o; ~ 0, playing y, = c is always a best response to
the belief that all members of the other groups are Friendly types with probability one. To prove
Part 2, we must compute the agent’s anger levels following the sequential revelation of informa-
tion. First, the probability of a Friendly type of ¢ observing j;_1 = a after observing y;_3 = c is
n(l+(1—m)b, J (F,a)). That is, since player r — 2 observes a conciliatory signal as well and plays
a conciliatory action, and since both groups must be all Friendly types at this information set, there
are only two ways to observe y;_| = a: (1) player ¢ observes an aggressive signal regardless of the
action, which happens with probability 7, or (2) player #’s signal depends on the action (with prob-
ability 1 — ), player t — 1 mistakenly sees an aggressive signal (which happens with probability

7), and player ¢ — 1 then takes an aggressive action (which happens with probability b, ’(F,a)).?
b, (F.a)

a(1+(1-m)b, ' (Fa)’

Given this information, agent #’s decision utility for choosing y; = ¢ after observing ¥, 3 =

The probability that y,_; = a given J,_3 = ¢,J;—1 = a is then

Cuyl‘—l =ais

b, (F,a)

Utm =1— aj(l — 77:(1 + (1 - ”)bt_j(Faa»)n(l + (1 _ n)b_j(F a))

(59)

1

Thus, if o > .
(1—n(14+(1—n)b, ' (F,a)))

. then Uf* < 0 and therefore the agent chooses
b, a

y; = a for all values of s. B

Proposition G.1 shows that, when agents have more information about history, strategies depend
on the history of the game in ways that are very distinct from a standard model without endogenous
reference points. When either previous signal was conciliatory, the agent is certain that the other
group is Friendly. With no anger — or with low enough sensitivity to anger — a Friendly type
is therefore always conciliatory. However, consider how anger interacts with this information.
When ¥, 3 = ¢, agent ¢ thinks that it is very likely that y;_; = c. However, there is some chance
that §,_; = a and, when that happens, the deviation between agent ¢’s expected and actual payoff
is even larger than it would have been had she not learned about the history of the game. This
triggers an anger response which, for large enough values of «;, causes an aggressive response.
Thus, anger changes the effect of history on current behavior. Furthermore, this behavior cannot
be rationalized by beliefs about material payoffs: agent ¢ is certain that agent 7 + 1 is a Friendly

type but chooses the aggressive action anyway.

3Recall that playing c is a best response to ¢ at all anger levels.
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This result highlights how the psychological game produces outcomes that are impossible when
agents care about only the material payoffs. An agent may know for sure that the other group is
Friendly and still act aggressively.

The extension here expands the baseline model only by giving each player to one additional
signal about recent actions taken by members of the other group. An alternative approach would
be to expand the player’s information set to include all recent history including actions taken by
members of one’s own group (for instance by showing player ¢ outcomes fromt —3,7—2,and r — 1
rather than only 7 — 1 and 7 — 3). However, we took this more limited approach in order to maintain
an important and realistic feature from the original model, which is that players observe outcomes
of interactions with the other group without fully understanding the context of the other group
members’ actions. This is important here because joint knowledge of 6;,_; and J;,_» would allow
player ¢ to perfectly learn the intended action of player ¢ — 1 regardless of the outcome. That said,
Proposition G.1 is robust to letting players learn some information about the actions of members
of their own group as long as this feature is retained. For instance, the proof of Proposition G.1
accounts for the fact that player r makes inferences (sometimes perfect ones) about the actions of
player r — 2 given the information she receives. Thus, giving the agent information about y;_5 (as
opposed to ¥;_») does not significantly alter the argument. Furthermore, giving player ¢ a noisy

signal of ¥;_, would complicate the proof but not significantly change the result.

