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SUPPLEMENTARY MATERIAL: THE NUMBER OF INDIVIDUALS ALIVE1

IN A BRANCHING PROCESS GIVEN ONLY TIMES OF DEATHS2
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In the supplementary material, the section counter continues from the main paper8

with the first section being Section 8. References to sections, theorems, equations or9

similar, with a section number less than 8 refer to statements or results in the main10

paper.11

In Section 8 we consider two special cases of the phase-type lifetime distribution,12

the hyper-exponential distribution (mixture of 𝐽 > 1 exponential distributions) and13

the Erlang distribution (sum of 𝐽 > 1 i.i.d. exponential distributions). We study time-14

homogeneous branching processes with all deaths detected (for all 𝑡 ∈ R, d𝑡 = 1)15

and show that the Erlang lifetime distribution satisfies (3.16), which by Corollary 3.1,16

gives the number of individuals alive immediately after the 𝑘 𝑡ℎ death as a mixture17

of negative binomial distributions. In Section 9, we discuss the case where 𝐿 ≡ 1,18

a constant lifetime which arises as the limit as 𝐽 → ∞ of 𝐿 ∼ Gamma(𝐽, 𝐽). In19

Section 10 we derive the distribution of the number of individuals alive at the first20

detected death given we know the time of birth of the initial individual in Lemma 4.21

We comment on how Theorem 3.1 can be adapted to the scenario where the time of22

birth of the initial individual is known with Lemma 4 replacing Lemma 5.2. In Section23

11, we provide two more numerical examples by applying the approximation given in24

Section 3.5.2 to simulated data including an SIR epidemic with an Erlang distributed25

infectious period.26

8. Special cases of phase-type lifetime distributions27

Throughout this section we consider a time-homogeneous branching process with28

𝛽𝑡 = 𝛼 (> 0) (𝑡 ∈ R) and all deaths detected, d𝑡 = 1. This leads to simplification29

in probabilities related to exploration process defined in Section 4.2, which no longer30

depend on 𝑡. Using results from Section 4.3, we have that, for 𝑡 ∈ R, 𝜏 > 0, 0 ≤ 𝑢 ≤ 𝜏31

and 𝑖, 𝑗 = 1, 2, . . . , 𝐽,32

𝑝𝑖 𝑗(𝑡, 𝑢, 𝜏) = 𝑃𝑖 𝑗(𝜏 − 𝑢) (𝑖, 𝑗 = 1, 2, . . . , 𝐽)
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2 F. BALL AND P. NEAL

and33

𝑞𝑖(𝑡, 𝑢, 𝜏) = 0 (𝑖 = 1, 2, . . . , 𝐽).

For 𝑗 = 1, 2, . . . , 𝐽 and 𝑢 ≥ 0, the probability that an individual is of type 𝑗 , 𝑢 units34

after they are born, is
∑𝐽

𝑖=1 𝜒𝑖𝑃𝑖 𝑗(𝑢), for which we employ the shorthand notation35

𝜒 𝑗(𝑢). Then, for 𝑡 ∈ R and 𝜏 > 0, it follows from (4.14) that 𝜓 𝑗(𝑡; 𝜏) = 𝜓̄ 𝑗(𝜏), where36

𝜓̄ 𝑗(𝜏) =
∫ 𝜏

0
𝛼 exp(−𝛼𝑢)𝜒 𝑗(𝑢) 𝑑𝑢, (8.1)

and from (4.15) that 𝜁(𝑡; 𝜏) = 𝜁(𝜏), where37

𝜁(𝜏) = exp(−𝛼𝜏). (8.2)

Let 𝜓̄(𝜏) =
∑𝐽

𝑗=1 𝜓̄ 𝑗(𝜏) and note that ¯𝜓(𝜏) =
∫ 𝜏

0 𝛼 exp(−𝛼𝑢)P(𝐿 > 𝑢) 𝑑𝑢. As in38

Section 3.3, let 𝜋0 = 1 − 𝜓̄(∞) and for 𝑗 = 1, 2, . . . , 𝐽, let 𝜂0
𝑗
= 𝜓̄ 𝑗(∞)/𝜓̄(∞). Setting39

𝑡 = 0 in (3.1) yields, for 𝜏 > 0, that40

𝜋𝜏 = 1 − 𝜓̄(𝜏) − exp(−𝛼𝜏)
𝐽∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝜓̄(∞)𝑃𝑖 𝑗(𝜏)

= 𝜋0 + 𝜓̄(∞) − 𝜓̄(𝜏) − exp(−𝛼𝜏)
𝐽∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝜓̄(∞)𝑃𝑖 𝑗(𝜏).

Now,41

exp(−𝛼𝜏)
𝐽∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝜓̄(∞)𝑃𝑖 𝑗(𝜏) =
𝐽∑︁
𝑖=1

𝐽∑︁
𝑗=1

∫ ∞

0
𝛼 exp(−𝛼(𝑢 + 𝜏))𝜒𝑖(𝑢)𝑃𝑖 𝑗(𝜏) 𝑑𝑢

=

∫ ∞

0
𝛼 exp(−𝛼(𝑢 + 𝜏))P(𝐿 > 𝑢 + 𝜏) 𝑑𝑢

=

∫ ∞

𝜏

𝛼 exp(−𝛼𝑢)P(𝐿 > 𝑢) 𝑑𝑢

= 𝜓̄(∞) − 𝜓̄(𝜏),

so 𝜋𝜏 = 𝜋0 for all 𝜏 ≥ 0.42
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Setting 𝑡 = 0 in (3.2) now yields, for 𝜏 > 0 and 𝑗 = 1, 2, . . . , 𝐽, that43

