Online Appendix for How Partisan Is Local Election Administration?

Intended for online publication only.

Contents

A.1	Review	of Previous Literature on Partisan Differences in Local Election Administration	3
A.2	The Re	esponsibilities of Local Election Officials	4
A.3	Describ	oing the New Data on Election Officials	5
A.4	Predict	ing Election Results	8
A.5	Calcula	ting Minimimum Detectable Effects	10
A.6	Validat	ing the Main Findings	11
	A.6.1	Counties that Narrowly Elect Democrats vs. Republicans Are Similar on	
		Pre-Treatment Covariates	11
	A.6.2	Counties Not Sorting into Treatment or Control	13
	A.6.3	Main Findings Not Sensitive to Choice of Estimator	14
	A.6.4	Main Findings Not Sensitive to Choice of Bandwidth	15
	A.6.5	Main Finding Similar Across Time	16
	A.6.6	No Substantial Average Effect in States Granting Full Authority to One	
		Official	17
	A.6.7	Main Finding Similar Across States	18
	A.6.8	Finding Not Sensitive to Excluding the South	20
	A.6.9	Finding Not Sensitive to Excluding VRA Counties	21
	A.6.10	No Substantial Average Effect in Senate, Governor, or Presidential Elections	23
	A.6.11	Effect Not Limited To Counties with Close Clerk Elections	25
	A.6.12	Democratic and Republican Clerks Administer Elections Similarly	27
A.7	Studyin	ng Mechanisms	30
	A.7.1	Clerks Do Not Advantage Their Party More in More Segregated Counties .	30
	A.7.2	Clerks Do Not Advantage Their Party More in More Diverse Counties	33

A.7.3	Estimated Effects No Larger in Balanced Districts	36
A.7.4	Clerks Do Not Advantage Their Party More in Larger Counties	41
A.7.5	Clerks Do Not Advantage Their Party More in More Competitive States	43
A.7.6	Clerks Do Not Advantage Their Party More in Determinative Counties	45
A.7.7	Effect of Electing a Democratic Clerk on All Policy Outcomes Collected	47

A.1 Review of Previous Literature on Partisan Differences in Local Election Administration

Table A.1 summarizes the literature to date on partial differences in local election administration. Each row of A.1 represents a study of partial differences, and the columns summarize the study's setting, research design, outcome of interest, finding, and any conditional aspects of the finding.

Paper	Setting	Design	Outcome	Partisan Difference	Condition
Hamilton and Ladd (1996)	NC	X-Section	Straight party voting option	Yes	
Stuart (2004)	FL	X-Section	Purge rate of potential felons	Yes	
Kimball, Kropf, and Battles (2006)	USA	X-Section	Provisional ballots cast	Mixed	In heavily co-partisan jurisdictions
Kimball, Kropf, and Battles (2006)	USA	X-Section	Provisional ballots counted	Mixed	In heavily co-partian jurisdictions
Bassi, Morton, and Trounstine (2009)*	USA	County DiD	Change in Turnout	Yes	
Bassi, Morton, and Trounstine (2009)*	USA	County DiD	Dem Margin of Vicotry	Yes	
Dyck and Seabrook (2009)*	OR	X-Section	Vote-by-Mail Acceptance	Yes	
Dyck and Seabrook (2009)*	OR	X-Section	Move Dems to inactive list	Yes	
Kimball and Baybeck (2010)*	USA	Survey	Support for access and security policies	Mixed	In large jurisdictions
Burden et al. (2013)	WI	X-Section	Support for access and security policies	No	
Burden et al. (2013)	WI	X-Section	Turnout	Mixed	For appointed Reps in Dem electorates
Kimball et al. (2013)	USA	Survey	Support for access and security policies	Mixed	In large jurisdictions
Kimball et al. (2013)	USA	Survey	Support for provisional voting programs	Mixed	In heavily co-partisan jurisdictions
Kropf, Vercellotti, and Kimball (2013)	USA	Survey	Support for provisional voting	Mixed	In heavily co-partian jurisdictions
White, Nathan, and Faller (2015)	USA	Experiment	Bias in email response rate	No	
Merivaki and Smith (2016)	FL	X-Section	Provisional ballots cast	Mixed	In midterm elections
Merivaki and Smith (2016)	FL	X-Section	Provisional ballots rejected	Mixed	In midterm elections
Porter and Rogowski (2018)	WI	Experiment	Co-partisan email response rate	Mixed	In heavily co-partian jurisdictions
Mohr et al. (2019)	NC	County DiD	Election expenditures	Mixed	In heavily co-partisan jurisdictions
McBrayer, Williams, and Eckelman (2020)	ΤX	X-Section	Number of early voting sites	Yes	
McBrayer, Williams, and Eckelman (2020)	TX	X-Section	Location of early voting sites	No	
Shepherd et al. (2021)	NC	Individual Panel	Polling location change	No	

