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Abstract 

Estimating airspace capacity under convective weather conditions is crucial for ensuring the efficiency and safety of air traffic 

operations. Sector route segments, which are essential components of flight routes, require timely capacity predictions during 

operationally critical periods. In this paper, initially, an enhanced Recursive Feature Elimination algorithm is used to select 

meteorological data and develop predictive features. Subsequently, the CWSRC model is established using the RF supervised 

learning algorithm. Finally, the paper takes ENH-YIH segment as an example to predict the capacity. Compared with other 

machine learning algorithms, the residual percentages for KNN, MLP, and RF are 86.03%, 77.37%, and 93.40%, respectively, 

within the range of [-0.2,0.2]. In three separate day cases, results show that the CWSRC model's MAE, MSE, RMSE, and R² 

significantly outperform traditional methods like Maxflow/Mincut and scanning line. The results confirm the CWSRC model's 

superior predictive capabilities. 

 

Nomenclature 

ATM air traffic management 

BR basic reflectivity[dBZ] 

C maximum flight number under clear weather of the sector route 

Cp capacity of a sector route segment during a specific period of a day 

CR composite reflectivity[dBZ] 

CWAM convective weather avoidance model 

CWSRC convective weather sector route capacity 

E-WITI en-route weather impacted traffic index 

ET echo tops[ft] 

FAA federal aviation administration 

KNN k-nearest neighbor 

𝐿𝑖𝑛𝑒𝑗  convective weather duration of the flight on the j-th parallel line 

MAE mean absolute error 

mcw minimum available width on the route segment 

MLP multilayer perceptron 

MSE mean squared error 

n the number of grid cells 

Ni
xth the meteorological product value at the x-th percentile of the i-th airspace filter 

NWS national weather service 

RF random forest 

RFE recursive feature elimination 

RMSE root mean squared error 

TMI traffic management initiatives 

T-WITI terminal weather impacted traffic index 

VIL vertically integrated liquid[kg/m2] 

WITI weather impacted traffic index 
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wij the convective weather weight of the i-th grid of the j-th parallel line on the segment 

Wr the available proportion of traffic flow within the sector route segment 

xth x-th percentile value of this airspace weather product 

SRAr, SRAp actual/ predicting airspace availability of sector route segment  

SRCr, SRCr actual/ predicting airspace capacity of sector route segment 

Z meteorological radar reflectivity factor 

∆h the height increment between successive radar measurements in meters. 



 

 

0 Introduction 

In the air transportation system, weather-related irregularities accounted for 59.56% and 66.5% of the total irregular 

flights in China[1] and the United States[2], respectively. Convective weather significantly reduces available airspace capacity, 

posing a major constraint on the normal operation of air traffic flow. Currently, traffic management processes heavily rely on 

the subjective interpretation of weather forecasts. Air traffic controllers use mental calculations to estimate reductions in 

airspace capacity and corresponding traffic flow rates. This approach fails to provide a clear translation of weather forecasts 

into tangible resource constraints. The air route is a fundamental component of the airspace system and crucial for the smooth 

operation of air traffic. Future ATM systems will require decision support tools. These tools must be capable of translating 

the impact of convective weather into precise air route capacities. Traffic demand for impacted air routes is managed through 

TMI. These initiatives either completely remove demand from an impacted air route or reduce demand by delaying the 

departure of flights filed through the impacted air route. Thus in regions of congested airspace, it is very important to be able 

to correctly estimate the air route capacity degradation due to convective weather effects so that avoidable delays and costs 

are minimized. 

Many researchers have investigated the ability to translate a given weather situation into an estimate of available airspace 

capacity in recent years. The Lincoln Laboratory has made significant contributions in this area by developing three 

convective weather avoidance models, namely CWAM1, CWAM2, and CWAM3[3-4]. They have also established a 

permeability calculation method and implemented the computation of airspace capacity using scanning line and 

Maxflow/Minicut methods[5-6]. Additionally, the FAA developed the WITI model. This model uses historical meteorological 

data and traffic demand to accurately quantify the relationship between air traffic and weather. It predicts weather impacts on 

both E-WITI and T-WITI airspace[6-8]. These methods rely on evaluating the severity of convective weather to estimate 

airspace capacity. However, the capacity of the air traffic management system is not solely dependent on convective weather 

conditions but is also influenced by various other factors, including route structure and the complexity of traffic flow 

operations. Simulation systems like SIMMOD[9] by the FAA, TAAM[10] by Boeing, RAMS[11] in Europe, and ASMES[12] in 

China have been developed to simulate and address the aforementioned issues. However, the complexity of the air traffic 

system requires sophisticated traffic flow simulation platforms and high computational performance, or complex 

mathematical models to accurately replicate the airspace operational environment for capacity evaluation. Moreover, these 

simulation systems are challenging to directly serve as decision support tools. 

Recent advancements in computer data storage and computational capabilities, coupled with rapid developments in 

machine learning, have led to widespread applications in the civil aviation industry. This includes airport delay prediction, 

fleet planning, runway configuration forecasting, and route flight time estimation. Currently, machine learning is primarily 

focused on capacity prediction under convective weather conditions in the terminal area. Various studies have been conducted 

to address this area of interest. For instance, Mao et al. employed the random forest algorithm to predict the capacity of the 

terminal airspace in the presence of convective weather conditions[13]. Chen et al. introduced the Spatio-Temporal Graph 

Convolution Network via Initial residual to effectively forecast the capacity of the terminal airspace[14]. Wang et al., on the 

other hand, utilized a combination of multiple linear regression and regression tree ensemble learning methods to model and 

estimate the EWR arrival meter fix throughput[15]. Additionally, Brito et al. developed a supervised machine learning-based 

prediction model to accurately forecast the elapsed time from a flight's takeoff to the sector crossing[16]. However, it should 

be noted that the evaluation of capacity in the terminal airspace, employing machine learning algorithms, may not be directly 

applicable to the assessment of route resources. This discrepancy arises due to distinct differences in the structural 

characteristics, flight operation altitudes, control methods, and unique aspects associated with convective weather conditions 

between the terminal airspace and the route resources. 

To quantify the impact of convective weather on airspace obstruction and accurately evaluate the capacity of air routes 

within the sector route segement, this paper establishes the CWSRC model. CWSRC model is based on the concept of sector 



 

route blockage. It utilizes machine learning algorithms to predict airspace availability in the sector route during convective 

weather conditions, providing a consistent basis for collaborative decision-making in traffic flow operations. The structure of 

this paper is organized as follows: Section 1 introduces the fundamental concepts of sector route segment and the features 

used in our model. Section 2 describes the machine learning algorithms employed by the CWSRC model, detailing the 

methods used for training the model and the development processes. Section 3 analyzes the performance of three machine 

learning algorithms and evaluates the effectiveness of the CWSRC model. Section 4 summarizes the research findings and 

outlines future research directions. 

1. Sector route segment and weather features 

1.1 Sector route segment 

An air route consists of a series of waypoints connecting multiple airspaces, typically long and complex. For instance, 

as depicted in Fig. 1, the routes include the light blue line A461, the dark blue line B334, the red line B339, and the green 

line G212. When convective weather exists in one location of a route, it does not affect the capacity of other segments 

farther away from that location. Therefore, it is neither accurate nor necessary to predict the capacity of a whole air route. 

Sector route segment refers to the segment between route points in a sector with a specific width, such as the part circled 

in yellow in Fig. 1. Flights usually fly according to the segments in the flight plan route, and a flight plan route contains a 

number of Sector route segments located in different routes. The white solid line on the left side of Fig. 1 indicates the 

flight plan route of the flight from ZHHH (Wuhan Tianhe International Airport) to ZYHB (Harbin Taiping International 

Airport), which passes through 4 routes and 11 sectors. This paper is concerned with predicting the capacity of the sector 

route segments.

 

Figure 1. Schematic diagram of sector route segment 

When a flight follows its planned route, deviations may occur due to factors such as weather, air traffic control 

decisions, and pilot operations. These deviations, while possibly altering the flight path slightly, do not constitute a rerouting. 

In order to accurately assess the capacity of the sector route segment, according to reference[17], this paper takes the flight 

route width of 26km, as shown on the right side of Fig. 1, i.e., 13km on each side of the center-line of the flight route. 

1.2 Meteorological features 

Meteorological radar reflectivity Z, which reflects the strength of the radar echo signal and measures the intensity of 

precipitation and the physical properties of clouds, is updated every 6 minutes. In this paper, the information of 

meteorological features is extracted based on the derivatives of Z with the same refresh rate of 6 minutes. In addition, this 

paper uses the airspace filter method in extracting the percentile values of the meteorological products. The extraction 

process is shown in Fig. 2 and Equation. 1. The airspace filter is a square array, as shown on the right side of Fig. 2, which 



 

 

consists of n*n grids, each of which stores the weather product values in the latitude and longitude 0.01°*0.01° area. In this 

paper, a 26km*26km airspace filter is used, starting from one end of the sector route segment and divided based on the size 

of the airspace filter. There is no overlap between each airspace filter. If the remaining length of the route segment is not 

insufficient to form a complete filter, the grids adjacent to the segment are automatically filled to generate a complete 

airspace filter. The sector route segment area is divided into a number of airspace filters, extracting the x-th percentile value 

from each airspace filter. The x-th percentile value of this airspace weather product is obtained by computing the maximum 

value among all the filters within the airspace, as shown in Equation. 1. 

𝑥𝑡ℎ  =  Max{𝑁1
𝑥𝑡ℎ, 𝑁2

𝑥𝑡ℎ … . , 𝑁𝑖
𝑥𝑡ℎ },   𝑥 ∈ [50,75,90,100] ……………………………………(1) 

 

Figure 2. Airspace filter

where 𝑁𝑖
𝑥𝑡ℎ denotes the meteorological product value at the x-th percentile of the i-th airspace filter. 

The NWS classifies convective weather as shown in Table 1[18]. When the value of meteorological products CR, VIL 

and ET in the airspace exceeds Level 3 (including Level 3), it is regarded as severe weather, and flights are not allowed to 

fly over the airspace. Therefore, this paper selects CR, ET and VIL as weather features to predict sector segment capacity. 

Table 1 Convective weather classification 

Category CR(dBZ) VIL(kg/m2) ET(ft) Level 

None <18 0-0.14 

＜25,000 

0 

Light  18-30 0.14-0.7 1 

Middle 30-41 0.7-3.5 2 

Heavy 41-46 3.5-6.9 
25,000~35,000 

3 

Very heavy 46-50 6.9-12 4 

Intense 50 -57 12-32 
＞35,000 

5 

Extreme ≥57 ≥32 6 

1.2.1 VIL 

VIL is used to describe the amount of liquid water accumulated in the entire atmospheric column from the altitude of 

the radar to the top of the atmosphere. It is calculated as shown in Equation 2. Higher VIL values usually indicate the 

presence of a significant amount of liquid water within a thunderstorm, often foreshadowing the occurrence of severe 

convective weather such as heavy rainfall, hail, and strong winds. 

VIL =  ∑ 3.44 × 10−6 (
𝑍𝑖+𝑍𝑖+1

2
)

4/7

∆ℎ         (2) 

where 𝑍𝑖 is the radar reflectivity and ∆h is the height expressed in meters. 