H Extension: Concern for others’ beliefs

We modify psychological preferences in the baseline model so that

Prii—1 = c|b], by Ma(vi—1) [0+ (1= (1 —pe )] ifF1=a

0 lfytfl =C.
(60)

Thus, the model with concern for beliefs is identical to the baseline model except that anger moti-

Bit Fe—1,y1-1:b],b; ') =

vations depend on second order beliefs through the inclusion of the term p + (1 — p/) (1 — u ).
The idea of this component is that, when the other player is a Friendly type, the agent’s anger is
muted to the extent that the action could have been justified by the belief that player + was a Hos-
tile type. Since a Friendly type who chooses y,_; must have had J;_, = a, W , is also player ’s
expectation of player ¢ — 1’s belief in the event that they were Friendly and chose y;_1, so in this
way concern for intentions involves second-order beliefs. The reasoning is that player ¢ is forgiv-
ing of aggressive actions by player r — 1 to the extent that she believes those actions to have been
motivated by a belief that she was a Hostile type. Note that this understanding differs from that in
Battigalli, Dufwenberg and Smith (2019), since agent t — 1 would still expect to reduce a Hostile
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type’s payoft by choosing y;_1 = a rather than y,_; = c¢. One way of reconciling these views is that
we imagine player ¢ views the Hostile type as a different player from herself and views reducing a

Hostile type’s payoff as morally defensible and therefore not something that triggers anger.

Proposition H.1. Under Assumption 1, in the model where agents have concern for others’ beliefs,

in addition to actions:

1. Hostile types play x; = a and y; = a at any information set, Friendly types at any time t > 0
play x; = y,_1, Friendly types play y; = c when ;1 = c or whent = 0, and Friendly types
from group j play y; = a with probability p; € [0, 1] when ;1 = a.

2. Certain conflict cannot occur in equilibrium

3. Increasing a group’s sensitivity to anger (i.e. increasing O, for some group j) increases the
probability that Friendly members of that group choose an aggressive action in response
to an aggressive outcome and decreases the probability that Friendly members of the other

group choose an aggressive action in response to an aggressive outcome.

4. Holding the rest of the parameters constant, the effect of anger on the probability that any

Friendly type chooses an aggressive action is lower than in the baseline model.

Proof. Part 1 follows from the same analysis as above, since incentive compatibility calculations
are unchanged for Hostile types, for choices of x;, and for Friendly types when ¥;_| = c¢. Fur-
thermore, Part 2 follows from the proof of Proposition 2 since anger still vanishes if the long-run
probability that y;_| = a goes to one. To prove Part 3, note that a Friendly type from group j’s
decision utility for playing y, = ¢ when §;_| = a is

Us = —s—aj(l—uo)(l—q]-)qujpj(l—ﬂ)r(H)]+(1—uf“) [ns+<1—n>(1—aj<1—uo><1—q,->"q,’pj<1—uﬁl>

j
(61)

As in the proof of Proposition 3, we let (g} (s),¢5(s;)) be critical values of g4 and gp that make

Uf = 0 and Ug = 0 for particular values of s and s;. By the implicit function theorem we have

Uy

aq: aCXA
day  9Ua 62)
9%
dqp
=0 63
Joy (63)

as before. The rest of the proof follows from the same reasoning as the proof of Proposition 3.
Finally, Part 4 follows from the fact that anger is strictly lower at any information set when agent’s

consider intentions. W
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I Extension: Informational effects of anger

Instead of forming beliefs using Bayes’s rule, agents’ beliefs minimize a separable function of
accuracy motives and “directional” motives. Our directional motives reflect the idea that an agent
who is made angry will be more apt to conclude that members of the other group are Hostile types.

Letting u/* and u be the proper Bayesian beliefs following §,_1 = a and §;_1 = c respectively,

agent ¢’s beliefs are equal to

arg max | o Prly, | = c\btj,b,_j]Eﬂ -] —KL([LH,LL,“)] ify,_1=a
He = H (64)
nu'tc ity 1 =c,

where KL(f1||u;*) is the Kullback-Liebler (KL) divergence between fi and p" and p_; is the pro-
portion of Hostile types in the other group. The use of KL divergence is due to Little (2021) and is
a common way to measure the difference between probability distributions. Furthermore, agents
maximize only their material payoffs so that anger in this model enters only through beliefs and
not preferences.