Table A	1.1:	Review	of Partis	san Local	Election	Official	Literature.
---------	------	--------	-----------	-----------	----------	----------	-------------

X-Section refers to a cross-sectional design, and DiD refers to a difference-in-differences design. *Unpublished manuscript.

A.2 The Responsibilities of Local Election Officials

Table A.2 shows a stylized division of states into tiers based on how much authority is vested in a single partial elected election official. Table A.3 describes the duties of these officials across states. In cases where officials have limited discretion under state law, we indicate that by describing the discretion they have as high, mid, or low, indicating much, some, or little discretion, respectively.

Tier	Description	Examples	States	In Analysis?
1	Partisan elected official does everything or nearly everything	Separate canvassing board (FL)	CO, FL, IA, ID, IL, KS, MO, MT, NE, NV, SD, UT, WA, WY	Yes
2	Partisan elected official has some shared authority	Separate registration board or absentee voting official (AL, GA, NM, TX); Shares authority with elections board but holds the decisive vote (IN, KY); Shares authority with county legislative body (WV)	AL, GA, IN, KY, NM, TX, WV	Yes; excluded in robustness check
3	Partisan elected official has limited authority	Administers registration and early voting but not Election Day voting (AR, AZ, MS); Shares authority with separate board and lacks decisive vote (LA)	AR, AZ, LA, MS	No
4	Partisan elected official has severely limited authority	Municipal official or divided between city and county (CT, MA, MI, RI, VT, WI); Shares authority and has few responsibilities (NJ)	CT, MA, MI, NJ, RI, VT, WI	No
5	No partisan elected official	Election officials nonpartisan and/or appointed	AK, CA, DC, DE, HI, MD, ME, MN, NC, ND, NH, NY, OH, OK, OR, PA, SC, TN, VA	No

Tabl	e A	2:	States	\mathbf{with}	Partisan	Elected	Local	Election	Officals.
------	-----	----	--------	-----------------	----------	---------	-------	----------	-----------

This table divides states into tiers based on the amount of responsibility individual partisan elected local officials have in administering elections. In states with local- and county-level variation in responsibilities, only those counties with partisan elected officials are considered. Where there is within-state variation in the presence of other officials (i.e., for IN and TX), the modal case for each state is considered.

State	Officer	Registration	List Maintenance	Polling Place	Early Voting	Poll Workers	Voting Equipment	Training
Alabama	Probate Judge	Low	Low	Mid	Low	Low	High	High
Colorado	Clerk	High	High	Low	Low	Low	High	Low
Florida	Supervisor of Elections	High	High	Mid	High	Mid	High	High
Georgia	Probate Judge	Low	Low	High	Mid	Mid	High	Low
Idaho	Clerk	High	High	Low	High	Mid	High	High
Illinois	Clerk	High	High	High	High	Low	High	Mid
Indiana	Clerk	High*	High*	Low	High	Low	High	Mid
Iowa	Auditor	High	High	Low	High	Low	High	Low
Kansas	Clerk	High	Mid	High	High	Low	High	Mid
Kentucky	Clerk	High	Mid	Mid	Low	Low	High	Mid
Missouri	Clerk	High	High	High	Low	Low	High	High
Montana	Election Administrator	High	High	Low	Low	Low	High	Low
Nebraska	Clerk	High	Mid	High	High	Mid	High	Mid
Nevada	Clerk	High	High	High	High	Mid	High	High
New Mexico	Clerk	High	High	Low	High	Low	Low	Mid
South Dakota	Auditor / Finance Officer	High	High	Mid	Low	Mid	High	High
Texas	Clerk / District Clerk / Tax Assessor	Varies	Varies	Mid	High	Mid	High	High
Utah	Clerk	High	High	High	High	Low	High	High
Washington	Auditor	High	High	Low	Low	N/A	High	High
West Virginia	Clerk	High	High	Mid	Mid	Mid	High	Mid
Wyoming	Clerk	High	High	High	Low	Mid	High	High