 

In this paper, the VIL data are stored in mat files, and each element in the matrix represents the VIL value of 0.01°*0.01° 

airspace cell at the specified location. In order to express the severity of convective weather in the airspace, this paper has 

counted the VIL percentile value of the airspace for the specified segment. Furthermore, in order to measure the coverage 

of convective weather in the airspace, this paper has counted the proportion of the number of VIL≥3.5 kg/m2 rasters in the 

airspace of the specified segment. Therefore the VIL features used in this paper are: 

1. 50th VIL: the 50th percentile VIL value in the airspace of the segment; 

2. 75th VIL : the 75th percentile VIL value in the airspace of the segment; 

3. 90th VIL : the 90th percentile VIL value in the airspace of the segment;  

4. maxVIL : the maximum VIL value in the airspace of the segment; 

5. Proportion of VIL≥3.5 kg/m2: the number of grids with VIL≥3.5 kg/m2 as a percentage of all grids in the airspace 

of the segment. 

1.2.2 ET 

ET is the height corresponding to an echo of 18.3 dBZ detected by meteorological radar, as shown in Equation 3. It is 

used to measure the intensity and vertical development of convective activity. Higher ET values usually imply higher 

convective cloud tops, indicating that severe convective weather might be developing or has already developed. The ET 

features used in this paper include: 

6. 50th ET: the 50th percentile ET value in the airspace of the segment; 

7. 75th ET: the 75th percentile ET value in the airspace of the segment; 

8. 90th ET: the 90th percentile ET value in the airspace of the segment; 

9. maxET: the maximum ET value in the airspace of the segment. 

ET = h𝐵𝑅>𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑         (3) 

1.2.3 CR 

The BR after logarithmic transformation of Z can reflect the magnitude of Z value as in Equation 4. 

𝐵𝑅 = 10log (𝑍)           (4) 

CR refers to a product derived within a single volume scan that projects the maximum reflectivity factor found in 

constant elevation azimuth scans onto Cartesian grid points. It represents the maximum reflectivity factor within a unit 

volume, as depicted in Equation 5. 

𝐶𝑅 = 𝑚𝑎𝑥 𝐵𝑅           (5) 

A larger value of CR represents a higher convective intensity. 

10. 50th CR: the 50th percentile CR value in the airspace of the segment; 

11. 75th CR: the 75th percentile CR value in the airspace of the segment; 

12. 90th CR: the 90th percentile CR value in the airspace of the segment; 

13. maxCR: the maximum CR value in the airspace of the segment; 

14. Proportion of CR≥41dBZ : the number of grids with CR≥41dBZ as a percentage of all grids in the airspace of 

the segment. 

1.2.4 Longitudinal weather features of segment 

This article analyzes longitudinal and lateral convective weather conditions in sector route segment to identify their 

impact on air traffic flow. 

The impact of longitudinal weather in sector route segment on air traffic flow is reflected in the length of the path of 

a flight crossing the convective weather portion, indicating the severity of longitudinal convective weather in sector route 

segment. Figure. 3 presents the method for assessing longitudinal convective weather in sector route segment.



 

 

 
Figure 3. Schematic of longitudinal weather feature 

Parallel lines are drawn along the direction of the sector route, spaced at intervals of 1 km parallel to the centerline. 

The VIL/CR values of all grids along each parallel line are calculated. When the VIL/CR value exceeds level 3 weather, 

the raster is considered to be in convective weather, and the convective weather weight value of the raster is set to be 1; 

Otherwise, the weight value of the raster is VIL/3.5 or CR/40. The sum of the convective weather weights of all the rasters 

on each parallel line indicates the longitudinal weather severity of the line as shown in Equation. 6.

𝑙𝑖𝑛𝑒𝑗 = ∑ 𝑤𝑖𝑗
𝑛
𝑖=1 , 𝑤𝑖𝑗 = {

1, 𝑖𝑓 𝑉𝐼𝐿 ≥ 3.5  𝑜𝑟 𝐶𝑅 ≥ 40
𝑣𝑎𝑙𝑢𝑒

3.5
𝑜𝑟

𝑣𝑎𝑙𝑢𝑒

40
, 𝑖𝑓 𝑉𝐼𝐿 < 3.5  𝑜𝑟 𝐶𝑅 < 40

    (6)

Where  𝑤𝑖𝑗 denotes the convective weather weight of the ith grid of the jth parallel line on the segment. 𝐿𝑖𝑛𝑒𝑗  denotes the 

convective weather duration of the flight on the jth parallel line, and value denotes the VIL or CR value of each grid on the 

parallel line in this function. 

The longitudinal route segment weather features are: 

15/16. VIL_parallel_mean/CR_parallel_mean: The mean value of the impact along each parallel line represents the 

longitudinal average impact (based on VIL/based on CR); 

17/18. VIL_parallel_max/CR_parallel_max: The maximum value of impact among all parallel lines (based on 

VIL/based on CR); 

19/20. VIL_parallel_min/CR_parallel_min: The minimum value of impact among all parallel lines (based on VIL/based 

on CR); 

21/22. VIL_parallel_median/CR_parallel_median: The median value of impact among all parallel lines (based on 

VIL/based on CR). 

1.2.5 Lateral weather features of segment 

When convective weather does not entirely cover the cross-section of a sector route segment, flights along the route 

can still traverse areas not affected by the weather. The lateral impact of convective weather on the sector route segment 

manifests in the degree of obstruction in the direction of the route's width, quantifying the proportion of the route's width 

covered by convective weather in the vertical direction, as indicated in Equation. 7. 

𝑊𝑟 =
𝑚𝑐𝑤

𝑤𝑖𝑑𝑡ℎ
                       (7) 

where mcw denotes the minimum available width on the route segment, width denotes the route segment width, and Wr 

represents the available proportion of traffic flow within the sector route segment.  

The determination of the minimum available width of the segment, as illustrated in Figure. 2-4, begins by identifying 

the grid cells within the sector route affected by convective weather; Subsequently, the DBSCAN algorithm is employed to 

cluster multiple convective weather blocks within the route, depicting the progression from Figure. 4(a) to Figure. 4(b); 

The clustered convective weather blocks are utilized with a convex hull algorithm to generate a convex hull region, denoting 

the area impassable for aircraft, depicting the process from Figure. 4(b) to Figure. 4(c).



 

 

Figure 4. Flow percentage calculation process diagram for crossable sector route segments 

Finally, the Dijkstra algorithm is applied to determine the mcw in the vertical direction within the sector route. The 

lateral features of the flight path in this section are included: 

23. Cross_flow_VIL: the proportion of traffic flow that can traverse a route, calculated based on VIL; 

24. Cross_flow_CR: the proportion of traffic flow that can traverse a route, calculated based on CR. 

2 Methodology 

Machine learning demonstrates excellent accuracy and generalization performance. This paper employs the CWSRC 

model based on the random forest algorithm for regression prediction of sector route segment capacity. The structure of the 

model, as depicted in Figure.5, involves meteorological product data as input and forecasts sector route segment capacity 

as output. This model is mainly divided into three parts: data preparation, model training and model testing.

 

Figure 5. Structural diagram of the CWSRC model

For the purposes of this study, airspace capacity is defined as the maximum number of aircraft that a specific unit of 

airspace can accommodate within a given time period. There could be a significant difference between the actual number 

of flights and the number of flights that can be accommodated under clear weather. As convective weather intensifies, 

airspace capacity decreases. To minimize flight delays and enhance operational efficiency, it is essential to match the 

number of flights with the capacity as closely as possible. Therefore, this paper assumes that the actual number of flights 

within a sector route segment during convective weather represents the segment's capacity under those conditions. Similarly, 

under clear weather, the maximum number of flights within an hour is considered the actual operational capacity of the 

sector route segment.  



 

 

2.1 Data Set 

The CWSRC model requires the use three meteorological product data types: VIL, ET, and CR. It extracts 

meteorological feature data based on sector route segment boundary information. To predict segment capacities based on 

varying meteorological features, the CWSRC model utilizes a dataset of historical flight radar trajectories through the sector 

route segment. Each flight trajectory in the dataset records the latitude and longitude coordinate position information of the 

flight at the corresponding time point, including the time of entering and exiting the sector route segment. 

To validate the predictive performance of this model, the data is divided into two parts. The first part includes the 

training and validation datasets used for cross-validation to refine and validate the model. The second part comprises the 

test data, which is input into the trained model to analyze its performance. 

2.2 Model training 

To ensure robust predictive performance of the CWSRC model, we established label definitions during the model 

training process, performed feature selection, and fine-tuned parameters for the RF algorithm. 

2.2.1 Label 

This paper uses airspace availability as the label, airspace availability denoted as SRAr, which is calculated as shown 

in Equation 8. 

𝑆𝑅𝐴𝑟 =
𝑆𝑅𝐶𝑟

𝐶
        (8) 

In Equation 8, SRCr and C represents the actual flight number under convective weather and the maximum flight 

number under clear weather of the sector route in the corresponding period. The number of flights in sector route segment 

varies significantly across different time intervals, typically with fewer flights in the early hours and a higher volume during 

daylight hours. However, there exists a degree of similarity in the number of flights during equivalent time segments on 

different days. This study involves the calculation of sector route segment capacities for each hour within a day over a 

specific time span (usually a month), as derived in Equation 9. 

𝐶𝑝 = 90th{𝐶1
𝑝

, 𝐶2
𝑝

, … 𝐶𝑖
𝑝

}       (9) 

where 𝐶𝑝 represents the hourly capacity of a sector route segment during a specific period of a day, and 𝐶𝑖
𝑝

 represents 

signifies the sector route segment's hourly capacity for a particular day within the statistical time span. Within a given time 

span, there might be instances where a day's sector route segment hourly capacity exceeds its limit. We take the 90th 

percentile segment capacity value to represent the maximum accommodatable flight volume for that specific hour within 

the sector route segment. The availability label is the current hourly flight traffic divided by the current hourly capacity.  

In the later part, SRAp and SRCp are the predicted value of availability and capacity, respectively. 

2.2.2 Model evaluation metrics 

In the field of machine learning, a common metric for assessing algorithm accuracy is the generalization error. 

However, directly calculating the generalization error is not practical in applications due to the unknown distribution of the 

sample data. Therefore, we utilize a validation set constructed from sample data and compute various performance metrics 

to estimate the generalization performance of the RF algorithm. 

This study employs four commonly used regression prediction metrics, including MSE, RMSE, MAE, and R2. The 

calculations are depicted in Equations 10,11,12,13. 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖=1

𝑛
         (10) 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑓𝑖|𝑛

𝑖=1

𝑛
           (11) 



 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖=1

𝑛
        (12) 

𝑅2 = 1 −
∑(𝑦𝑖−𝑓𝑖)2

∑(𝑦𝑖−�̅�)2            (13) 

MSE measures the mean of the squares of the prediction errors. A smaller MSE value indicates that the model's 

predictions are closer to the actual values, signifying better model performance. RMSE is the square root of MSE. It 

provides the standard deviation of the prediction errors. RMSE offers an intuitive feel for the size of the errors; compared 

to MSE, RMSE has the same units as the original data, making it easier to understand. MAE provides the average size of 

the prediction errors and, unlike MSE and RMSE, does not assign higher weight to larger errors. R² is a metric that measures 

the model's ability to explain variability in the data. An R² value closer to 1 indicates that the model explains a higher 

variability, leading to better predictive performance. 

2.2.3 Model training methods 

This study utilizes K-fold cross-validation method to assess the model's generalization performance and subsequently 

adjust the RF parameters. Cross-validation can effectively mitigates the risk of overfitting and accurately reflects the 

model's generalization capabilities. The RF design in the CWSRC model is illustrated in Algorithm 1. Within the K-fold 

cross-validation method, the original dataset is randomly partitioned into k equally sized subsets. Each iteration selects one 

subset the model's validation dataset while using the remaining k-1 subsets as the training data. This process is repeated k 

times, rotating through each subset as the validation set, until all subsets have been used for validation. The metrics results 

obtained from each training validation are recorded, and the average of these k results yields the overall training 

performance for a particular set of hyperparameters. This iterative training and testing process makes the model 

performance assessment more reliable and reduces the sensitivity to the data partitioning method.