(1 − 𝜋0)𝜂𝜏𝑗 = 𝜓̄ 𝑗(𝜏) + exp(−𝛼𝜏)
𝐽∑︁
𝑖=1

𝜓̄𝑖(∞)𝑃𝑖 𝑗(𝜏)

=

∫ 𝜏

0
𝛼 exp(−𝛼𝑢)𝜒 𝑗(𝑢) 𝑑𝑢 +

𝐽∑︁
𝑖=1

∫ ∞

0
𝛼 exp(−𝛼(𝑢 + 𝜏))𝜒𝑖(𝑢)𝑃𝑖 𝑗(𝜏) 𝑑𝑢

=

∫ 𝜏

0
𝛼 exp(−𝛼𝑢)𝜒 𝑗(𝑢) 𝑑𝑢 +

∫ ∞

0
𝛼 exp(−𝛼(𝑢 + 𝜏))𝜒 𝑗(𝑡 + 𝑢) 𝑑𝑢

=

∫ ∞

0
𝛼 exp(−𝛼𝑢)𝜒 𝑗(𝑢) 𝑑𝑢

= 𝜓̄ 𝑗(∞),

so 𝜂𝜏
𝑗
= 𝜂0

𝑗
for all 𝜏 ≥ 0.44

Let45

𝜋̄ = E[exp(−𝛼𝐿)], (8.3)

the probability that an individual does not give birth during their lifetime. It is46

straightforward to show that 𝜋̄ = 1 − 𝜓̄(∞), so for all 𝑡 ≥ 0, we have that 𝜋𝑡 = 𝜋̄. For47

𝑗 = 1, 2, . . . , 𝐽, let 𝜂 𝑗 = 𝜂0
𝑗
, which can be expressed as48

𝜂 𝑗 =
𝜓̄ 𝑗(∞)
𝜓̄(∞)

=
𝜓̄ 𝑗(∞)
1 − 𝜋̄

. (8.4)

Let 𝑓𝐿(𝑢) denote the probability density function of 𝐿. Since the probability49

that an individual is of type 𝑗 , 𝑢 units after they are born, is 𝜒 𝑗(𝑢), we have that50

𝑓𝐿(𝑢) =
∑𝐽

𝑗=1 𝜒 𝑗(𝑢)𝛾 𝑗 (𝑢 ≥ 0) and from (8.4), (8.1) and (8.3) that51

(1 − 𝜋̄)
𝐽∑︁
𝑗=1

𝜂 𝑗𝛾 𝑗 =

𝐽∑︁
𝑗=1

𝜓̄ 𝑗(∞)𝛾 𝑗

=

∫ ∞

0
𝛼 exp(−𝛼𝑢) 𝑓𝐿(𝑢) 𝑑𝑢

= 𝛼E[exp(−𝛼𝐿)] = 𝛼𝜋̄. (8.5)

For a > −(1 − 𝜋̄)𝜼̄, let W̄(a) denote the 𝐽-dimensional random variable with, for52

𝜽 ∈ [0, 1]𝐽 , probability generating function (pgf)53

𝜑̄(𝜽; a) = E


𝐽∏
𝑗=1

𝜃
𝑊̄𝑗 (a)
𝑗


=

1 +∑𝐽
𝑗=1 𝑎 𝑗𝜃 𝑗

1 +∑𝐽
𝑗=1 𝑎 𝑗

× 𝜋̄

1 − (1 − 𝜋̄)
∑𝐽

𝑗=1 𝜂 𝑗𝜃 𝑗

.
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Thus W̄(a) is the time-homogeneous version of W(𝑡, a) defined in (3.4).54

Finally, for 𝑖 = 1, 2, . . . , 𝐽 and 𝑡 ≥ 0, let55

𝐶̄𝑖(𝑡) =
(1 − 𝜋̄)

∑𝐽
𝑗=1 𝛾 𝑗

[
𝜓̄ 𝑗(𝑡)𝜂𝑖 − 𝜓̄𝑖(𝑡)𝜂 𝑗

]∑𝐽
𝑗=1 𝛾 𝑗 [(1 − 𝜋̄)𝜂 𝑗 − 𝜓̄ 𝑗(𝑡)]

(8.6)

=
𝐷̄𝑖(𝑡)
𝐸̄(𝑡)

, (8.7)

say, where 𝐸̄(𝑡) > 0. Note that (8.6) is the time-homogeneous version of (3.19) and56

𝐶̄𝑖(𝑡) = 𝑐𝑖(0, 𝑡; 0) is defined in (3.8). Let 𝐶̄(𝑡) =
∑𝐽

𝑖=1 𝐶̄𝑖(𝑡) with 𝐶̄(𝑡) = 𝐷̄(𝑡)/𝐸̄(𝑡),57

where58

𝐷̄(𝑡) =
𝐽∑︁
𝑖=1

𝐷̄𝑖(𝑡) = (1 − 𝜋̄)
𝐽∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝛾 𝑗

[
𝜓̄ 𝑗(𝑡)𝜂𝑖 − 𝜓̄𝑖(𝑡)𝜂 𝑗

]
. (8.8)

8.1. Mixture of Exponential Distributions59

For a mixture of 𝐽 exponentials with the 𝑗 𝑡ℎ mixture component being Exp(𝛾 𝑗), we60

have that 𝜒 𝑗(𝑢) = 𝜒 𝑗 exp(−𝛾 𝑗𝑢) giving61

𝜋̄ =

𝐽∑︁
𝑗=1

𝜒 𝑗𝛾 𝑗

𝛼 + 𝛾 𝑗

, (8.9)

and62

(1 − 𝜋̄)𝜂 𝑗 = 𝜓̄ 𝑗(∞) =
∫ ∞

0
𝛼 exp(−𝛼𝑢)𝜒 𝑗 exp(−𝛾 𝑗𝑢) 𝑑𝑢 =

𝜒 𝑗𝛼

𝛼 + 𝛾 𝑗

. (8.10)