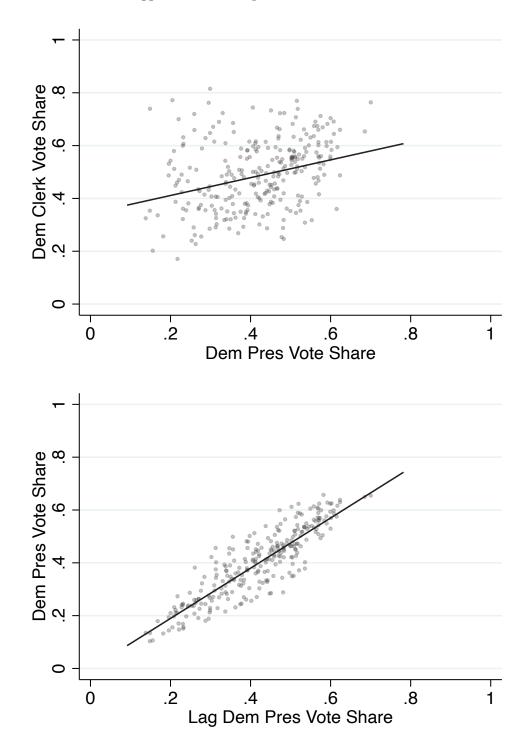
Table A.3: Local Election Offical Responsibilities by State.

High, mid, and low indicate degrees of discretion with high representing the most discretion and low representing the least. In states with county-level variation in local election official responsibilities, this table applies to officials with primary responsibility over voting administration. *In Indiana, Allen, LaPorte, Madison, Marion, St. Joseph, Vanderburgh, and Vigo counties have separate registration officials.

A.3 Describing the New Data on Election Officials

As we discuss in our Data section, the top panel of Figure A.1 presents the relationship between Democratic clerk vote share and Democratic presidential vote share in counties that elect clerks on a presidential election cycle. The bottom panel plots the relationship between lagged Democratic presidential vote share and current period Democratic presidential vote share. The correlation between presidential and clerk vote share is quite low, suggesting that voters are considering additional factors and treat Democratic and Republican party labels differently in local election official races. This is even more striking considering the comparison is between clerk and presidential races featured in the same election and presidential contests occuring four years apart. Considering the full dataset of elections and comparing Democratic clerk vote share with lagged presidential vote share weakens the correlation even further, to 0.30.

Table A.4 compares the counties for which we have election data to the counties that elect partial local election officials but where we do not have election data using 2010 decennial census data.²⁷ The counties we are missing tend to be less populous, in the South, and have larger Black and Hispanic populations. The counties that do not have elected partial election officials tend to be much more populous, in the South or Northeast, and have larger Black but smaller Hispanic populations.


²⁷https://www.census.gov/data/datasets/2010/dec/summary-file-1.html

Outcome	In Sample	Not In Sample	Not In Scope
Population (Thousands)	55.51 (171.99)	37.88 (111.74)	$143.06 \\ (404.58)$
Share Non-Hispanic White	$0.81 \\ (0.19)$	$0.77 \\ (0.22)$	$0.76 \\ (404.58)$
Share Black	$0.05 \\ (0.11)$	$0.08 \\ (0.13)$	$0.12 \\ (0.16)$
Share Hispanic	$0.10 \\ (0.15)$	$0.12 \\ (0.20)$	$0.06 \\ (0.10)$
Northeast	0.00	0.00	0.14
Midwest	0.41	0.46	0.26
South	0.38	0.54	0.50
West	0.21	0.00	0.10
Num Counties	1,310	237	1,586

Table A.4: Description of Counties In and Not In Sample.

Standard deviations reported in parentheses below group means.

Figure A.1: Low Correlation between Democratic Clerk Vote Share and Democratic Presidential Vote Share. The top panel presents the relationship between Democratic clerk vote share and Democratic presidential vote share in counties that elect clerks on a presidential election cycle. The bottom panel presents the much stronger relationship between Democratic presidential vote share and lagged Democratic presidential vote share in these counties.