Algorithm1 

Algorithm: RF 

Input: Data set S 

            S = S
1 
∪ S

2 
∪ … ∪ S

K 
,  S

i 
∩ S

j 
=∅（∀ i ≠ j） 

            parameters: the number of decision trees T 

Process: 

1:  While k ≤ K do 

2:         S
train

← training set, S - S
k
 

3:         S
test  

← test set, S
k
 

4:         N
  
← S

train
size 
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2.2.4 Feature selection 

This investigation incorporates 24 comprehensive features, which, while enriching the dataset, also extend the data 

collection phase and augment the model’s complexity. Effective feature selection is pivotal, as it not only simplifies the 

model by eliminating features with high intercorrelations but also enhances its generalization capabilities and abbreviates 

the training duration. Conventionally, RFE operates by sequentially removing the least significant feature. This procedure, 

although systematic, may inadvertently undermine the model's performance, particularly when the excised feature plays a 

pivotal role in certain combinations.  

To address these shortcomings, the present study proposes an advanced modification of RFE that integrates aspects 

of stepwise regression. Following the exclusion of each feature, a comprehensive assessment is conducted to evaluate its 

interaction with other features and overall impact on model performance. Should this assessment reveal that certain 

eliminated features substantially bolster the model’s efficacy, these features are subsequently reinstated in the feature set 

during later iterations. This meticulous approach refines the feature selection process, culminating in an optimal feature 

subset that significantly enhances the model’s accuracy and robustness. Algorithm 2 outlines the algorithmic process.

Algorithm2 

Algorithm: Recursive Feature Elimination Algorithm 

Input: feature x, label y, model model, number of target features n_features_to_select 

Process: 
1: Indicator = [] 

2: current_number_of_features = total number of features N 

3: function recursiveFeatureElimination(x, y, model, n_features_to_select): 

     

4:    while current_number_of_features > n_features_to_select: 

5:        model.fit(x, y)  // Train the model on current feature set 

6:        importance = model.feature_importances_  // Calculate feature importances 

         

7:        // Identify and remove the least important feature 

8:        least_important_index = index of feature with min(importance) 

9:        x = remove feature at least_important_index from x 

10:        current_number_of_features = current_number_of_features - 1 

         

11:        // Evaluate model performance 

12:        indicator = evaluate_model(model, x, y)  // Function to evaluate model performance 

13:        Indicator.append(indicator)  // Record performance indicator 

         

14:        // Record feature if performance worsens 

15:        delete_feature=[] 

16:        if length(Indicator) > 1 and indicator worse than Indicator[-2]: 

17:            record the removed feature as delete_feature 

         

18:        // Recursive call for next iteration 

19:        recursiveFeatureElimination(x, y, model, n_features_to_select) 

     

20:    return subset of features: subset = [current_feature, delete_feature] 

 

21: End function 

 

In Algorithm2, further stepwise explain are as follows: 

1) Initialization (Lines 1-3): Initialize ‘Indicator’ to store performance indicators and ‘current_number_of_features’ 

to track feature count. Initialize the ‘recursiveFeatureElimination’ function. 



 

2) Loop and Training (Lines 4-5): Enter a loop to iteratively eliminate features until ‘current_number_of_features’ 

reaches ‘n_features_to_select’. Train the model (‘model.fit’) on the current feature set (‘x’ and ‘y’). 

3) Feature Importance Calculation (Line 6): Calculate feature importance using the model's ‘feature_importances_’ 

attribute. 

4) Feature Removal (Lines 7-10): Identify and remove the least important feature from ‘x’ based on calculated 

importance. Update ‘current_number_of_features’ accordingly. 

5) Performance Evaluation (Lines 11-13): Evaluate model performance using the reduced feature set (‘x’ and ‘y’). 

Record the performance indicator (‘indicator’) in ‘Indicator’. 

6) Comparison and Recording (Lines 14-17): Compare the current performance indicator with the last recorded one 

(‘Indicator[-2]’). If performance worsens, record the removed feature as ‘delete_feature’. 

7) Recursive Call (Lines 18-19): Recursively call ‘recursiveFeatureElimination’ to continue feature elimination 

with the updated feature set. 

8) Return (Line 20): Once ‘current_number_of_features’ equals ‘n_features_to_select’, return the subset of features 

selected (‘subset = [current_feature, delete_feature]’). 

Begin by establishing the desired number of target features. the original features is then input into the RF algorithm, 

the results of the performance metrics obtained from this training will be recorded, and the importance of the features will 

be ranked according to the RF's feature importance evaluation function. Afterwards, selecting features based on the 

importance derived from random forest can identify the most influential features on the model's predictive outcomes. After 

eliminating the features with the least importance, proceed to the next round of training with the remaining features. Record 

any excluded features when the metrics from the subsequent training round show a decline compared to the previous results. 

The process is repeated until the number of features reaches the target number of features, and the recorded excluded 

features are added to the remaining features to obtain the selected subset of features after screening. 

2.2.5 Hyperparameter determination 

The number of decision trees is a crucial hyperparameter in the RF algorithm. RF enhances the generalization and 

stability of the model by aggregating the predictions of multiple decision trees. Each decision tree conducts random 

sampling on the training data and performs splits on randomly selected subsets of features, mitigating overfitting risks. 

Thus, while increasing the number of decision trees in a RF typically improves performance, there's a limit to the increase 

as adding trees indefinitely may not guarantee improved performance. Considering the cost of computational resources and 

time consumption, it's essential to establish a range of decision tree numbers. In this research, we follow precedents set in 

prior studies by setting the number of trees in the RF algorithm between 0 and 500[19]. By traversing this range of parameters 

and observing the relationship between performance metrics and the number of decision trees through visualizations, we 

can determine the trend of performance metrics' variations and ascertain the optimal number of decision trees. 

2.3 Model test 

In this paper, we test the adjusted RF algorithm using untrained data. Meteorological features are used as inputs to 

predict the availability of sector route segment. In addition, based on the timeframe of the samples, we determined the 

corresponding capacity of sector route segments for each period. Multiplying airspace availability by period capacity 

yielded the sector route segment capacity predicted by the CWSRC model. Analyzing the differences between the predicted 

results on the test set and the actual values, and comparing them with traditional capacity prediction methods, allowed us 

to further evaluate the effectiveness of the CWSRC model's predictions. 

2.4 Model stepwise 

The development steps of the CWSRC model are as follows. 

1) Label definition: Initially, sample labels are defined, with SRA being utilized as the primary label for 

this study. 



 

 

2) Data Synthesis: The identified labels and corresponding features are integrated to form a 

comprehensive sample set. 

3) Training and Validation Set Split: This sample set is subsequently partitioned into training-validation 

sets and a separate test set to facilitate robust model evaluation. 

4) Performance Metrics Definition: At this stage, performance metrics such as MAE, MSE, RMSE, and 

R2 are selected to assess the effectiveness of the model. 

5) Cross Validation: The model is trained utilizing cross-validation techniques to enhance its 

generalizability. 

6) Feature Selection: An enhanced RFE algorithm is employed to identify and retain the most impactful 

features. 

7) Parameter Optimization: Following feature selection, the model’s hyperparameters are finely tuned to 

optimize performance. 

8) Execution on Test Data: The test set, segregated in the data segmentation phase, is employed to 

evaluate the optimally trained model. 

9) Results Analysis: The outcomes of the model testing are analyzed. Key performance indicators are computed 

and compared against those derived from traditional methodologies. 

3 Result and Discussion 

This section uses the ENH-YIH sector route segment in the Wuhan control area of China as an example. Based on the 

methods detailed in Section 2, specific feature selection and parameter optimization are conducted to enhance model 

performance. The optimization results of the RF-based CWSRC model are compared with those of other machine learning 

algorithms in a conducted comparative analysis. This study is to assess the generalization ability of the model on new, 

untrained data and to compare the performance of the CWSRC model against traditional methods such as Maxflow/Mincut 

and the scanning line approach. MAE, MSE, RMSE and R2 are used as metrics to evaluate our objectives in the test dataset. 

3.1 Data preparation 

In this paper, the historical radar trajectory data, flight plan data and meteorological data from August 3 to 31, 2018 

of a busy sector route in Wuhan control area is used for verification of CWSRC model. The horizontal range of Wuhan 

control area is shown in Figure.6, and the vertical range is from 6,000 to 7,800 meters.

 
Figure 6. Position of the ENY-YIH 

The sector route is ENH-YIH, located in sector 03 with a length of 183km in an east-west direction. It is the part of 

the sector route segment in the Shanghai-Chengdu direction and the flights accounts for about 30% of the total. Radar 

trajectory data is updated at a rate of 8 seconds, including the time, flight number, height, longitude, latitude and other 

information of historical flights. Longitude and latitude can be used to determine whether a trajectory exists within a sector 

area; time can be used to determine which time period the flight's traffic belongs to; and altitude is used to determine 

whether the flight is within the altitude range of the sector route segment. The meteorological data in the China's airspace 



 

29°N-33°N and 109°E-116°E, VIL, CR and ET, is stored as 0.01° × 0.01° (Longitude × Latitude) and updated at a rate of 

6 minutes. 

Statistics of flights number in each period from August 3 to 31, 2018 are shown in Figure. 7. The time in the abscissa 

refers to one hour after this point in time. The busy periods of both two sector routes are from 8:00 to 23:00 each day, 

therefore historical flights data and weather data of these periods are selected in this paper. There are 4350 periods in the 

sector route. After screening, there are 3350 periods of ENH-YIH meeting convective weather conditions. We employed a 

ten-fold cross-validation approach, dividing the dataset into training and validation sets at a ratio of 9:1. Additionally, data 

from 46 time periods were utilized as the test set for this study. 

 
Figure 7. Distribution of operational capacity across time periods in the ENH-YIH 

3.2 Model Optimization 

The number of target features is set to 1, and the RF algorithm with default parameters is employed for recursive 

feature elimination. As the feature set iterated down to just one feature, the performance metrics curves for the entire 

iterative process were observed. Figure. 8 displays the results of the model's prediction for SRA using the metrics MAE, 

MSE, RMSE, and R2.

 
Figure 8. Changes in metrics with different number of iterations

Based on the performance metrics plotted in the aforementioned figure, Table 2 presents the impact of each iteration's 

feature elimination on the model's performance. An improvement in model performance upon feature elimination suggests 



 

 

that the feature contributed more erroneous information, necessitating its removal. Conversely, when removal features make 

the model performance worse, it means that the feature is more effective. Therefore, the features causing a relative 

deterioration in model performance compared to the previous iteration are considered the optimal feature subset for 

elimination. From the table, the optimal feature subset excludes: maxCR, 50th VIL , Proportion of VIL ≥ level 

3,CR_parallel_mean , VIL_parallel_min. The comparison between the model's performance using this feature subset and 

the original features is illustrated in Table 3. Although there is minimal change in MAE, MSE, RMSE, and R2, the training 

prediction time decreased from 1′24″to 1′10″ with the reduced feature set.
Table 2: Indicator performance after feature culling relative to the previous iteration (ρ: denotes the 

performance with the previous round after removing the feature) 

Features ρ Features ρ 

50th ET Worse Proportion of VIL≥level 3 Better 

75th ET Worse Proportion of CR≥41dBZ Worse 

90th ET Worse CR_parallel_mean Better 

maxET Worse CR_parallel_max Worse 

50th CR Worse CR_parallel_min Worse 

75th CR Worse CR_parallel_median Worse 

90th CR Worse VIL_parallel_mean Worse 

maxCR Better VIL_parallel_max Worse 

50th VIL Better VIL_parallel_min Better 

75h VIL Worse VIL_parallel_median Worse 

90th VIL Worse Cross_flow_CR Worse 

maxVIL Worse Cross_flow_VIL -- 

Table 3: The performance metrics of raw features versus filtered features 

Features MAE MSE RMSE R2 Time 

Original 0.08276 0.01173 0.10817 0.81897 0:01:24.47 

Filtering subsets  0.08289 0.01179 0.10846 0.81801 0:01:10.19 

Table 4 presents the feature importance rankings within the RF model. Notably, the transverse and longitudinal weather 

characteristics of the sector rank highest in importance, validating our proposed approach that incorporating directional 

features of flights significantly enhances the prediction of sector route capacity. 