To ease the presentation, let 𝜉𝑖 = 𝜒𝑖
𝛼+𝛾𝑖 (𝑖 = 1, 2, . . . , 𝐽). Then 1− 𝜋̄ = 𝛼

∑𝐽
𝑗=1 𝜉 𝑗 , since63 ∑𝐽

𝑗=1 𝜂 𝑗 = 1. It is trivial to show that, for all 𝑖 = 1, 2, . . . , 𝐽 and 𝜏 ≥ 0,64

𝜓̄𝑖(𝜏) = 𝛼𝜉𝑖 [1 − exp(−{𝛼 + 𝛾𝑖}𝜏)] = (1 − 𝜋̄)𝜂𝑖 [1 − exp(−{𝛼 + 𝛾𝑖}𝜏)] . (8.11)

From (8.10), (8.11) and (8.7), we have that65

𝐸̄(𝑡) = 𝛼 exp(−𝛼𝑡)
𝐽∑︁
𝑗=1

𝛾 𝑗𝜉 𝑗 exp(−𝛾 𝑗 𝑡)

= 𝛼 exp(−𝛼𝑡)𝑔(𝑡), say. (8.12)

Similarly using (8.10), (8.11) and (8.8),66

𝐷̄(𝑡) = 𝛼

𝐽∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝛾 𝑗

[
𝜉𝑖𝜓̄ 𝑗(𝑡) − 𝜉 𝑗 𝜓̄𝑖(𝑡)

]
= 𝛼2 exp(−𝛼𝑡)

𝐽∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝛾 𝑗𝜉𝑖𝜉 𝑗 [exp(−𝛾𝑖𝑡) − exp(−𝛾 𝑗 𝑡)] . (8.13)



The number of individuals alive in a branching process given only times of deaths 5

The summands are zero when 𝑖 = 𝑗 , so67

𝐷̄(𝑡) = 𝛼2 exp(−𝛼𝜏)
𝐽−1∑︁
𝑖=1

𝐽∑︁
𝑗=𝑖+1

𝜉𝑖𝜉 𝑗{𝛾 𝑗 [exp(−𝛾𝑖𝑡) − exp(−𝛾 𝑗 𝑡)] + 𝛾𝑖 [exp(−𝛾 𝑗 𝑡) − exp(−𝛾𝑖𝑡)]},

= 𝛼2 exp(−𝛼𝜏)
𝐽−1∑︁
𝑖=1

𝐽∑︁
𝑗=𝑖+1

𝜉𝑖𝜉 𝑗(𝛾 𝑗 − 𝛾𝑖)[exp(−𝛾𝑖𝑡) − exp(−𝛾 𝑗 𝑡)] .

Thus 𝐷̄(𝑡) = 𝛼2 exp(−𝛼𝑡) 𝑓 (𝑡), where68

𝑓 (𝑡) =
𝐽−1∑︁
𝑖=1

𝐽∑︁
𝑗=𝑖

(𝛾 𝑗 − 𝛾𝑖)𝜉𝑖𝜉 𝑗
[
exp(−𝛾𝑖𝑡) − exp(−𝛾 𝑗 𝑡)

]
. (8.14)

The term when 𝑖 = 𝑗 has been included in the double summation to ease the subsequent69

algebra.70

For all 𝑡 > 0, if 𝛾 𝑗 ≠ 𝛾𝑖,71

(𝛾 𝑗 − 𝛾𝑖)
[
exp(−𝛾𝑖𝜏) − exp(−𝛾 𝑗𝜏)

]
> 0,

so it follows from (8.14) that, for 𝑡 > 0, 𝐷̄(𝑡) > 0, and hence, 𝐶̄(𝑡) > 0. Since the72

numbers of individuals of each type alive immediately following the first death are73

distributed according to W̄(0), it follows from Lemma 5.4, (5.29), that74

{X2 |𝑇2 = 𝜏} 𝐷
= W̄(C̄(𝜏)) + W̄(0), (8.15)

where C̄(𝜏) = (𝐶̄1(𝜏), 𝐶̄2(𝜏), . . . , 𝐶̄𝐽 (𝜏)) and W̄(C̄(𝜏)) and W̄(0) are independent.75

Therefore, it follows from Lemma 3.1 that the size of the population immediately after76

the second death,77

{𝑋∗
2 |𝑇2 = 𝜏} 𝐷

= NegBin(2, 𝜋̄) + Bin
(

1,
𝐶̄(𝜏)

1 + 𝐶̄(𝜏)

)
,

where the two random variables on the right-hand side are independent. In Lemma 178

below we show that 𝐶̄(𝜏) is increasing in 𝜏, and consequently that, 𝑋∗
2 is stochastically79

increasing in 𝜏.80

Lemma 1. For 𝐽 ≥ 2 and 𝜏 ≥ 0,81

𝐶̄′(𝜏) =
𝛼

𝑔(𝜏)2

(
𝐽∑︁
𝑖=1

𝛾𝑖𝜉𝑖

)(
𝐽−1∑︁
𝑘=1

𝐽∑︁
𝑚=𝑘+1

𝜉𝑘𝜉𝑚(𝛾𝑘 − 𝛾𝑚)2 exp(−[𝛾𝑘 + 𝛾𝑚]𝜏)

)
> 0.