A.4 Predicting Election Results

When a lagged outcome is available, it is standard practice in regression discontinuity designs to improve precision by including the lagged outcome as a covariate in the regression (Calonico et al. 2019). This approach works well when the relationship between the lagged outcome and currentperiod outcome is constant across units. While the relationship between lagged and current-period Democratic presidential vote share is positive across states and times, there is still considerable variation in this relationship due to differences in candidates over time as well as regional and state-specific political changes. If we had many counties in each state and election year that had close elections for their local election officials, we could include state-year-specific intercepts and coefficients on lagged vote share to account for this variation and improve our precision. However, only a subset of counties have close elections for local election official.

As we discuss in our Empirical Strategy section, we improve on standard practice using a threestep process that follows the recommendations of Lee and Lemieux (2010) and Noack, Olma, and Rothe (2021). They study an estimator that first predicts the outcome and then uses the residuals from that prediction exercise as the outcome in a standard regression discontinuity estimator. Under the standard regression discontinuity design assumption of smoothness in predetermined covariates at the treatment assignment threshold, this estimator produces unbiased point estimates and valid inference.

We use this procedure throughout the paper, constructing residualized outcomes by first using a lagged outcome to predict the outcome of interest and then taking the remaining error from this prediction process. We choose the predictor that minimizes out-of-sample prediction error using leave-one-out cross-validation. We fit our regression holding out one observation at a time, use that regression to predict the held out unit's outcome value, and compute the error as the difference between the observed and predicted outcome values.

We test four regression specifications:

- Pooled coefficients and intercepts: $Y_{ct+k} = \beta Y_{ct} + \gamma + \epsilon_{ct+k}$
- State-specific coefficients and intercepts: $Y_{ct+k} = \beta_s Y_{ct} + \gamma_s + \epsilon_{ct+k}$
- Year-specific coefficients and intercept: $Y_{ct+k} = \beta_{t+k}Y_{ct} + \gamma_{t+k} + \epsilon_{ct+k}$

• State-year-specific coefficients and intercept: $Y_{ct+k} = \beta_{st+k}Y_{ct} + \gamma_{st+k} + \epsilon_{ct+k}$

where Y is our outcome variable, c indexes counties, s indexes states, t indexes election years, and t + k is the election k years later (e.g., k = 4 for presidential elections and k = 6 for senate elections).

Predicting Democratic presidential vote share in leave-one-out cross-validation, we find that the mean squared prediction error is 0.030 for the state-year-specific regression, 0.041 for the yearspecific regression, 0.053 for the state-specific regression, and 0.056 for the pooled regression. We choose the state-year-specific regression because it minimizes out-of-sample error when predicting presidential election results. We follow this specification for all other outcomes, using state-yearspecific regressions to maintain consistency.

A.5 Calculating Minimimum Detectable Effects

Throughout the paper, we present estimates of the minimum detectable effect with 80% power. We compute these estimates with the following optimization procedure:

$$\underset{\tau}{\arg\min} \ (\phi(\frac{\tau}{\sigma}-z_{\alpha})-(1-\beta))^2, \text{ subject to } \tau>0$$

where τ is the hypothesized effect, σ is the standard error for the effect, z_{α} is the z score threshold implied by a significance level of α , β is the power level, and ϕ is the standard normal cumulative distribution function. We plug in our estimate of σ from each regression and set $\alpha = 0.05$ and $\beta = 0.80$ per convention. We use numerical optimization to find the positive value of τ that minimizes this function.

A.6 Validating the Main Findings

A.6.1 Counties that Narrowly Elect Democrats vs. Republicans Are Similar on Pre-Treatment Covariates

As we discuss in our Methods section, our close-election regression discontinuity design should ensure that the local averages of pre-treatment county-level covariates are similar in places that narrowly elect Democrats and those that narrowly elect Republicans. We show that this holds in practice in Tables A.5 and A.6. We find that the design works as expected, giving us balance on all of the pre-treatment covariates we check across our regression specifications.

Table A.5: Regression Discontinuity Design Balances Pre-Treatment Democratic Pres-idential Vote Share and Turnout.