Table 4: Importance of features 

Feature Importance Feature Importance 

Cross_flow_VIL 23.89% 90th ET 3.37% 

VIL_parallel_median 13.72% maxVIL 3.36% 

VIL_parallel_mean 8.03% 50th ET 3.15% 

CR_parallel_max 5.87% 75th CR 2.69% 

CR_parallel_median 5.31% 90th CR 2.54% 

50th CR 4.74% Proportion of CR≥41dBZ 2.43% 

CR_parallel_min 3.88% 90th VIL 2.21% 

75th ET 3.86% 75h VIL 1.98% 

maxET 3.84% Cross_flow_CR 1.64% 

VIL_parallel_max 3.46%   

 



 

The selected subset of optimal features is input into the model with default parameters. The number of decision trees 

for RF is set from 1 to 500 to derive the model performance metrics at each training. As depicted in Figure. 9, after the 

number of trees is 100, there was no significant change observed in MAE, MSE, RMSE, and R2, indicating convergence. 

However, the training time becomes longer as the number of trees increases. Considering the cost of time, this study settles 

on 100 trees for RF algorithm.

 
Figure 9. Different performance indicators based on tree numbers

3.3 Result analysis 

To validate the model, this study excluded data from August 30 and utilized data from August 3 to August 31, 2018, 

for model training and testing. August 30, 2018, September 20, 2018, and September 25, 2018, were selected as case study 

days for model testing, as convective weather was detected in the sector route segment on these days. Due to the 

predominance of clear weather samples in the historical dataset, oversampling techniques were applied to the convective 

weather samples. The algorithm's performance was analyzed based on the model's results on the validation set. Furthermore, 

the model's performance on the test set was evaluated. 

3.3.1 Algorithm analysis 

In order to verify the superior performance of RF algorithm compared to other machine learning algorithms, this paper 

compares the results predicted by RF with those predicted by the KNN and MLP algorithms with default parameters. 

Among them, the parameters of machine learning algorithm are set as follows. The distance metric in KNN algorithm is 

Euclidean distance, and k is 10. The number of decision trees in RF is 100. There are two hidden layers in MLP, and the 

hidden layer units are 4 and 7, respectively. The activation function is Relu, solver is adam, the learning rate is 0.001, and 

the maximum number of iterations is 300. 

Figure. 10 illustrates the residual distributions of SRAp for KNN, MLP and RF on the cross-validated test set, where 

the interval of the statistics is [-0.6, 0.6] with a step size of 0.05. Notably, the predominant residual distribution for RF lies 

within the [-0.05, 0.05] range, exhibiting significantly higher sample counts compared to MLP and KNN within this interval. 

The number of samples with residuals between [-0.3, 0.3] is 3309, 3106 and 3335 of KNN, MLP and RF respectively, 

accounting for 98.78%, 92.72%and 99.55% of the total data respectively. The number of samples with residuals between 

[-0.2, 0.2] is 2882, 2592 and 3129 respectively, accounting for 86.03%, 77.37% and 93.403% of the total data respectively. 



 

 

The number of samples with residuals between [-0.1, 0.1] is 1637, 1435 and 2131 respectively, accounting for 48.87%, 

42.84% and 63.61% of the total data respectively.

   

(a) KNN residual (b) MLP residual (b) RF residual 

Figure 10. Residual plots of KNN, MLP, and RF algorithms 

3.3.2 Analysis of SRCp 

In this section, the SRCp of ENH-YIH obtained from the RF-based CWSRC model is analysed and compared with the 

results from Maxflow/Mincut and scanning lines. Considering that the weather conditions typically do not undergo 

drastically in a short period of time, this study represents the weather at half-hour intervals as representative of the weather 

for that period. Additionally, the weather conditions and flight trajectories for the prediction periods of the three case study 

days are depicted in Figures. 11, 12, and 13, respectively. 

    
(a) 12:00-13:00 (b) 13:00-14:00 (c) 14:00-15:00 (d) 15:00-16:00 

    
(e) 16:00-17:00 (f) 17:00-18:00 (g) 18:00-19:00 (h) 19:00-20:00 

    
(i) 20:00-21:00 (j) 21:00-22:00 (k) 22:00-23:00 (l) 23:00-24:00 

Figure 11. Flight tracks and weather on ENH-YIH from 12:00-24:00 on August 30, 2018 



 

    
(a) 10:00-11:00 (b) 11:00-12:00 (c) 12:00-13:00 (d) 13:00-14:00 

  
(e) 14:00-15:00 (f) 15:00-16:00 

Figure 12. Flight tracks and weather on ENH-YIH from 10:00-16:00 on September 20, 2018 

    
(a) 17:00-18:00 (b) 18:00-19:00 (c) 19:00-20:00 (d) 20:00-21:00 

Figure 13. Flight tracks and weather on ENH-YIH from 17:00-21:00 on September 25, 2018 

The prediction results for the three case study days are presented in Figure. 14. Table 5 presents the overall performance 

of the models on the three case study days. We employed MAE, MSE, RMSE and R2 as metrics to evaluate the predictive 

performance of the models. It is evident that the CWSRC model exhibits the lowest errors in metrics, indicating superior 

predictive performance compared to the Maxflow/Mincut and scanning line methods. 

 
Figure 14. Comparison chart of capacity prediction results for three methods 

Table 5 Deviation of predicted results from actual values for CWSRC model with Maxflow/Mincut, scanning line 

Indicators CWSRC Maxflow/Mincut Scanning line 

MAE 1.17  2.12  3.19  

MSE 2.84  7.42  12.80  

RMSE 1.53  2.56  3.57  

R2 0.74  0.26  -1.22  



 

 

On August 30, 2018, the Wuhan terminal area experienced an extended period of convective weather. During this day, 

the weather in the sector route segment transitioned from convective to clear conditions and then back to convective weather 

within the daytime. The sector route segment was notably affected by the fluctuations in convective weather, as illustrated 

in Figure. 11. Given the significant and typical nature of the convective weather on this day, we conducted a detailed 

analysis of the August 30 case. 

Figure. 11 illustrates the hourly meteorological changes and flight trajectories on the ENH-YIH segment from 12:00 

to 24:00 on August 30. The blue line represents the flight trajectories, the purple line represents the route’s centerline, and 

the black represents the route's boundaries. From 12:00 to 15:00, convective weather progressively emerged at the segment's 

right end, correspondingly diminishing the flight traffic. In 15:00-17:00 the weather was gradually dissipating, but flight 

frequency remains low, partly due to it being a less busy time of the day with naturally lower flight volumes, and potentially 

because of reduced flights scheduled for that day. From 17:00-20:00 there is no weather on the segment and the traffic 

volume is close to the statistical capacity of the sector under clear weather. From 20:00 to 24:00, a substantial amount of 

convective weather appears at the right end of the sector route segment, resulting in a gradual decrease in segment capacity, 

eventually leading to no flight traffic. 

As depicted in the left subplot of Figure. 14, the results predicted by RF are in the highest degree of conformity with 

the actual flow changes, and the trend remains consistent across each time interval. From 12:00 to 13:00, the scanning line 

method's prediction closely matched the actual traffic volume. However, RF's prediction was lower, reflecting the partial 

coverage of the flight route by the weather. The scanning line method reflects the effect better at this time. In 13:00-15:00, 

there is a wide range of convective weather in the sector, RF and Maxflow/Minicut effectively capture this change, while 

the scanning line method's predictions significantly diverged from the actual values. Between 15:00 and 17:00, although 

convective weather was gradually dissipating, the capacity under the recorded clear weather continued to decline during 

this period. As a result, the predictions from these methods demonstrated a decreasing trend, with RF predictions aligning 

more closely with the actual values. Between 17:00 and 20:00, the segment experienced clear skies, with traffic volume 

approaching the segment's full capacity under optimal conditions. However, from 20:00 to 24:00, significant convective 

weather developed at the segment's right end. This led to a steady decline in capacity and, ultimately, the cessation of flight 

traffic by the end of the period. RF accurately predicted a value of 0 between 22:30 and 23:30, consistent with the actual 

results. Yet, the prediction for 21:00-21:30 was lower than the actual traffic volume. This was because during this time, 

convective weather only covered the upper right tail end of the sector. There was no convective weather in other areas and 

flights can still fly and cross the route from the lower right side. Although flights were still navigable, the convective 

weather features were more pronounced during this period, resulting in the underestimated prediction. The 

Maxflow/Minicut prediction aligned with RF but fell short in comparison, notably deviating from the actual values at 23:30. 

The scanning line method gave poor prediction under convective weather. In general, the scanning line method performs 

better in predicting under minimal or no weather conditions but fares poorly under convective weather. Maxflow/Minicut 

exhibits a preference for predicting accurately during convective weather but falls short of RF's predictive performance, 

especially when there's no weather. RF demonstrates consistently strong predictive capabilities under both conditions 

Figure. 12 and 13 illustrate the meteorological conditions observed on selected days in September 2018. The flight 

corridor under study is located in a region where convective weather predominantly occurs during the summer months. 

Notably, the intensity, duration, and coverage of convective weather events in September are generally less extensive than 

those observed in August. From the right panel and the center subplot of Figure. 14, the CWSRC model demonstrated 

superior accuracy in traffic forecasting relative to conventional methodologies. Nonetheless, the case studies revealed 

intriguing phenomena worthy of further investigation: On September 20, 2018, between 12:00 and 13:00, although 

convective weather was present, the convective cells were dispersed and individually small, permitting direct flight traversal 

through these areas. A similar occurrence was documented in the case study from September 25, 2018, suggesting a pattern 

that merits deeper exploration in future studies. 

 



 

4 Conclusion

This study utilized an improved RFE algorithm to extract meteorological features and developed CWSRC model to 

predict sector route capacity. The model employs a RF supervised regression algorithm, using ten-fold cross-validation for 

training and calibrating against recorded traffic data to compute capacity. The analysis of three case studies confirms that 

the CWSRC model's predictions closely match the actual flight volumes during convective weather events. Key findings 

are outlined below: 

(1) The CWSRC model achieved favorable performance metrics during training and exhibited reduced errors 

compared to traditional methods in the case study, underscoring its accuracy and robustness. 

(2) RF algorithm showed a higher percentage (93.403%) of residuals within the range [-0.2, 0.2] on the validation set 

compared to KNN (86.03%) and MLP (77.37%) algorithms. This confirms that RF outperforms other machine learning 

algorithms in the CWSRC model. 

(3) Due to the different traffic characteristics in different sector route segments, the influence of different weather 

factors on the prediction of sector route segment capacity is also different.  