(8.16)
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Proof. Let ℎ(𝜏) = 𝑔(𝜏) 𝑓 ′(𝜏) − 𝑓 (𝜏)𝑔′(𝜏). Then82

ℎ(𝜏) =

(
𝐽∑︁

𝑚=1
𝛾𝑚𝜉𝑚 exp(−𝛾𝑚𝜏)

)(
𝐽−1∑︁
𝑖=1

𝐽∑︁
𝑗=𝑖

(𝛾 𝑗 − 𝛾𝑖)𝜉𝑖𝜉 𝑗
[
𝛾 𝑗 exp(−𝛾 𝑗𝜏) − 𝛾𝑖 exp(−𝛾𝑖𝜏)

])
+
(

𝐽−1∑︁
𝑖=1

𝐽∑︁
𝑗=𝑖

(𝛾 𝑗 − 𝛾𝑖)𝜉𝑖𝜉 𝑗
[
exp(−𝛾𝑖𝜏) − exp(−𝛾 𝑗𝜏)

])( 𝐽∑︁
𝑚=1

𝛾2
𝑚𝜉𝑚 exp(−𝛾𝑚𝜏)

)
,

(8.17)

so ℎ(𝜏) admits the form83

ℎ(𝜏) =
𝐽∑︁

𝑘=1

𝐽∑︁
𝑚=𝑘

𝛼𝑘𝑚 exp(−(𝛾𝑘 + 𝛾𝑚)𝜏). (8.18)

Using (8.17), for 𝑘 = 1, 2, . . . , 𝐽,84

𝛼𝑘𝑘 = 𝛾𝑘𝜉𝑘

−
𝐽∑︁
𝑗=𝑘

(𝛾 𝑗 − 𝛾𝑘)𝜉𝑘𝜉 𝑗𝛾𝑘 +
𝑘∑︁
𝑖=1

(𝛾𝑘 − 𝛾𝑖)𝜉𝑖𝜉𝑘𝛾𝑘


+ 𝛾2
𝑘𝜉𝑘

−
𝑘∑︁
𝑖=1

(𝛾𝑘 − 𝛾𝑖)𝜉𝑖𝜉𝑘 +
𝐽∑︁
𝑗=𝑘

(𝛾 𝑗 − 𝛾𝑘)𝜉𝑘𝜉 𝑗


= 0. (8.19)

For 1 ≤ 𝑘 < 𝑚 ≤ 𝐽,85

𝛼𝑘𝑚 = 𝛾𝑘𝜉𝑘

[
−

𝐽∑︁
𝑗=𝑚

(𝛾 𝑗 − 𝛾𝑚)𝜉𝑚𝜉 𝑗𝛾𝑚 +
𝑚∑︁
𝑖=1

(𝛾𝑚 − 𝛾𝑖)𝜉𝑖𝜉𝑚𝛾𝑚

]

+ 𝛾𝑚𝜉𝑚

−
𝐽∑︁
𝑗=𝑘

(𝛾 𝑗 − 𝛾𝑘)𝜉𝑘𝜉 𝑗𝛾𝑘 +
𝑘∑︁
𝑖=1

(𝛾𝑘 − 𝛾𝑖)𝜉𝑖𝜉𝑘𝛾𝑘


+ 𝛾2
𝑘𝜉𝑘

[
𝐽∑︁

𝑗=𝑚

(𝛾 𝑗 − 𝛾𝑚)𝜉𝑚𝜉 𝑗 −
𝑚∑︁
𝑖=1

(𝛾𝑚 − 𝛾𝑖)𝜉𝑖𝜉𝑚

]

+ 𝛾2
𝑚𝜉𝑚


𝐽∑︁
𝑗=𝑘

(𝛾 𝑗 − 𝛾𝑘)𝜉𝑘𝜉 𝑗 −
𝑘∑︁
𝑖=1

(𝛾𝑘 − 𝛾𝑖)𝜉𝑖𝜉𝑘
 . (8.20)

Thus 𝛼𝑘𝑚 takes the form86

𝛼𝑘𝑚 =

𝐽∑︁
𝑖=1

𝛽𝑘𝑚𝑖 𝜉𝑖𝜉𝑘𝜉𝑚. (8.21)
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For 𝑖 ≤ 𝑘 < 𝑚, only the 2nd, 4th, 6th and 8th sums in (8.20) give contributions to 𝛽𝑘𝑚
𝑖

,87

so88

𝛽𝑘𝑚𝑖 = 𝛾𝑘(𝛾𝑚 − 𝛾𝑖)𝛾𝑚 + 𝛾𝑚(𝛾𝑘 − 𝛾𝑖)𝛾𝑘 − 𝛾2
𝑘(𝛾𝑚 − 𝛾𝑖) − 𝛾2

𝑚(𝛾𝑘 − 𝛾𝑖)
= 𝛾𝑖(𝛾𝑘 − 𝛾𝑚)2.

Similar calculations for the case 𝑘 < 𝑖 < 𝑚, when the 2nd, 3rd, 6th and 7th sums89

in (8.20) give contributions to 𝛽𝑘𝑚
𝑖

, and the case 𝑘 < 𝑚 ≤ 𝑖, when the 1st, 3rd, 5th90

and 7th sums in (8.20) give contributions to 𝛽𝑘𝑚
𝑖

, show that in both of these cases91

𝛽𝑘𝑚
𝑖

= 𝛾𝑖(𝛾𝑘 − 𝛾𝑚)2 also. Recalling (8.19), it then follows using (8.18) and (8.21) that92

ℎ(𝜏) =

(
𝐽∑︁

𝑘=1

𝐽∑︁
𝑙=𝑘

𝜉𝑘𝜉𝑚(𝛾𝑘 − 𝛾𝑚)2 exp(−[𝛾𝑘 + 𝛾𝑚]𝜏)