	Lagg	ed Dem P	Lagged Turnout					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Dem Elec Official	0.029	0.040	0.007	0.020	0.008	0.005	0.019	0.013
	(0.022)	(0.017)	(0.029)	(0.022)	(0.019)	(0.014)	(0.026)	(0.019)
Ν	355	643	178	392	614	1115	307	698
Clusters	355	643	178	392	355	643	179	404
Bandwidth	0.07	0.15	0.04	0.08	0.07	0.15	0.04	0.09
BW Selection	CCT	CCT*2	CCT/2	CCT	CCT	CCT*2	CCT/2	CCT
Kernel	Unif	Unif	Unif	Tri	Unif	Unif	Unif	Tri

Robust standard errors clustered by clerk election in parentheses. The bandwidth row reports the number of maximum clerk win margin allowed for inclusion in each specification. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure. Unif means the specification uses a uniform kernel. Tri means the specification uses a triangular kernel.

Outcome Variable]	Balance at	RD Cut Po	oint
	(1)	(2)	(3)	(4)
Log(Population)	0.294	0.131	0.262	0.231
	(0.253)	(0.195)	(0.350)	(0.262)
	[447]	[772]	[772]	[772]
Share Non-Hispanic White	0.007	0.018	0.046	0.022
	(0.035)	(0.027)	(0.052)	(0.042)
	[393]	[650]	[650]	[650]
Share Black	0.029	0.014	0.026	0.017
	(0.024)	(0.016)	(0.034)	(0.020)
	[254]	[479]	[479]	[479]
South	0.016	0.018	0.001	0.040
	(0.097)	(0.070)	(0.131)	(0.094)
	[372]	[675]	[675]	[675]
West	0.017	0.051	-0.066	0.009
	(0.084)	(0.062)	(0.116)	(0.083)
	[406]	[726]	[726]	[726]
Bandwidth Selection	CCT	CCT*2	CCT/2	CCT
Kernel	Uniform	Uniform	Uniform	Triangular

 Table A.6: Regression Discontinuity Balances County-Level Covariates.

Each unbracketed number is an estimate of balance for a particular variable at the discontinuity using a given RD estimator. Robust standard errors clustered by clerk election in parentheses. Sample size reported in square braces. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure.

A.6.2 Counties Not Sorting into Treatment or Control

As we discuss in our Methods section, one potential threat to our design is counties sorting into treatment or control. This could happen if local election officials can manipulate the vote total in subtle ways to ensure they win if they would otherwise lose without intervention. We evaluate this concern using a modified version of the density test proposed in McCrary (2008). Since we expect counties with Democratic clerks to be more likely to narrowly elect Democrats, and the same for Republicans, we change the running variable to ask whether the sitting party is more likely to win very close elections.

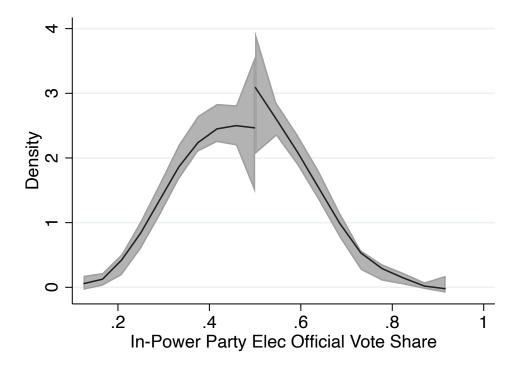


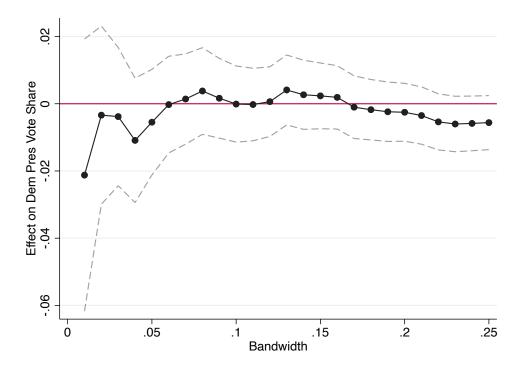
Figure A.2: Density of Clerk Election Results.

Figure A.2 presents the McCrary plot. While the party in power wins slightly more close elections than they lose, the difference in the densities is small enough that it could easily arise by chance.