However, the model tends to underestimate capacity in scenarios with small and dispersed convective weather. It also 

tends to underestimate capacity when convective weather presenting at the beginning and end of sector route segment. This 

indicates a need for further research to enhance model accuracy: 1) incorporating adjacent airspace weather conditions as 

input features, 2) assessing the impact of dispersed, small convective cells that flights often traverse, and 3) considering the 

interaction effects of traffic volume on adjacent route segments.  
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Abstract 

Estimating airspace capacity under convective weather conditions is crucial for ensuring the efficiency and safety of air traffic 

operations. Sector route segments, which are essential components of flight routes, require timely capacity predictions during 

operationally critical periods. In this paper, initially, an enhanced Recursive Feature Elimination algorithm is used to select 

meteorological data and develop predictive features. Subsequently, the CWSRC model is established using the RF supervised 

learning algorithm. Finally, the paper takes ENH-YIH segment as an example to predict the capacity. Compared with other 

machine learning algorithms, the residual percentages for KNN, MLP, and RF are 86.03%, 77.37%, and 93.40%, respectively, 

within the range of [-0.2,0.2]. In three separate day cases, results show that the CWSRC model's MAE, MSE, RMSE, and R² 

significantly outperform traditional methods like Maxflow/Mincut and scanning line. The results confirm the CWSRC model's 

superior predictive capabilities. 

 

Nomenclature 

ATM air traffic management 

BR basic reflectivity[dBZ] 

C maximum flight number under clear weather of the sector route 

Cp capacity of a sector route segment during a specific period of a day 

CR composite reflectivity[dBZ] 

CWAM convective weather avoidance model 

CWSRC convective weather sector route capacity 

E-WITI en-route weather impacted traffic index 

ET echo tops[ft] 

FAA federal aviation administration 

KNN k-nearest neighbor 

𝐿𝑖𝑛𝑒𝑗  convective weather duration of the flight on the j-th parallel line 

MAE mean absolute error 

mcw minimum available width on the route segment 

MLP multilayer perceptron 

MSE mean squared error 

n the number of grid cells 

Ni
xth the meteorological product value at the x-th percentile of the i-th airspace filter 

NWS national weather service 

RF random forest 

RFE recursive feature elimination 

RMSE root mean squared error 

TMI traffic management initiatives 

T-WITI terminal weather impacted traffic index 

VIL vertically integrated liquid[kg/m2] 

WITI weather impacted traffic index 
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wij the convective weather weight of the i-th grid of the j-th parallel line on the segment 

Wr the available proportion of traffic flow within the sector route segment 

xth x-th percentile value of this airspace weather product 

SRAr, SRAp actual/ predicting airspace availability of sector route segment  

SRCr, SRCr actual/ predicting airspace capacity of sector route segment 

Z meteorological radar reflectivity factor 

∆h the height increment between successive radar measurements in meters. 



 

 

0 Introduction 

In the air transportation system, weather-related irregularities accounted for 59.56% and 66.5% of the total irregular 

flights in China[1] and the United States[2], respectively. Convective weather significantly reduces available airspace capacity, 

posing a major constraint on the normal operation of air traffic flow. Currently, traffic management processes heavily rely on 

the subjective interpretation of weather forecasts. Air traffic controllers use mental calculations to estimate reductions in 

airspace capacity and corresponding traffic flow rates. This approach fails to provide a clear translation of weather forecasts 

into tangible resource constraints. The air route is a fundamental component of the airspace system and crucial for the smooth 

operation of air traffic. Future ATM systems will require decision support tools. These tools must be capable of translating 

the impact of convective weather into precise air route capacities. Traffic demand for impacted air routes is managed through 

TMI. These initiatives either completely remove demand from an impacted air route or reduce demand by delaying the 

departure of flights filed through the impacted air route. Thus in regions of congested airspace, it is very important to be able 

to correctly estimate the air route capacity degradation due to convective weather effects so that avoidable delays and costs 

are minimized. 

Many researchers have investigated the ability to translate a given weather situation into an estimate of available airspace 

capacity in recent years. The Lincoln Laboratory has made significant contributions in this area by developing three 

convective weather avoidance models, namely CWAM1, CWAM2, and CWAM3[3-4]. They have also established a 

permeability calculation method and implemented the computation of airspace capacity using scanning line and 

Maxflow/Minicut methods[5-6]. Additionally, the FAA developed the WITI model. This model uses historical meteorological 

data and traffic demand to accurately quantify the relationship between air traffic and weather. It predicts weather impacts on 

both E-WITI and T-WITI airspace[6-8]. These methods rely on evaluating the severity of convective weather to estimate 

airspace capacity. However, the capacity of the air traffic management system is not solely dependent on convective weather 

conditions but is also influenced by various other factors, including route structure and the complexity of traffic flow 

operations. Simulation systems like SIMMOD[9] by the FAA, TAAM[10] by Boeing, RAMS[11] in Europe, and ASMES[12] in 

China have been developed to simulate and address the aforementioned issues. However, the complexity of the air traffic 

system requires sophisticated traffic flow simulation platforms and high computational performance, or complex 

mathematical models to accurately replicate the airspace operational environment for capacity evaluation. Moreover, these 

simulation systems are challenging to directly serve as decision support tools. 

Recent advancements in computer data storage and computational capabilities, coupled with rapid developments in 

machine learning, have led to widespread applications in the civil aviation industry. This includes airport delay prediction, 

fleet planning, runway configuration forecasting, and route flight time estimation. Currently, machine learning is primarily 

focused on capacity prediction under convective weather conditions in the terminal area. Various studies have been conducted 

to address this area of interest. For instance, Mao et al. employed the random forest algorithm to predict the capacity of the 

terminal airspace in the presence of convective weather conditions[13]. Chen et al. introduced the Spatio-Temporal Graph 

Convolution Network via Initial residual to effectively forecast the capacity of the terminal airspace[14]. Wang et al., on the 

other hand, utilized a combination of multiple linear regression and regression tree ensemble learning methods to model and 

estimate the EWR arrival meter fix throughput[15]. Additionally, Brito et al. developed a supervised machine learning-based 

prediction model to accurately forecast the elapsed time from a flight's takeoff to the sector crossing[16]. However, it should 

be noted that the evaluation of capacity in the terminal airspace, employing machine learning algorithms, may not be directly 

applicable to the assessment of route resources. This discrepancy arises due to distinct differences in the structural 

characteristics, flight operation altitudes, control methods, and unique aspects associated with convective weather conditions 

between the terminal airspace and the route resources. 

To quantify the impact of convective weather on airspace obstruction and accurately evaluate the capacity of air routes 

within the sector route segement, this paper establishes the CWSRC model. CWSRC model is based on the concept of sector 



 

route blockage. It utilizes machine learning algorithms to predict airspace availability in the sector route during convective 

weather conditions, providing a consistent basis for collaborative decision-making in traffic flow operations. The structure of 

this paper is organized as follows: Section 1 introduces the fundamental concepts of sector route segment and the features 

used in our model. Section 2 describes the machine learning algorithms employed by the CWSRC model, detailing the 

methods used for training the model and the development processes. Section 3 analyzes the performance of three machine 

learning algorithms and evaluates the effectiveness of the CWSRC model. Section 4 summarizes the research findings and 

outlines future research directions. 

1. Sector route segment and weather features 

1.1 Sector route segment 

An air route consists of a series of waypoints connecting multiple airspaces, typically long and complex. For instance, 

as depicted in Fig. 1, the routes include the light blue line A461, the dark blue line B334, the red line B339, and the green 

line G212. When convective weather exists in one location of a route, it does not affect the capacity of other segments 

farther away from that location. Therefore, it is neither accurate nor necessary to predict the capacity of a whole air route. 

Sector route segment refers to the segment between route points in a sector with a specific width, such as the part circled 

in yellow in Fig. 1. Flights usually fly according to the segments in the flight plan route, and a flight plan route contains a 

number of Sector route segments located in different routes. The white solid line on the left side of Fig. 1 indicates the 

flight plan route of the flight from ZHHH (Wuhan Tianhe International Airport) to ZYHB (Harbin Taiping International 

Airport), which passes through 4 routes and 11 sectors. This paper is concerned with predicting the capacity of the sector 

route segments.

 

Figure 1. Schematic diagram of sector route segment 

When a flight follows its planned route, deviations may occur due to factors such as weather, air traffic control 

decisions, and pilot operations. These deviations, while possibly altering the flight path slightly, do not constitute a rerouting. 

In order to accurately assess the capacity of the sector route segment, according to reference[17], this paper takes the flight 

route width of 26km, as shown on the right side of Fig. 1, i.e., 13km on each side of the center-line of the flight route. 

1.2 Meteorological features 

Meteorological radar reflectivity Z, which reflects the strength of the radar echo signal and measures the intensity of 

precipitation and the physical properties of clouds, is updated every 6 minutes. In this paper, the information of 

meteorological features is extracted based on the derivatives of Z with the same refresh rate of 6 minutes. In addition, this 

paper uses the airspace filter method in extracting the percentile values of the meteorological products. The extraction 

process is shown in Fig. 2 and Equation. 1. The airspace filter is a square array, as shown on the right side of Fig. 2, which 



 

 

consists of n*n grids, each of which stores the weather product values in the latitude and longitude 0.01°*0.01° area. In this 

paper, a 26km*26km airspace filter is used, starting from one end of the sector route segment and divided based on the size 

of the airspace filter. There is no overlap between each airspace filter. If the remaining length of the route segment is not 

insufficient to form a complete filter, the grids adjacent to the segment are automatically filled to generate a complete 

airspace filter. The sector route segment area is divided into a number of airspace filters, extracting the x-th percentile value 

from each airspace filter. The x-th percentile value of this airspace weather product is obtained by computing the maximum 

value among all the filters within the airspace, as shown in Equation. 1. 

𝑥𝑡ℎ  =  Max{𝑁1
𝑥𝑡ℎ, 𝑁2

𝑥𝑡ℎ … . , 𝑁𝑖
𝑥𝑡ℎ },   𝑥 ∈ [50,75,90,100] ……………………………………(1) 

 

Figure 2. Airspace filter

where 𝑁𝑖
𝑥𝑡ℎ denotes the meteorological product value at the x-th percentile of the i-th airspace filter. 

The NWS classifies convective weather as shown in Table 1[18]. When the value of meteorological products CR, VIL 

and ET in the airspace exceeds Level 3 (including Level 3), it is regarded as severe weather, and flights are not allowed to 

fly over the airspace. Therefore, this paper selects CR, ET and VIL as weather features to predict sector segment capacity. 

Table 1 Convective weather classification 

Category CR(dBZ) VIL(kg/m2) ET(ft) Level 

None <18 0-0.14 

＜25,000 

0 

Light  18-30 0.14-0.7 1 

Middle 30-41 0.7-3.5 2 

Heavy 41-46 3.5-6.9 
25,000~35,000 

3 

Very heavy 46-50 6.9-12 4 

Intense 50 -57 12-32 
＞35,000 

5 

Extreme ≥57 ≥32 6 

1.2.1 VIL 

VIL is used to describe the amount of liquid water accumulated in the entire atmospheric column from the altitude of 

the radar to the top of the atmosphere. It is calculated as shown in Equation 2. Higher VIL values usually indicate the 

presence of a significant amount of liquid water within a thunderstorm, often foreshadowing the occurrence of severe 

convective weather such as heavy rainfall, hail, and strong winds. 

VIL =  ∑ 3.44 × 10−6 (
𝑍𝑖+𝑍𝑖+1

2
)

4/7

∆ℎ         (2) 

where 𝑍𝑖 is the radar reflectivity and ∆h is the height expressed in meters. 



 

In this paper, the VIL data are stored in mat files, and each element in the matrix represents the VIL value of 0.01°*0.01° 

airspace cell at the specified location. In order to express the severity of convective weather in the airspace, this paper has 

counted the VIL percentile value of the airspace for the specified segment. Furthermore, in order to measure the coverage 

of convective weather in the airspace, this paper has counted the proportion of the number of VIL≥3.5 kg/m2 rasters in the 

airspace of the specified segment. Therefore the VIL features used in this paper are: 

1. 50th VIL: the 50th percentile VIL value in the airspace of the segment; 

2. 75th VIL : the 75th percentile VIL value in the airspace of the segment; 

3. 90th VIL : the 90th percentile VIL value in the airspace of the segment;  

4. maxVIL : the maximum VIL value in the airspace of the segment; 

5. Proportion of VIL≥3.5 kg/m2: the number of grids with VIL≥3.5 kg/m2 as a percentage of all grids in the airspace 

of the segment. 