In this language of motivated reasoning, o Pr[y,_| = clb! b7 JEq(p;] is the agent’s directional
motive. We make four observations about directional motives. First, o; is a weight on directional
motives relative to accuracy motives. In this sense, ; serves as a measure of the agents’ sensitivity
to anger just as in the original model, though referring to sensitivity of beliefs rather than prefer-
ences. Second, we retain the context-dependence of anger by including Pr[y,_| = C|b,j by i | in the
directional motives. As in the original model, anger is relevant when outcomes diverge from ex-
pected outcomes. Third, we omitted the term I,(y;_;) which appeared in the baseline model from
directional motives here, so the agent does not explicitly consider the likelihood that harm was
caused by the actions of the other player. This is done purely for convenience: since the likelihood
that y,_; = a depends on posterior beliefs about types, the directional motive would depend on be-
liefs and solving for optimal beliefs would require an additional fixed point argument. Motivated
reasoning with fully endogenous beliefs is an interesting area of potential future research. Finally,
the term [ [p;] implies that angrier agents are more motivated to adopt beliefs that lead to higher
expected proportions of Hostile types in the other group.

By Theorem 1 in Little (2021) and the fact that Pr[§;_; = c|btj b ] =1—g;, the optimal moti-
vated belief when y;_| = a is

pfe™1=4)
e 1 (1 — )

We establish in Proposition 1.1 that the main results from the baseline model can be recovered

pe = (65)

by the model in which anger operates through information processing, though we highlight some
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qualitative differences below the proposition.
Proposition 1.1. In the motivated reasoning model, under Assumption 1, the following are true:

1. Hostile types play x; = a and y; = a at any information set, Friendly types at any time t > 0
play x; = y,_1, Friendly types play y; = c when ;1 = c or when t = 0, and Friendly types
from group j play y, = a with probability p; € [0, 1] when 3,1 = a.

2. Certain conflict cannot occur in equilibrium

3. Increasing a group’s sensitivity to anger (i.e. increasing O for some group j) increases
the probability that members of that group choose an aggressive action and decreases the

probability that members of the other group choose an aggressive action.

Proof. Since

~ay ‘uta oi(l—q;) I*Lza
LR =T %W > 1 (66)
(lLLt ) 1 _ ,LL, 1 _ ‘ut

observing J;,_| = a weakly increases the likelihood that 7 plays y; = a. The calculations for Hostile
types, for choices of x;, and for choices following J;,_; do not depend on anger calculations so the
rest of the conclusions of Part 1 follow from previous analysis.

Furthermore, under perpetual conflict, we have g; = 1 by Lemma 8 and the optimal belief is

pe
pied 4+ (1 —

)=w:m (67)

Ho
to+(1—1o)g;
Assumption 1 agent #’s best response is to play y; = ¢ which implies that perpetual conflict is not

where the last equality follows from the fact that u = = Up when g; = 1. Thus, under
an equilibrium.

To prove Part 3, consider again a change in 0y, since the argument works symmetrically for ap.
The direct effect of increasing a4 is clearly to increase fI, which increases the likelihood that a
member of group A plays y; = a, through the informational effects already outlined. Furthermore,
o4 does not appear in the decision utility of B members so the only effect of increase o4 is to
increase gp, which reduces [ for group B members and therefore makes them more likely to

choose y; =c.

The insight of Proposition I.1 is that we can recover the main predictions of our model using a
formulation of anger that works through beliefs rather than preferences. However, the two models
are not identical. First, in the preference-based model, Friendly types are more likely to take the
aggressive action when r(H) is larger because they get disutility when another agent benefits from

their conciliatory actions. This preference for punitiveness does not drive behavior in the motivated
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reasoning model so we do not make this prediction. Secondly, we informally compare what would
happen with additional signals as in Section 6.2. In that model, if anger is high enough, the Friendly
agents choose y; = a when they get a conciliatory signal followed by an aggressive signal. They do
this even though they are fully convinced that the other group is made up of Friendly types. That
cannot happen here. Why? Note the optimal motivated belief. When u; = 0, the optimal belief
also is zero. Since beliefs rather than preferences drive behavior in the motivated reasoning model,
and since motivated reasoning converges to Bayesian reasoning when all uncertainty is eliminated,
this prediction would fail under these circumstances. If players believe the other side is certainly

Friendly, they will never take an aggressive action.
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