A.6.3 Main Findings Not Sensitive to Choice of Estimator

As we discuss in our Empirical Strategy section, using the residuals after predicting Democratic presidential vote share can substantially improve precision relative to using vote share as the outcome or adjusting for lagged vote share within the regression. In Table A.7 below, we validate that our main results are not limited to using our residualized outcome. The first four columns of Table A.7 present the simplest regression discontinuity estimates including no covariates and using Democratic presidential vote share as our outcome. While our estimates are noisy, they are consistent with our main finding that clerks do not offer their party a substantial advantage. The point estimates are also quite similar to the point estimates we find in columns 1 through 4 of Table A.5, suggesting that most of the higher Democratic presidential vote share in Democratic-controlled counties arises from a modest imbalance in treatment assignment. In columns 5 thorugh 8 of Table A.7, we include lagged Democratic presidential vote share as a covariate. Our findings are similar to those we report in our main analysis in our Results section. Put together, we find in Table A.7 that our main results are not limited to our chosen estimator.

 Table A.7: Effect of Democratic Election Officials on Democratic Presidential Vote Share.


	Dem Pres Vote Share									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Dem Elec Official	$0.030 \\ (0.024)$	$0.027 \\ (0.018)$	$0.002 \\ (0.032)$	$0.025 \\ (0.024)$	-0.005 (0.013)	-0.001 (0.009)	0.003 (0.018)	-0.006 (0.011)		
Ν	403	723	202	456	327	597	165	462		
Clusters	391	702	198	442	327	597	165	462		
Bandwidth	0.08	0.16	0.04	0.09	0.07	0.13	0.03	0.10		
BW Selection	CCT	CCT*2	CCT/2	CCT	CCT	CCT*2	CCT/2	CCT		
Kernel	Unif	Unif	Unif	Tri	Unif	Unif	Unif	Tri		
Lagged Vote Share	No	No	No	No	Yes	Yes	Yes	Yes		
Min Detectable Effect	0.060	0.046	0.079	0.060	0.032	0.024	0.044	0.028		

Robust standard errors in parentheses. The bandwidth row reports the number of maximum clerk win margin allowed for inclusion in each specification. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure. Min detectable effect refers to the minimum effect that a one-sided test with a 0.05 alpha would have 80% power to detect. Lagged vote share captures whether lagged Democratic presidential vote share is included as a covariate in the regression. Unif means the specification uses a uniform kernel. Tri means the specification uses a triangular kernel.

A.6.4 Main Findings Not Sensitive to Choice of Bandwidth

Analyses of regression discontinuities must weigh the bias reduction that comes from only using data close to the cut point against the precision improvement that comes from using data further from the cut point. In Figure A.3 we present our main result across many possible bandwidths. The choice of bandwidth does not meaningfully change the interpretation of our findings. All of these analyses imply that local election officials do not meaningfully advantage their party.

Figure A.3: Sensitivity of Estimated Effect on Democratic Presidential Vote Share across Bandwidths.

A.6.5 Main Finding Similar Across Time

In Figure 4 in the main analysis, we presented graphical evidence that our main finding—election officials do not noticeably advantage their party—is not limited to the early part of our study period but rather holds across time. Here, we present the results of our analysis in tabular format, conducting a separate regression discontinuity of electing a Democratic local election official on Democratic presidential vote share in every presidential election since 2004.

	Dem Pres Vote Share								
	2004	2008	2012	2016	2020				
	(1)	(2)	(3)	(4)	(5)				
Dem Elec Official	0.022	-0.013	-0.009	0.006	-0.010				
	(0.032)	(0.014)	(0.013)	(0.017)	(0.011)				
Ν	46	67	63	93	83				
Bandwidth	0.08	0.08	0.07	0.08	0.07				
BW Selection	CCT	CCT	CCT	CCT	CCT				
Kernel	Tri	Tri	Tri	Tri	Tri				

Table A.8: Effect of Democratic Election Officials on Democratic Presidential VoteShare for Each Presidential Election.

Robust standard errors in parentheses. The outcome is first regressed on a stateand year-specific lag using all counties including those for which clerk election results are not available. The regression discontinuity is estimated using the residuals from that regression. The bandwidth row reports the number of maximum clerk win margin allowed for inclusion in each specificaiton. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure. Tri means the specification uses a triangular kernel.

A.6.6 No Substantial Average Effect in States Granting Full Authority to One Official

In Table A.9, we present the results of our analysis focused only on the 14 states where one official has broad and unilateral authority (i.e., "Tier 1" states as shown in Table A.2, with Tier 2 states excluded). These states are: Colorado, Florida, Idaho, Illinois, Iowa, Kansas, Missouri, Montana, Nebraska, Nevada, South Dakota, Utah, Washington, and Wyoming. Our estimates are substantively similar to the estimates we report in Table 1.