)(
𝐽∑︁
𝑖=1

𝛾𝑖𝜉𝑖

)
,

and (8.16) follows as 𝐶̄′(𝜏) = 𝛼
ℎ(𝜏)
𝑔(𝜏)2 . □93

8.2. Erlang Distribution94

In general, if 𝐿 =
∑𝐽

𝑗=1 𝐸 𝑗 , where the 𝐸 𝑗 ∼ Exp(𝜇̃ 𝑗)s are independent, then95

individuals start in type 1 and transition through the types in order before leaving96

type 𝐽 via death. For 𝑗 = 1, 2, . . . , 𝐽, and 𝑢 ≥ 0, the probability that an individual97

born at time 0 is of type 𝑗 at time 𝑢 is98

𝜒 𝑗(𝑢) = P

(
𝑗∑︁

𝑖=1
𝐸𝑖 > 𝑢

)
− P

(
𝑗−1∑︁
𝑖=1

𝐸𝑖 > 𝑢

)
(8.22)

with
∑ 𝑗−1

𝑖=1 𝐸𝑖 = 0 if 𝑗 = 1. Further, 𝜒1(= 𝜒1(0)) = 1, 𝜒𝑖(= 𝜒𝑖(0)) = 0 (𝑖 = 2, 3, . . . , 𝐽),99

𝛾𝑖 = 0 (𝑖 = 1, 2, . . . , 𝐽 − 1) and 𝛾𝐽 = 𝜇̃𝐽 . Since for a random variable 𝑍 with support100

on [0,∞),101 ∫ ∞

0
𝛼 exp(−𝛼𝑧)P(𝑍 > 𝑧) 𝑑𝑧 = 1 − E [exp(−𝛼𝑍)] ,

it is straightforward to show, using (8.1) and (8.4), that102

(1 − 𝜋̄)𝜂 𝑗 =

∫ ∞

0
𝛼 exp(−𝛼𝑢)𝜒 𝑗(𝑢) 𝑑𝑢

=

∫ ∞

0
𝛼 exp(−𝛼𝑢)

{
P

(
𝑗∑︁

𝑖=1
𝐸𝑖 > 𝑢

)
− P

(
𝑗−1∑︁
𝑖=1

𝐸𝑖 > 𝑢

)}
𝑑𝑢

=

{
1 −

𝑗∏
𝑖=1

𝜇̃𝑖

𝛼 + 𝜇̃𝑖

}
−
{

1 −
𝑗−1∏
𝑖=1

𝜇̃𝑖

𝛼 + 𝜇̃𝑖

}
=

𝛼

𝛼 + 𝜇̃ 𝑗

𝑗−1∏
𝑖=1

𝜇̃𝑖

𝛼 + 𝜇̃𝑖
.
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For the Erlang distribution, where each 𝜇̃ 𝑗 = 𝜇 so successive jumps to the next type103

form a Poisson process having rate 𝜇, we have that104

𝜒 𝑗(𝑢) =
(𝑢𝜇) 𝑗−1

( 𝑗 − 1)!
exp(−𝑢𝜇) ( 𝑗 = 1, 2, . . . , 𝐽).

Therefore, recalling (8.1),105

𝜓̄1(𝜏) =
𝛼

𝛼 + 𝜇
[1 − exp(−{𝛼 + 𝜇}𝜏)] , (8.23)

and for 𝑗 > 1, using integration by parts,106

𝜓̄ 𝑗(𝜏) = 𝛼𝜇 𝑗−1
[
− 𝑢 𝑗−1

( 𝑗 − 1)!
× exp(−{𝛼 + 𝜇}𝑢)

𝛼 + 𝜇

] 𝜏
0

+ 𝛼𝜇 𝑗−1

𝛼 + 𝜇

∫ 𝜏

0

𝑢 𝑗−2

( 𝑗 − 2)!
exp(−{𝛼 + 𝜇}𝑢) 𝑑𝑢

= − 𝛼

𝛼 + 𝜇

[
(𝜇𝜏) 𝑗−1

( 𝑗 − 1)!
exp(−{𝛼 + 𝜇}𝜏)

]
+ 𝜇

𝛼 + 𝜇
𝜓̄ 𝑗−1(𝜏). (8.24)

Noting that the solution of the difference equation107

𝑥𝑖 = 𝑎𝑖 + 𝜃𝑥𝑖−1 (𝑖 = 2, 3, . . . )

is108

𝑥𝑖 = 𝜃𝑖−1𝑥1 +
𝑖−1∑︁
𝑗=1

𝑎 𝑗𝜃
𝑖−1− 𝑗 (𝑖 = 2, 3, . . . ),

it follows from (8.23), (8.24) and a little algebra, for 𝑖 = 1, 2, . . . , 𝐽, that109

𝜓̄𝑖(𝜏) =
𝛼

𝛼 + 𝜇

[(
𝜇

𝜇 + 𝛼

)𝑖−1
−

𝑖−1∑︁
𝑘=0

(𝜇𝜏)𝑘

𝑘!

(
𝜇

𝜇 + 𝛼

)𝑖−1−𝑘
e−(𝛼+𝜇)𝜏

]
. (8.25)

Thus110

𝜓̄𝑖(∞) =
𝛼

𝛼 + 𝜇

(
𝜇

𝜇 + 𝛼

)𝑖−1
(𝑖 = 1, 2, . . . , 𝐽),

𝜓̄(∞) =
∑𝐽

𝑖=1 𝜓̄𝑖(∞) = 1 −
(

𝜇

𝜇+𝛼

)𝐽
and111

𝜋̄ = 1 − 𝜓̄(∞) =
(

𝜇

𝜇 + 𝛼

)𝐽

. (8.26)

Recalling
∑𝐽

𝑗=1 𝜂 𝑗 = 1, the definitions of 𝐶̄𝑖(𝜏), 𝐶̄(𝜏), 𝐷̄𝑖(𝜏), 𝐷̄(𝜏) and 𝐸̄(𝜏) given112

in (8.6)-(8.8), and using (8.5), we have that113

𝐸̄(𝜏) =
𝐽∑︁
𝑗=1

𝛾 𝑗 [(1 − 𝜋̄)𝜂 𝑗 − 𝜓̄ 𝑗(𝜏)] = 𝛼𝜋̄ − 𝜇𝜓̄𝐽 (𝜏)

=
𝜇𝛼

𝜇 + 𝛼
e−(𝛼+𝜇)𝜏

𝐽−1∑︁
𝑘=0

(𝜇𝜏)𝑘

𝑘!