1.2.2 ET 

ET is the height corresponding to an echo of 18.3 dBZ detected by meteorological radar, as shown in Equation 3. It is 

used to measure the intensity and vertical development of convective activity. Higher ET values usually imply higher 

convective cloud tops, indicating that severe convective weather might be developing or has already developed. The ET 

features used in this paper include: 

6. 50th ET: the 50th percentile ET value in the airspace of the segment; 

7. 75th ET: the 75th percentile ET value in the airspace of the segment; 

8. 90th ET: the 90th percentile ET value in the airspace of the segment; 

9. maxET: the maximum ET value in the airspace of the segment. 

ET = h𝐵𝑅>𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑         (3) 

1.2.3 CR 

The BR after logarithmic transformation of Z can reflect the magnitude of Z value as in Equation 4. 

𝐵𝑅 = 10log (𝑍)           (4) 

CR refers to a product derived within a single volume scan that projects the maximum reflectivity factor found in 

constant elevation azimuth scans onto Cartesian grid points. It represents the maximum reflectivity factor within a unit 

volume, as depicted in Equation 5. 

𝐶𝑅 = 𝑚𝑎𝑥 𝐵𝑅           (5) 

A larger value of CR represents a higher convective intensity. 

10. 50th CR: the 50th percentile CR value in the airspace of the segment; 

11. 75th CR: the 75th percentile CR value in the airspace of the segment; 

12. 90th CR: the 90th percentile CR value in the airspace of the segment; 

13. maxCR: the maximum CR value in the airspace of the segment; 

14. Proportion of CR≥41dBZ : the number of grids with CR≥41dBZ as a percentage of all grids in the airspace of 

the segment. 

1.2.4 Longitudinal weather features of segment 

This article analyzes longitudinal and lateral convective weather conditions in sector route segment to identify their 

impact on air traffic flow. 

The impact of longitudinal weather in sector route segment on air traffic flow is reflected in the length of the path of 

a flight crossing the convective weather portion, indicating the severity of longitudinal convective weather in sector route 

segment. Figure. 3 presents the method for assessing longitudinal convective weather in sector route segment.



 

 

 
Figure 3. Schematic of longitudinal weather feature 

Parallel lines are drawn along the direction of the sector route, spaced at intervals of 1 km parallel to the centerline. 

The VIL/CR values of all grids along each parallel line are calculated. When the VIL/CR value exceeds level 3 weather, 

the raster is considered to be in convective weather, and the convective weather weight value of the raster is set to be 1; 

Otherwise, the weight value of the raster is VIL/3.5 or CR/40. The sum of the convective weather weights of all the rasters 

on each parallel line indicates the longitudinal weather severity of the line as shown in Equation. 6.

𝑙𝑖𝑛𝑒𝑗 = ∑ 𝑤𝑖𝑗
𝑛
𝑖=1 , 𝑤𝑖𝑗 = {

1, 𝑖𝑓 𝑉𝐼𝐿 ≥ 3.5  𝑜𝑟 𝐶𝑅 ≥ 40
𝑣𝑎𝑙𝑢𝑒

3.5
𝑜𝑟

𝑣𝑎𝑙𝑢𝑒

40
, 𝑖𝑓 𝑉𝐼𝐿 < 3.5  𝑜𝑟 𝐶𝑅 < 40

    (6)

Where  𝑤𝑖𝑗 denotes the convective weather weight of the ith grid of the jth parallel line on the segment. 𝐿𝑖𝑛𝑒𝑗 denotes 

the convective weather duration of the flight on the jth parallel line, and value denotes the VIL or CR value of each grid on 

the parallel line in this function. 

The longitudinal route segment weather features are: 

15/16. VIL_parallel_mean/CR_parallel_mean: The mean value of the impact along each parallel line represents the 

longitudinal average impact (based on VIL/based on CR); 

17/18. VIL_parallel_max/CR_parallel_max: The maximum value of impact among all parallel lines (based on 

VIL/based on CR); 

19/20. VIL_parallel_min/CR_parallel_min: The minimum value of impact among all parallel lines (based on VIL/based 

on CR); 

21/22. VIL_parallel_median/CR_parallel_median: The median value of impact among all parallel lines (based on 

VIL/based on CR). 

1.2.5 Lateral weather features of segment 

When convective weather does not entirely cover the cross-section of a sector route segment, flights along the route 

can still traverse areas not affected by the weather. The lateral impact of convective weather on the sector route segment 

manifests in the degree of obstruction in the direction of the route's width, quantifying the proportion of the route's width 

covered by convective weather in the vertical direction, as indicated in Equation. 7. 

𝑊𝑟 =
𝑚𝑐𝑤

𝑤𝑖𝑑𝑡ℎ
                       (7) 

where mcw denotes the minimum available width on the route segment, width denotes the route segment width, and Wr 

represents the available proportion of traffic flow within the sector route segment.  

The determination of the minimum available width of the segment, as illustrated in Figure. 2-4, begins by identifying 

the grid cells within the sector route affected by convective weather; Subsequently, the DBSCAN algorithm is employed to 

cluster multiple convective weather blocks within the route, depicting the progression from Figure. 4(a) to Figure. 4(b); 

The clustered convective weather blocks are utilized with a convex hull algorithm to generate a convex hull region, denoting 

the area impassable for aircraft, depicting the process from Figure. 4(b) to Figure. 4(c).



 

 

Figure 4. Flow percentage calculation process diagram for crossable sector route segments 

Finally, the Dijkstra algorithm is applied to determine the mcw in the vertical direction within the sector route. The 

lateral features of the flight path in this section are included: 

23. Cross_flow_VIL: the proportion of traffic flow that can traverse a route, calculated based on VIL; 

24. Cross_flow_CR: the proportion of traffic flow that can traverse a route, calculated based on CR. 

2 Methodology 

Machine learning demonstrates excellent accuracy and generalization performance. This paper employs the CWSRC 

model based on the random forest algorithm for regression prediction of sector route segment capacity. The structure of the 

model, as depicted in Figure.5, involves meteorological product data as input and forecasts sector route segment capacity 

as output. This model is mainly divided into three parts: data preparation, model training and model testing.

 

Figure 5. Structural diagram of the CWSRC model

For the purposes of this study, airspace capacity is defined as the maximum number of aircraft that a specific unit of 

airspace can accommodate within a given time period. There could be a significant difference between the actual number 

of flights and the number of flights that can be accommodated under clear weather. As convective weather intensifies, 

airspace capacity decreases. To minimize flight delays and enhance operational efficiency, it is essential to match the 

number of flights with the capacity as closely as possible. Therefore, this paper assumes that the actual number of flights 

within a sector route segment during convective weather represents the segment's capacity under those conditions. Similarly, 

under clear weather, the maximum number of flights within an hour is considered the actual operational capacity of the 

sector route segment.  



 

 

2.1 Data Set 

The CWSRC model requires the use three meteorological product data types: VIL, ET, and CR. It extracts 

meteorological feature data based on sector route segment boundary information. To predict segment capacities based on 

varying meteorological features, the CWSRC model utilizes a dataset of historical flight radar trajectories through the sector 

route segment. Each flight trajectory in the dataset records the latitude and longitude coordinate position information of the 

flight at the corresponding time point, including the time of entering and exiting the sector route segment. 

To validate the predictive performance of this model, the data is divided into two parts. The first part includes the 

training and validation datasets used for cross-validation to refine and validate the model. The second part comprises the 

test data, which is input into the trained model to analyze its performance. 

2.2 Model training 

To ensure robust predictive performance of the CWSRC model, we established label definitions during the model 

training process, performed feature selection, and fine-tuned parameters for the RF algorithm. 

2.2.1 Label 

This paper uses airspace availability as the label, airspace availability denoted as SRAr, which is calculated as shown 

in Equation 8. 

𝑆𝑅𝐴𝑟 =
𝑆𝑅𝐶𝑟

𝐶
        (8) 

In Equation 8, SRCr and C represents the actual flight number under convective weather and the maximum flight 

number under clear weather of the sector route in the corresponding period. The number of flights in sector route segment 

varies significantly across different time intervals, typically with fewer flights in the early hours and a higher volume during 

daylight hours. However, there exists a degree of similarity in the number of flights during equivalent time segments on 

different days. This study involves the calculation of sector route segment capacities for each hour within a day over a 

specific time span (usually a month), as derived in Equation 9. 

𝐶𝑝 = 90th{𝐶1
𝑝

, 𝐶2
𝑝

, … 𝐶𝑖
𝑝

}       (9) 

where 𝐶𝑝 represents the hourly capacity of a sector route segment during a specific period of a day, and 𝐶𝑖
𝑝

 represents 

signifies the sector route segment's hourly capacity for a particular day within the statistical time span. Within a given time 

span, there might be instances where a day's sector route segment hourly capacity exceeds its limit. We take the 90th 

percentile segment capacity value to represent the maximum accommodatable flight volume for that specific hour within 

the sector route segment. The availability label is the current hourly flight traffic divided by the current hourly capacity.  

In the later part, SRAp and SRCp are the predicted value of availability and capacity, respectively. 

2.2.2 Model evaluation metrics 

In the field of machine learning, a common metric for assessing algorithm accuracy is the generalization error. 

However, directly calculating the generalization error is not practical in applications due to the unknown distribution of the 

sample data. Therefore, we utilize a validation set constructed from sample data and compute various performance metrics 

to estimate the generalization performance of the RF algorithm. 

This study employs four commonly used regression prediction metrics, including MSE, RMSE, MAE, and R2. The 

calculations are depicted in Equations 10,11,12,13. 

𝑀𝑆𝐸 =  
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖=1

𝑛
         (10) 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑓𝑖|𝑛

𝑖=1

𝑛
           (11) 



 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑓𝑖)2𝑛

𝑖=1

𝑛
        (12) 

𝑅2 = 1 −
∑(𝑦𝑖−𝑓𝑖)2

∑(𝑦𝑖−�̅�)2            (13) 

MSE measures the mean of the squares of the prediction errors. A smaller MSE value indicates that the model's 

predictions are closer to the actual values, signifying better model performance. RMSE is the square root of MSE. It 

provides the standard deviation of the prediction errors. RMSE offers an intuitive feel for the size of the errors; compared 

to MSE, RMSE has the same units as the original data, making it easier to understand. MAE provides the average size of 

the prediction errors and, unlike MSE and RMSE, does not assign higher weight to larger errors. R² is a metric that measures 

the model's ability to explain variability in the data. An R² value closer to 1 indicates that the model explains a higher 

variability, leading to better predictive performance. 

2.2.3 Model training methods 

This study utilizes K-fold cross-validation method to assess the model's generalization performance and subsequently 

adjust the RF parameters. Cross-validation can effectively mitigates the risk of overfitting and accurately reflects the 

model's generalization capabilities. The RF design in the CWSRC model is illustrated in Algorithm 1. Within the K-fold 

cross-validation method, the original dataset is randomly partitioned into k equally sized subsets. Each iteration selects one 

subset the model's validation dataset while using the remaining k-1 subsets as the training data. This process is repeated k 

times, rotating through each subset as the validation set, until all subsets have been used for validation. The metrics results 

obtained from each training validation are recorded, and the average of these k results yields the overall training 

performance for a particular set of hyperparameters. This iterative training and testing process makes the model 

performance assessment more reliable and reduces the sensitivity to the data partitioning method.