 Table A.9:
 Effect of Democratic Election Officials on Democratic Presidential Vote

 Share, States with Full Authority in One Official.

	Dem Pres Vote Share				
	(1)	(2)	(3)	(4)	
Dem Elec Official	0.004	-0.002	-0.011	-0.003	
	(0.009)	(0.006)	(0.014)	(0.009)	
Ν	200	370	104	223	
Bandwidth	0.07	0.15	0.04	0.09	
Bandwidth Selection	\mathbf{CCT}	CCT*2	CCT/2	CCT	
Kernel	Uniform	Uniform	Uniform	Triangular	

Robust standard errors in parentheses. The outcome is first regressed on a state- and year-specific lag using all counties including those for which clerk election results are not available. The regression discontinuity is estimated using the residuals from that regression. The bandwidth row reports the number of maximum clerk win margin allowed for inclusion in each specification. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure.

A.6.7 Main Finding Similar Across States

In Figure A.4 and Table A.10, we present regression discontinuity estimates of the effect of electing a Democratic clerk on Democratic presidential vote share across states. We present all eight states from which we have at least 50 competitive races in our data. While the estimates are noisy, we do not find convincing evidence that clerks are able to advantage their party in any state.

Figure A.4: Sensitivity of Estimated Effect on Democratic Presidential Vote Share across States. Each dot represents a regression discontinuity-based estimate of the effect of electing a Democratic clerk on residual Democratic presidential vote share in a given state. Vertical lines extending from each point represent 95-percent confidence intervals. Estimates come from regressions that mimic column 4 in Table 1 using local linear regression with traingular kernel weights. Full tabular results are found below in Table A.10.

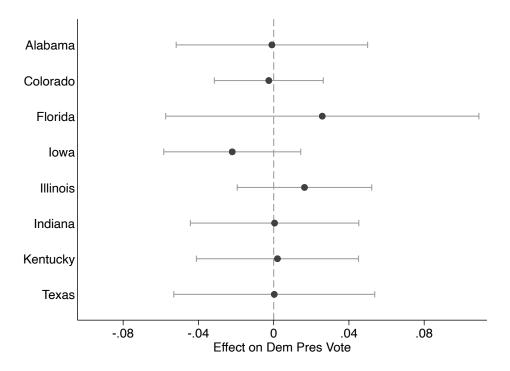


Table A.10: Effect of Democratic Election Officials on Democratic Presidential VoteShare Across States.

	Dem Pres Vote Share							
	Alabama (1)	Colorado (2)	Florida (3)	Iowa (4)	Illinois (5)	Indiana (6)	Kentucky (7)	$\begin{array}{c} \text{Texas} \\ (8) \end{array}$
Dem Elec Official	-0.001 (0.026)	-0.003 (0.015)	$0.026 \\ (0.042)$	-0.022 (0.019)	$0.016 \\ (0.018)$	$0.000 \\ (0.023)$	$0.002 \\ (0.022)$	0.000 (0.027)
Ν	32	24	14	32	44	40	19	24
Bandwidth	0.12	0.06	0.07	0.09	0.06	0.05	0.07	0.08
BW Selection	\mathbf{CCT}	CCT	CCT	CCT	CCT	CCT	CCT	CCT
Kernel	Tri	Tri	Tri	Tri	Tri	Tri	Tri	Tri

Robust standard errors in parentheses. The outcome is first regressed on a state- and year-specific lag using all counties including those for which clerk election results are not available. The regression discontinuity is estimated using the residuals from that regression. The bandwidth row reports the number of maximum clerk win margin allowed for inclusion in each specification. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure. Tri means the specification uses a triangular kernel.

A.6.8 Finding Not Sensitive to Excluding the South

In Table A.11, we present the results of our analysis focused only on counties in non-Southern states. We follow the U.S. Census Bureau definition of Southern states. Alabama, Florida, Georgia, Kentucky, Texas, and West Virginia are excluded. Our estimates are substantively similar to those reported in Table 1.

	Dem Pres Vote Share			
	(1)	(2)	(3)	(4)
Dem Elec Official	0.001	0.003	0.001	0.000
	(0.008)	(0.006)	(0.012)	(0.008)
N	246	436	122	294
Bandwidth	0.07	0.14	0.03	0.09
Bandwidth Selection	\mathbf{CCT}	CCT*2	CCT/2	CCT
Kernel	Uniform	Uniform	Uniform	Triangular

Table A.11: Effect of Democratic Election Officials on Democratic Presidential VoteShare, Non-Southern Counties.