(
𝜇

𝜇 + 𝛼

)𝐽−1−𝑘
(8.27)
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and114

𝐷̄𝑖(𝜏) = (1 − 𝜋̄)
𝐽∑︁
𝑗=1

𝛾 𝑗

[
𝜂𝑖𝜓̄ 𝑗(𝜏) − 𝜂 𝑗 𝜓̄𝑖(𝜏)

]
= 𝜇(1 − 𝜋̄)

{
𝜂𝑖𝜓̄𝐽 (𝜏) − 𝜂𝐽 𝜓̄𝑖(𝜏)

}
. (8.28)

Noting from (8.4) that (1 − 𝜋̄)𝜂 𝑗 = 𝜓̄ 𝑗(∞) ( 𝑗 = 1, 2, . . . , 𝐽), it follows from (8.28) that115

𝐷̄(𝜏) =
𝐽∑︁
𝑗=1

𝐷̄ 𝑗(𝜏) = 𝜇[𝜓̄(∞)𝜓̄𝐽 (𝜏) − 𝜓̄𝐽 (∞)𝜓̄(𝜏)] . (8.29)

Now 𝜓̄(𝜏) =
∑𝐽

𝑖=1 𝜓̄𝑖(𝜏), so, using (8.25),116

𝜓̄(𝜏) =
𝐽∑︁
𝑖=1

𝛼

𝛼 + 𝜇

[(
𝜇

𝜇 + 𝛼

)𝑖−1
−

𝑖−1∑︁
𝑘=0

(𝜇𝜏)𝑘

𝑘!

(
𝜇

𝜇 + 𝛼

)𝑖−1−𝑘
e−(𝛼+𝜇)𝜏

]
= 1 −

(
𝜇

𝜇 + 𝛼

)𝐽

− 𝛼

𝛼 + 𝜇
e−(𝛼+𝜇)𝜏

𝐽−1∑︁
𝑘=0

(𝜇𝜏)𝑘

𝑘!

𝐽∑︁
𝑖=𝑘+1

(
𝜇

𝜇 + 𝛼

)𝑖−1−𝑘

= 1 −
(

𝜇

𝜇 + 𝛼

)𝐽

− e−(𝛼+𝜇)𝜏
𝐽−1∑︁
𝑘=0

(𝜇𝜏)𝑘

𝑘!

[
1 −
(

𝜇

𝜇 + 𝛼

)𝐽−𝑘
]
,

whence117

𝜓̄𝐽 (∞)𝜓̄(𝜏)

=
𝛼

𝛼 + 𝜇

(
𝜇

𝜇 + 𝛼

)𝐽−1
{

1 −
(

𝜇

𝜇 + 𝛼

)𝐽

− e−(𝛼+𝜇)𝜏
𝐽−1∑︁
𝑘=0

(𝜇𝜏)𝑘

𝑘!

[
1 −
(

𝜇

𝜇 + 𝛼

)𝐽−𝑘
]}

.

Further,118

𝜓̄(∞)𝜓̄𝐽 (𝜏)

=

[
1 −
(

𝜇

𝜇 + 𝛼

)𝐽
] (

𝛼

𝛼 + 𝜇

) [(
𝜇

𝜇 + 𝛼

)𝐽−1
−

𝐽−1∑︁
𝑘=0

(𝜇𝜏)𝑘

𝑘!

(
𝜇

𝜇 + 𝛼

)𝐽−1−𝑘
e−(𝛼+𝜇)𝜏

]
,

so using (8.29),119

𝐷̄(𝜏) = − 𝜇𝛼

𝜇 + 𝛼
e−(𝛼+𝜇)𝜏

𝐽−1∑︁
𝑘=0

[(
𝜇

𝜇 + 𝛼

)𝐽−1−𝑘
−
(

𝜇

𝜇 + 𝛼

)𝐽−1
]

(𝜇𝜏)𝑘

𝑘!
. (8.30)

Hence, 𝐷̄(𝜏) < 0, and consequently, 𝐶̄(𝜏) < 0. Therefore it follows from (8.15) and120

Lemma 3.1 that121

𝑋∗
2 |𝑇2 = 𝜏 ∼

{
NegBin(2, 𝜋̄) with probability 1+𝐶̄(𝜏)− 𝜋̄

(1+𝐶̄(𝜏))(1− 𝜋̄)

Geom(𝜋̄) with probability −𝐶̄(𝜏) 𝜋̄
(1+𝐶̄(𝜏))(1− 𝜋̄) .

(8.31)
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Equations (8.27) and (8.30) yield122

𝐶̄(𝜏) =
𝐷̄(𝜏)
𝐸̄(𝜏)

=

𝐽−1∑︁
𝑘=0

(𝜇𝜏)𝑘

𝑘!
𝐽−1∑︁
𝑘=0

((𝜇 + 𝛼)𝜏)𝑘

𝑘!

− 1. (8.32)

It is shown in Lemma 2 below that, for 𝐽 ≥ 2, 𝐶̄(𝜏) is strictly decreasing in 𝜏 on [0,∞),123

and hence, that 𝑋∗
2 is stochastically decreasing in 𝜏.124

Lemma 2. For 𝐽 ≥ 2, 𝐶̄(𝜏) is strictly decreasing in 𝜏 on [0,∞).125

Proof. Let 𝑛 = 𝐽 − 1, 𝜌 =
𝜇+𝛼
𝜇

and define the function 𝐶̃ : [0,∞) → [0, 1) by126

𝐶̃(𝑡) =

𝑛∑︁
𝑘=0

𝑡𝑘

𝑘!
𝑛∑︁

𝑘=0

(𝜌𝑡)𝑘

𝑘!