Algorithm1 

Algorithm: RF 

Input: Data set S 

            S = S
1 
∪ S

2 
∪ … ∪ S

K 
,  S

i 
∩ S

j 
=∅（∀ i ≠ j） 

            parameters: the number of decision trees T 

Process: 

1:  While k ≤ K do 

2:         S
train

← training set, S - S
k
 

3:         S
test  

← test set, S
k
 

4:         N
  
← S

train
size 

5:         n
  
← S

test
size 
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2.2.4 Feature selection 

This investigation incorporates 24 comprehensive features, which, while enriching the dataset, also extend the data 

collection phase and augment the model’s complexity. Effective feature selection is pivotal, as it not only simplifies the 

model by eliminating features with high intercorrelations but also enhances its generalization capabilities and abbreviates 

the training duration. Conventionally, RFE operates by sequentially removing the least significant feature. This procedure, 

although systematic, may inadvertently undermine the model's performance, particularly when the excised feature plays a 

pivotal role in certain combinations.  

To address these shortcomings, the present study proposes an advanced modification of RFE that integrates aspects 

of stepwise regression. Following the exclusion of each feature, a comprehensive assessment is conducted to evaluate its 

interaction with other features and overall impact on model performance. Should this assessment reveal that certain 

eliminated features substantially bolster the model’s efficacy, these features are subsequently reinstated in the feature set 

during later iterations. This meticulous approach refines the feature selection process, culminating in an optimal feature 

subset that significantly enhances the model’s accuracy and robustness. Algorithm 2 outlines the algorithmic process.

Algorithm2 

Algorithm: Recursive Feature Elimination Algorithm 

Input: feature x, label y, model model, number of target features n_features_to_select 

Process: 
1: Indicator = [] 

2: current_number_of_features = total number of features N 

3: function recursiveFeatureElimination(x, y, model, n_features_to_select): 

     

4:    while current_number_of_features > n_features_to_select: 

5:        model.fit(x, y)  // Train the model on current feature set 

6:        importance = model.feature_importances_  // Calculate feature importances 

         

7:        // Identify and remove the least important feature 

8:        least_important_index = index of feature with min(importance) 

9:        x = remove feature at least_important_index from x 

10:        current_number_of_features = current_number_of_features - 1 

         

11:        // Evaluate model performance 

12:        indicator = evaluate_model(model, x, y)  // Function to evaluate model performance 

13:        Indicator.append(indicator)  // Record performance indicator 

         

14:        // Record feature if performance worsens 

15:        delete_feature=[] 

16:        if length(Indicator) > 1 and indicator worse than Indicator[-2]: 

17:            record the removed feature as delete_feature 

         

18:        // Recursive call for next iteration 

19:        recursiveFeatureElimination(x, y, model, n_features_to_select) 

     

20:    return subset of features: subset = [current_feature, delete_feature] 

 

21: End function 

 

In Algorithm2, further stepwise explain are as follows: 

1) Initialization (Lines 1-3): Initialize ‘Indicator’ to store performance indicators and ‘current_number_of_features’ 

to track feature count. Initialize the ‘recursiveFeatureElimination’ function. 



 

2) Loop and Training (Lines 4-5): Enter a loop to iteratively eliminate features until ‘current_number_of_features’ 

reaches ‘n_features_to_select’. Train the model (‘model.fit’) on the current feature set (‘x’ and ‘y’). 

3) Feature Importance Calculation (Line 6): Calculate feature importance using the model's ‘feature_importances_’ 

attribute. 

4) Feature Removal (Lines 7-10): Identify and remove the least important feature from ‘x’ based on calculated 

importance. Update ‘current_number_of_features’ accordingly. 

5) Performance Evaluation (Lines 11-13): Evaluate model performance using the reduced feature set (‘x’ and ‘y’). 

Record the performance indicator (‘indicator’) in ‘Indicator’. 

6) Comparison and Recording (Lines 14-17): Compare the current performance indicator with the last recorded one 

(‘Indicator[-2]’). If performance worsens, record the removed feature as ‘delete_feature’. 

7) Recursive Call (Lines 18-19): Recursively call ‘recursiveFeatureElimination’ to continue feature elimination 

with the updated feature set. 

8) Return (Line 20): Once ‘current_number_of_features’ equals ‘n_features_to_select’, return the subset of features 

selected (‘subset = [current_feature, delete_feature]’). 

Begin by establishing the desired number of target features. the original features is then input into the RF algorithm, 

the results of the performance metrics obtained from this training will be recorded, and the importance of the features will 

be ranked according to the RF's feature importance evaluation function. Afterwards, selecting features based on the 

importance derived from random forest can identify the most influential features on the model's predictive outcomes. After 

eliminating the features with the least importance, proceed to the next round of training with the remaining features. Record 

any excluded features when the metrics from the subsequent training round show a decline compared to the previous results. 

The process is repeated until the number of features reaches the target number of features, and the recorded excluded 

features are added to the remaining features to obtain the selected subset of features after screening. 

2.2.5 Hyperparameter determination 

The number of decision trees is a crucial hyperparameter in the RF algorithm. RF enhances the generalization and 

stability of the model by aggregating the predictions of multiple decision trees. Each decision tree conducts random 

sampling on the training data and performs splits on randomly selected subsets of features, mitigating overfitting risks. 

Thus, while increasing the number of decision trees in a RF typically improves performance, there's a limit to the increase 

as adding trees indefinitely may not guarantee improved performance. Considering the cost of computational resources and 

time consumption, it's essential to establish a range of decision tree numbers. In this research, we follow precedents set in 

prior studies by setting the number of trees in the RF algorithm between 0 and 500[19]. By traversing this range of parameters 

and observing the relationship between performance metrics and the number of decision trees through visualizations, we 

can determine the trend of performance metrics' variations and ascertain the optimal number of decision trees. 

2.3 Model test 

In this paper, we test the adjusted RF algorithm using untrained data. Meteorological features are used as inputs to 

predict the availability of sector route segment. In addition, based on the timeframe of the samples, we determined the 

corresponding capacity of sector route segments for each period. Multiplying airspace availability by period capacity 

yielded the sector route segment capacity predicted by the CWSRC model. Analyzing the differences between the predicted 

results on the test set and the actual values, and comparing them with traditional capacity prediction methods, allowed us 

to further evaluate the effectiveness of the CWSRC model's predictions. 

2.4 Model stepwise 

The development steps of the CWSRC model are as follows. 

1) Label definition: Initially, sample labels are defined, with SRA being utilized as the primary label for 

this study. 



 

 

2) Data Synthesis: The identified labels and corresponding features are integrated to form a 

comprehensive sample set. 

3) Training and Validation Set Split: This sample set is subsequently partitioned into training-validation 

sets and a separate test set to facilitate robust model evaluation. 

4) Performance Metrics Definition: At this stage, performance metrics such as MAE, MSE, RMSE, and 

R2 are selected to assess the effectiveness of the model. 

5) Cross Validation: The model is trained utilizing cross-validation techniques to enhance its 

generalizability. 

6) Feature Selection: An enhanced RFE algorithm is employed to identify and retain the most impactful 

features. 

7) Parameter Optimization: Following feature selection, the model’s hyperparameters are finely tuned to 

optimize performance. 

8) Execution on Test Data: The test set, segregated in the data segmentation phase, is employed to 

evaluate the optimally trained model. 

9) Results Analysis: The outcomes of the model testing are analyzed. Key performance indicators are computed 

and compared against those derived from traditional methodologies. 

3 Result and Discussion 

This section uses the ENH-YIH sector route segment in the Wuhan control area of China as an example. Based on the 

methods detailed in Section 2, specific feature selection and parameter optimization are conducted to enhance model 

performance. The optimization results of the RF-based CWSRC model are compared with those of other machine learning 

algorithms in a conducted comparative analysis. This study is to assess the generalization ability of the model on new, 

untrained data and to compare the performance of the CWSRC model against traditional methods such as Maxflow/Mincut 

and the scanning line approach. MAE, MSE, RMSE and R2 are used as metrics to evaluate our objectives in the test dataset. 

3.1 Data preparation 

In this paper, the historical radar trajectory data, flight plan data and meteorological data from August 3 to 31, 2018 of 

a busy sector route in Wuhan control area is used for verification of CWSRC model. The horizontal range of Wuhan control 

area is shown in Figure.6, and the vertical range is from 6,000 to 7,800 meters.

 
Figure 6. Position of the ENY-YIH 

The sector route is ENH-YIH, located in sector 03 with a length of 183km in an east-west direction. It is the part of 

the sector route segment in the Shanghai-Chengdu direction and the flights accounts for about 30% of the total. Radar 

trajectory data is updated at a rate of 8 seconds, including the time, flight number, height, longitude, latitude and other 

information of historical flights. Longitude and latitude can be used to determine whether a trajectory exists within a sector 

area; time can be used to determine which time period the flight's traffic belongs to; and altitude is used to determine 

whether the flight is within the altitude range of the sector route segment. The meteorological data in the China's airspace 



 

29°N-33°N and 109°E-116°E, VIL, CR and ET, is stored as 0.01° × 0.01° (Longitude × Latitude) and updated at a rate of 

6 minutes. 

Statistics of flights number in each period from August 3 to 31, 2018 are shown in Figure. 7. The time in the abscissa 

refers to one hour after this point in time. The busy periods of both two sector routes are from 8:00 to 23:00 each day, 

therefore historical flights data and weather data of these periods are selected in this paper. There are 4350 periods in the 

sector route. After screening, there are 3350 periods of ENH-YIH meeting convective weather conditions. We employed a 

ten-fold cross-validation approach, dividing the dataset into training and validation sets at a ratio of 9:1. Additionally, data 

from 46 time periods were utilized as the test set for this study. 

 
Figure 7. Distribution of operational capacity across time periods in the ENH-YIH 

3.2 Model Optimization 

The number of target features is set to 1, and the RF algorithm with default parameters is employed for recursive 

feature elimination. As the feature set iterated down to just one feature, the performance metrics curves for the entire 

iterative process were observed. Figure. 8 displays the results of the model's prediction for SRA using the metrics MAE, 

MSE, RMSE, and R2.

 
Figure 8. Changes in metrics with different number of iterations

Based on the performance metrics plotted in the aforementioned figure, Table 2 presents the impact of each iteration's 

feature elimination on the model's performance. An improvement in model performance upon feature elimination suggests 



 

 

that the feature contributed more erroneous information, necessitating its removal. Conversely, when removal features make 

the model performance worse, it means that the feature is more effective. Therefore, the features causing a relative 

deterioration in model performance compared to the previous iteration are considered the optimal feature subset for 

elimination. From the table, the optimal feature subset excludes: maxCR, 50th VIL , Proportion of VIL ≥ level 

3,CR_parallel_mean , VIL_parallel_min. The comparison between the model's performance using this feature subset and 

the original features is illustrated in Table 3. Although there is minimal change in MAE, MSE, RMSE, and R2, the training 

prediction time decreased from 1′24″to 1′10″ with the reduced feature set.
Table 2: Indicator performance after feature culling relative to the previous iteration (ρ: denotes the 

performance with the previous round after removing the feature) 

Features ρ Features ρ 

50th ET Worse Proportion of VIL≥level 3 Better 

75th ET Worse Proportion of CR≥41dBZ Worse 

90th ET Worse CR_parallel_mean Better 

maxET Worse CR_parallel_max Worse 

50th CR Worse CR_parallel_min Worse 

75th CR Worse CR_parallel_median Worse 

90th CR Worse VIL_parallel_mean Worse 

maxCR Better VIL_parallel_max Worse 

50th VIL Better VIL_parallel_min Better 

75h VIL Worse VIL_parallel_median Worse 

90th VIL Worse Cross_flow_CR Worse 

maxVIL Worse Cross_flow_VIL -- 

Table 3: The performance metrics of raw features versus filtered features 

Features MAE MSE RMSE R2 Time 

Original 0.08276 0.01173 0.10817 0.81897 0:01:24.47 

Filtering subsets  0.08289 0.01179 0.10846 0.81801 0:01:10.19 

Table 4 presents the feature importance rankings within the RF model. Notably, the transverse and longitudinal weather 

characteristics of the sector rank highest in importance, validating our proposed approach that incorporating directional 

features of flights significantly enhances the prediction of sector route capacity. 