Robust standard errors in parentheses. The outcome is first regressed on a state- and year-specific lag using all counties including those for which clerk election results are not available. The regression discontinuity is estimated using the residuals from that regression. The bandwidth row reports the number of maximum clerk win margin allowed for inclusion in each specification. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure.

A.6.9 Finding Not Sensitive to Excluding VRA Counties

In Table A.12, we present the results of our analysis focused only on counties not covered under the Section 5 pre-clearance provisions of the Voting Rights Act. We use data on Voting Rights Act preclearance coverage from Ang (2019). Our estimates are substantively similar to those reported in Table 1.

	Dem Pres Vote Share			
	(1)	(2)	(3)	(4)
Dem Elec Official	0.003	0.004	-0.008	-0.002
	(0.007)	(0.005)	(0.010)	(0.008)
N	336	616	172	335
Bandwidth	0.08	0.15	0.04	0.08
Bandwidth Selection	\mathbf{CCT}	CCT*2	CCT/2	\mathbf{CCT}
Kernel	Uniform	Uniform	Uniform	Triangular

Table A.12: Effect of Democratic Election Officials on Democratic Presidential Vote Share, Counties Not Subject to Pre-Clearance under VRA.

Robust standard errors in parentheses. The outcome is first regressed on a state- and year-specific lag using all counties including those for which clerk election results are not available. The regression discontinuity is estimated using the residuals from that regression. The bandwidth row reports the number of maximum clerk win margin allowed for inclusion in each specificaiton. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure.

In Table A.13, we present the results of our analysis focused only on counties previously covered under the pre-clearance provision of the Voting Rights Act but after the ruling in *Shelby County v. Holder* that removed them. Our estimates are substantively similar to those reported in Table 1.

	Dem Pres Vote Share				
	(1)	(2)	(3)	(4)	
Dem Elec Official	-0.015	0.014	0.001	0.014	
	(0.024)	(0.018)	(0.024)	(0.020)	
N	25	43	12	18	
Bandwidth	0.07	0.14	0.03	0.05	
Bandwidth Selection	CCT	CCT*2	CCT/2	\mathbf{CCT}	
Kernel	Uniform	Uniform	Uniform	Triangular	

Table A.13: Effect of Democratic Election Officials on Democratic Presidential VoteShare, Counties Formerly Subject to Pre-Clearance.

Robust standard errors in parentheses. The outcome is first regressed on a state- and year-specific lag using all counties including those for which clerk election results are not available. The regression discontinuity is estimated using the residuals from that regression. The bandwidth row reports the number of maximum clerk win margin allowed for inclusion in each specification. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure.

A.6.10 No Substantial Average Effect in Senate, Governor, or Presidential Elections

In Table A.14, we present the results of our analysis including elections for governor, US senate, and president. Our estimates are substantively similar to those reported in Table 1, although are noisier and slightly more positive.

	Dem Vote Share				
	(1)	(2)	(3)	(4)	
Dem Elec Official	0.006	0.004	-0.006	0.003	
	(0.007)	(0.005)	(0.010)	(0.007)	
N	1211	2144	610	1460	
Clusters	422	750	219	507	
Bandwidth	0.09	0.18	0.05	0.11	
Bandwidth Selection	CCT	CCT*2	CCT/2	\mathbf{CCT}	
Kernel	Uniform	Uniform	Uniform	Triangular	
Min Detectable Effect	0.018	0.011	0.026	0.018	

Table A.14: Effect of Democratic Election Official on Democratic Vote Share, Elections for President, Senate, and Governor.

Robust standard errors clustered by clerk election in parentheses. The outcome is first regressed on a state- and year-specific lag using all counties including those for which clerk election results are not available. The regression discontinuity is estimated using the residuals from that regression. The bandwidth row reports the number of maximum clerk win margin allowed for inclusion in each specificaiton. CCT refers to Calonico, Cattaneo, and Titiunik (2014) bandwidth selection procedure. Min detectable effect refers to the minimum effect that a one-sided test with a 0.05 alpha would have 80% power to detect.

Our full online appendix available on the APSR Dataverse.

https://doi.org/10.7910/DVN/SHYPDU