.

Then, by (8.32),127

𝐶̄(𝜏) = 𝐶̃(𝜇𝜏) − 1.

Let 𝑓 (𝑡) =
∑𝑛

𝑘=0
𝑡𝑘

𝑘! , 𝑔̃(𝑡) =
∑𝑛

𝑘=0
(𝜌𝑡)𝑘
𝑘! and ℎ̃(𝑡) = 𝑔̃(𝑡) 𝑓 ′(𝑡) − 𝑓 (𝑡)𝑔̃′(𝑡). Then128

ℎ̃(𝑡) =
2𝑛−1∑︁
𝑖=0

𝛼̃𝑖𝑡
𝑖 ,

where129

𝛼̃𝑖 =

min(𝑖,𝑛)∑︁
𝑘=max(0,𝑖−𝑛+1)

𝜌𝑘

𝑘!(𝑖 − 𝑘)!
−

min(𝑖,𝑛)∑︁
𝑘=max(0,𝑖−𝑛+1)

𝜌𝑖−𝑘+1

𝑘!(𝑖 − 𝑘)!
. (8.33)

For 𝑖 = 0, 1, . . . , 𝑛 − 1,130

𝛼̃𝑖 =

𝑖∑︁
𝑘=0

𝜌𝑘

𝑘!(𝑖 − 𝑘)!
−

𝑖∑︁
𝑘=0

𝜌𝑖−𝑘+1

𝑘!(𝑖 − 𝑘)!

=

𝑖∑︁
𝑘=0

𝜌𝑘

𝑘!(𝑖 − 𝑘)!
−

𝑖∑︁
𝑘=0

𝜌𝑘+1

𝑘!(𝑖 − 𝑘)!

< 0,

as 𝜌 > 1.131
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For 𝑖 = 𝑛, 𝑛 + 1, . . . , 2𝑛 − 1, substituting 𝑙 = 𝑘 − (𝑖 + 1 − 𝑛) in (8.33) yields132

𝛼̃𝑖 =

2𝑛−1−𝑖∑︁
𝑙=0

𝜌𝑙+𝑖+1−𝑛

(𝑙 + 𝑖 + 1 − 𝑛)!(𝑛 − 𝑙 − 1)!
−

2𝑛−1−𝑖∑︁
𝑙=0

𝜌𝑛−𝑙

(𝑙 + 𝑖 + 1 − 𝑛)!(𝑛 − 𝑙 − 1)!

= 𝜌𝑖+1−𝑛

[
2𝑛−1−𝑖∑︁
𝑙=0

𝜌𝑙

(𝑙 + 𝑖 + 1 − 𝑛)!(𝑛 − 𝑙 − 1)!
−

2𝑛−1−𝑖∑︁
𝑙=0

𝜌2𝑛−1−𝑖−𝑙

(𝑙 + 𝑖 + 1 − 𝑛)!(𝑛 − 𝑙 − 1)!

]
= 𝜌𝑖+1−𝑛

[
2𝑛−1−𝑖∑︁
𝑙=0

𝜌𝑙

(𝑙 + 𝑖 + 1 − 𝑛)!(𝑛 − 𝑙 − 1)!
−

2𝑛−1−𝑖∑︁
𝑙=0

𝜌𝑙

(𝑙 + 𝑖 − 𝑛)!(𝑛 − 𝑙)!

]
=

𝜌𝑖+1−𝑛

𝑖!

2𝑛−1−𝑖∑︁
𝑙=0

𝜌𝑙
[(

𝑖

𝑛 − 𝑙 − 1

)
−
(

𝑖

𝑛 − 𝑙

)]
.

Substituting 𝑘 = 2𝑛 − 1 − 𝑖 − 𝑙 in the final sum above yields133

𝛼̃𝑖 =
𝜌𝑖+1−𝑛

𝑖!

2𝑛−1−𝑖∑︁
𝑘=0

𝜌2𝑛−1−𝑖−𝑘
[(

𝑖

𝑛 − 𝑘

)
−
(

𝑖

𝑛 − 𝑘 − 1

)]
,

so134

𝛼̃𝑖 =
1
2
𝜌𝑖+1−𝑛

𝑖!

2𝑛−1−𝑖∑︁
𝑙=0

(
𝜌𝑙 − 𝜌2𝑛−1−𝑖−𝑙) [( 𝑖

𝑛 − 𝑙 − 1

)
−
(

𝑖

𝑛 − 𝑙

)]
. (8.34)

It is easily checked that135

(
𝑖

𝑛 − 𝑙 − 1

)
−
(

𝑖

𝑛 − 𝑙

) 
> 0 if 𝑙 < 𝑛 − 𝑖+1

2 ,

= 0 if 𝑙 = 𝑛 − 𝑖+1
2 ,

< 0 if 𝑙 > 𝑛 − 𝑖+1
2 ,

and, as 𝜌 > 1,136

𝜌𝑙 − 𝜌2𝑛−1−𝑖−𝑙


> 0 if 𝑙 > 𝑛 − 𝑖+1

2 ,

= 0 if 𝑙 = 𝑛 − 𝑖+1
2 ,

< 0 if 𝑙 < 𝑛 − 𝑖+1
2 .