Table 4: Importance of features 

Feature Importance Feature Importance 

Cross_flow_VIL 23.89% 90th ET 3.37% 

VIL_parallel_median 13.72% maxVIL 3.36% 

VIL_parallel_mean 8.03% 50th ET 3.15% 

CR_parallel_max 5.87% 75th CR 2.69% 

CR_parallel_median 5.31% 90th CR 2.54% 

50th CR 4.74% Proportion of CR≥41dBZ 2.43% 

CR_parallel_min 3.88% 90th VIL 2.21% 

75th ET 3.86% 75h VIL 1.98% 

maxET 3.84% Cross_flow_CR 1.64% 

VIL_parallel_max 3.46%   

 



 

The selected subset of optimal features is input into the model with default parameters. The number of decision trees 

for RF is set from 1 to 500 to derive the model performance metrics at each training. As depicted in Figure. 9, after the 

number of trees is 100, there was no significant change observed in MAE, MSE, RMSE, and R2, indicating convergence. 

However, the training time becomes longer as the number of trees increases. Considering the cost of time, this study settles 

on 100 trees for RF algorithm.

 
Figure 9. Different performance indicators based on tree numbers

3.3 Result analysis 

To validate the model, this study excluded data from August 30 and utilized data from August 3 to August 31, 2018, 

for model training and testing. August 30, 2018, September 20, 2018, and September 25, 2018, were selected as case study 

days for model testing, as convective weather was detected in the sector route segment on these days. Due to the 

predominance of clear weather samples in the historical dataset, oversampling techniques were applied to the convective 

weather samples. The algorithm's performance was analyzed based on the model's results on the validation set. Furthermore, 

the model's performance on the test set was evaluated. 

3.3.1 Algorithm analysis 

In order to verify the superior performance of RF algorithm compared to other machine learning algorithms, this paper 

compares the results predicted by RF with those predicted by the KNN and MLP algorithms with default parameters. Among 

them, the parameters of machine learning algorithm are set as follows. The distance metric in KNN algorithm is Euclidean 

distance, and k is 10. The number of decision trees in RF is 100. There are two hidden layers in MLP, and the hidden layer 

units are 4 and 7, respectively. The activation function is Relu, solver is adam, the learning rate is 0.001, and the maximum 

number of iterations is 300. 

Figure. 10 illustrates the residual distributions of SRAp for KNN, MLP and RF on the cross-validated test set, where 

the interval of the statistics is [-0.6, 0.6] with a step size of 0.05. Notably, the predominant residual distribution for RF lies 

within the [-0.05, 0.05] range, exhibiting significantly higher sample counts compared to MLP and KNN within this interval. 

The number of samples with residuals between [-0.3, 0.3] is 3309, 3106 and 3335 of KNN, MLP and RF respectively, 

accounting for 98.78%, 92.72%and 99.55% of the total data respectively. The number of samples with residuals between 

[-0.2, 0.2] is 2882, 2592 and 3129 respectively, accounting for 86.03%, 77.37% and 93.403% of the total data respectively. 



 

 

The number of samples with residuals between [-0.1, 0.1] is 1637, 1435 and 2131 respectively, accounting for 48.87%, 

42.84% and 63.61% of the total data respectively.

   

(a) KNN residual (b) MLP residual (b) RF residual 

Figure 10. Residual plots of KNN, MLP, and RF algorithms 

3.3.2 Analysis of SRCp 

In this section, the SRCp of ENH-YIH obtained from the RF-based CWSRC model is analysed and compared with the 

results from Maxflow/Mincut and scanning lines. Considering that the weather conditions typically do not undergo 

drastically in a short period of time, this study represents the weather at half-hour intervals as representative of the weather 

for that period. Additionally, the weather conditions and flight trajectories for the prediction periods of the three case study 

days are depicted in Figures. 11, 12, and 13, respectively. 

    
(a) 12:00-13:00 (b) 13:00-14:00 (c) 14:00-15:00 (d) 15:00-16:00 

    
(e) 16:00-17:00 (f) 17:00-18:00 (g) 18:00-19:00 (h) 19:00-20:00 

    
(i) 20:00-21:00 (j) 21:00-22:00 (k) 22:00-23:00 (l) 23:00-24:00 

Figure 11. Flight tracks and weather on ENH-YIH from 12:00-24:00 on August 30, 2018 



 

    
(a) 10:00-11:00 (b) 11:00-12:00 (c) 12:00-13:00 (d) 13:00-14:00 

  
(e) 14:00-15:00 (f) 15:00-16:00 

Figure 12. Flight tracks and weather on ENH-YIH from 10:00-16:00 on September 20, 2018 

    
(a) 17:00-18:00 (b) 18:00-19:00 (c) 19:00-20:00 (d) 20:00-21:00 

Figure 13. Flight tracks and weather on ENH-YIH from 17:00-21:00 on September 25, 2018 

The prediction results for the three case study days are presented in Figure. 14. Table 5 presents the overall performance 

of the models on the three case study days. We employed MAE, MSE, RMSE and R2 as metrics to evaluate the predictive 

performance of the models. It is evident that the CWSRC model exhibits the lowest errors in metrics, indicating superior 

predictive performance compared to the Maxflow/Mincut and scanning line methods. 

 
Figure 14. Comparison chart of capacity prediction results for three methods 

Table 5 Deviation of predicted results from actual values for CWSRC model with Maxflow/Mincut, scanning line 

Indicators CWSRC Maxflow/Mincut Scanning line 

MAE 1.17  2.12  3.19  

MSE 2.84  7.42  12.80  

RMSE 1.53  2.56  3.57  

R2 0.74  0.26  -1.22  



 

 

On August 30, 2018, the Wuhan terminal area experienced an extended period of convective weather. During this day, 

the weather in the sector route segment transitioned from convective to clear conditions and then back to convective weather 

within the daytime. The sector route segment was notably affected by the fluctuations in convective weather, as illustrated 

in Figure. 11. Given the significant and typical nature of the convective weather on this day, we conducted a detailed 

analysis of the August 30 case. 

Figure. 11 illustrates the hourly meteorological changes and flight trajectories on the ENH-YIH segment from 12:00 

to 24:00 on August 30. The blue line represents the flight trajectories, the purple line represents the route’s centerline, and 

the black represents the route's boundaries. From 12:00 to 15:00, convective weather progressively emerged at the segment's 

right end, correspondingly diminishing the flight traffic. In 15:00-17:00 the weather was gradually dissipating, but flight 

frequency remains low, partly due to it being a less busy time of the day with naturally lower flight volumes, and potentially 

because of reduced flights scheduled for that day. From 17:00-20:00 there is no weather on the segment and the traffic 

volume is close to the statistical capacity of the sector under clear weather. From 20:00 to 24:00, a substantial amount of 

convective weather appears at the right end of the sector route segment, resulting in a gradual decrease in segment capacity, 

eventually leading to no flight traffic. 

As depicted in the left subplot of Figure. 14, the results predicted by RF are in the highest degree of conformity with 

the actual flow changes, and the trend remains consistent across each time interval. From 12:00 to 13:00, the scanning line 

method's prediction closely matched the actual traffic volume. However, RF's prediction was lower, reflecting the partial 

coverage of the flight route by the weather. The scanning line method reflects the effect better at this time. In 13:00-15:00, 

there is a wide range of convective weather in the sector, RF and Maxflow/Minicut effectively capture this change, while 

the scanning line method's predictions significantly diverged from the actual values. Between 15:00 and 17:00, although 

convective weather was gradually dissipating, the capacity under the recorded clear weather continued to decline during 

this period. As a result, the predictions from these methods demonstrated a decreasing trend, with RF predictions aligning 

more closely with the actual values. Between 17:00 and 20:00, the segment experienced clear skies, with traffic volume 

approaching the segment's full capacity under optimal conditions. However, from 20:00 to 24:00, significant convective 

weather developed at the segment's right end. This led to a steady decline in capacity and, ultimately, the cessation of flight 

traffic by the end of the period. RF accurately predicted a value of 0 between 22:30 and 23:30, consistent with the actual 

results. Yet, the prediction for 21:00-21:30 was lower than the actual traffic volume. This was because during this time, 

convective weather only covered the upper right tail end of the sector. There was no convective weather in other areas and 

flights can still fly and cross the route from the lower right side. Although flights were still navigable, the convective 

weather features were more pronounced during this period, resulting in the underestimated prediction. The 

Maxflow/Minicut prediction aligned with RF but fell short in comparison, notably deviating from the actual values at 23:30. 

The scanning line method gave poor prediction under convective weather. In general, the scanning line method performs 

better in predicting under minimal or no weather conditions but fares poorly under convective weather. Maxflow/Minicut 

exhibits a preference for predicting accurately during convective weather but falls short of RF's predictive performance, 

especially when there's no weather. RF demonstrates consistently strong predictive capabilities under both conditions 

Figure. 12 and 13 illustrate the meteorological conditions observed on selected days in September 2018. The flight 

corridor under study is located in a region where convective weather predominantly occurs during the summer months. 

Notably, the intensity, duration, and coverage of convective weather events in September are generally less extensive than 

those observed in August. From the right panel and the center subplot of Figure. 14, the CWSRC model demonstrated 

superior accuracy in traffic forecasting relative to conventional methodologies. Nonetheless, the case studies revealed 

intriguing phenomena worthy of further investigation: On September 20, 2018, between 12:00 and 13:00, although 

convective weather was present, the convective cells were dispersed and individually small, permitting direct flight traversal 

through these areas. A similar occurrence was documented in the case study from September 25, 2018, suggesting a pattern 

that merits deeper exploration in future studies. 

 



 

4 Conclusion

This study utilized an improved RFE algorithm to extract meteorological features and developed CWSRC model to 

predict sector route capacity. The model employs a RF supervised regression algorithm, using ten-fold cross-validation for 

training and calibrating against recorded traffic data to compute capacity. The analysis of three case studies confirms that 

the CWSRC model's predictions closely match the actual flight volumes during convective weather events. Key findings 

are outlined below: 

(1) The CWSRC model achieved favorable performance metrics during training and exhibited reduced errors 

compared to traditional methods in the case study, underscoring its accuracy and robustness. 

(2) RF algorithm showed a higher percentage (93.403%) of residuals within the range [-0.2, 0.2] on the validation set 

compared to KNN (86.03%) and MLP (77.37%) algorithms. This confirms that RF outperforms other machine learning 

algorithms in the CWSRC model. 

(3) Due to the different traffic characteristics in different sector route segments, the influence of different weather 

factors on the prediction of sector route segment capacity is also different.  

However, the model tends to underestimate capacity in scenarios with small and dispersed convective weather. It also 

tends to underestimate capacity when convective weather presenting at the beginning and end of sector route segment. This 

indicates a need for further research to enhance model accuracy: 1) incorporating adjacent airspace weather conditions as 

input features, 2) assessing the impact of dispersed, small convective cells that flights often traverse, and 3) considering the 

interaction effects of traffic volume on adjacent route segments.  
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