Hence it follows from (8.34) that 𝛼̃𝑖 < 0 (𝑖 = 𝑛, 𝑛 + 1, . . . , 2𝑛− 2) and 𝛼̃2𝑛−1 = 0. Thus137

𝐶̃′(𝑡) < 0 for all 𝑡 > 0 and the lemma follows. □138

Suppose now that 𝐿 ∼ Gamma(𝐽, 𝐽), so 𝜇 = 𝐽, and consider the limit as 𝐽 → ∞,139

in which case 𝐿 converges in distribution to a unit mass at one. This provides a link140

between phase-type distributions and the analysis of a constant lifetime distribution141

presented in Section 9.142

Lemma 3. Under the above limit, 𝜋̄ → exp(−𝛼) and 𝐶̄(𝜏) → −𝑟(𝜏), where143

𝑟(𝜏) =

{
1 − exp(−𝛼𝜏) if 𝜏 ≤ 1,
1 − exp(−𝛼) if 𝜏 > 1.
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Proof. It follows from (8.26) that144

𝜋̄ =

(
𝐽

𝐽 + 𝛼

)𝐽

→ exp(−𝛼),

as required.145

Let 𝐹̄(𝜏) = 𝐶̄(𝜏) + 1. Using (8.32),146

𝐹̄(𝜏) =

𝐽−1∑︁
𝑘=0

(𝐽𝜏)𝑘

𝑘!
𝐽−1∑︁
𝑘=0

((𝐽 + 𝛼)𝜏)𝑘

𝑘!

=
exp(𝐽𝜏)P(𝑋 ≤ 𝐽 − 1)

exp((𝐽 + 𝛼)𝜏)P(𝑌 ≤ 𝐽 − 1)
,

where 𝑋 ∼ Po(𝐽𝜏) and𝑌 ∼ Po((𝐽 +𝛼)𝜏). Let𝑊 ∼ Gamma(𝐽, 1). Then P(𝑋 ≤ 𝐽−1) =147

P(𝑊 > 𝐽𝜏) and P(𝑌 ≤ 𝐽 − 1) = P(𝑊 > (𝐽 + 𝛼)𝜏), so148

𝐹̄(𝜏) = exp(−𝛼𝜏) 𝑓𝐽 (𝜏) (8.35)

where149

𝑓𝐽 (𝜏) =
𝑔𝐽 (𝐽𝜏)

𝑔𝐽 (𝐽 + 𝛼)𝜏)
,

with150

𝑔𝐽 (𝑥) =
∫ ∞

𝑥

𝑢𝐽−1e−𝑢 d𝑢.

Thus151

log 𝑓𝐽 (𝜏) = ℎ𝐽 (𝐽𝜏) − ℎ𝐽 ((𝐽 + 𝛼)𝜏),
where ℎ𝐽 (𝑥) = log 𝑔𝐽 (𝑥).152

Now153

ℎ′𝐽 (𝑥) =
−𝑥𝐽−1e−𝑥∫ ∞

𝑥
𝑢𝐽−1e−𝑢 d𝑢

= − 1∫ ∞
0

(
1 + 𝑣

𝑥

)𝐽−1 e−𝑣 d𝑣
,

so, by the mean value theorem,154

log 𝑓𝐽 (𝜏) =
𝛼𝜏∫ ∞

0

(
1 + 𝑣

𝑥

)𝐽−1 e−𝑣 d𝑣
,

for some 𝑥 ∈ (𝐽𝜏, (𝐽 + 𝛼)𝜏). Further,155

lim
𝐽→∞

(
1 + 𝑣

𝐽𝜏

)𝐽−1
= lim

𝐽→∞

(
1 + 𝑣

(𝐽 + 𝛼)𝜏

)𝐽−1
= e

𝑣
𝜏 , (8.36)

so since 𝐽𝜏 < 𝑥 < (𝐽 + 𝛼)𝜏,156

lim
𝐽→∞

log 𝑓𝐽 (𝜏) =
𝛼𝜏∫ ∞

0 e 𝑣
𝜏 e−𝑣 d𝑣

=

{
0 if 𝜏 ≤ 1,
𝛼(𝜏 − 1) if 𝜏 > 1.
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(The two sequences in (8.36) are increasing, so the monotone convergence theorem157

can be used to justify the above limit.) The second part of the lemma now follows158

using (8.35), since 𝐶̄(𝜏) = 𝐷̄(𝜏)/𝐸̄(𝜏) = 𝐹̄(𝜏) − 1. □159

In the limit as 𝐽 → ∞, we focus on 0 < 𝜏 ≤ 1 since for 𝜏 > 1 the probability that160

the second death occurs time 𝜏 after the first death tends to 0 as 𝐽 → ∞. Using (8.15),161

it follows from Lemma 3, that, for 0 < 𝜏 < 1,162

E
[
𝑠𝑋

∗
2

���𝑇2 = 𝜏

]
=

1 + 𝑠𝐶̄(𝜏)
1 + 𝐶̄(𝜏)

(
𝜋̄

1 − (1 − 𝜋̄)𝑠

)2

→ 1 − (1 − exp(−𝛼𝜏))𝑠
exp(−𝛼𝜏)

(
𝜋̄

1 − (1 − 𝜋̄)𝑠

)2
, (8.37)

as 𝐽 → ∞. Applying Lemma 3.1 to (8.37), yields after straightforward algebraic163

manipulation, that in the limit as 𝐽 → ∞, for 0 < 𝜏 < 1,164

{𝑋2 |𝑇2 = 𝜏} ∼
{

NegBin(2, 𝜋̄) with probability 1 − ℎ(𝜏)
Geom(𝜋̄) with probability ℎ(𝜏) , (8.38)

where165

ℎ(𝜏) =
exp(𝛼𝜏) − 1
exp(𝛼) − 1

. (8.39)

Note that ℎ(1) = 1, so in the limit as 𝐽 → ∞, {𝑋2 |𝑇2 = 1} ∼ Geom(exp(−𝛼)). This166

has a simple explanation, since if all lifetimes are equal to one and the second death167

occurs one time unit after the first death, then the initial individual had only one child,168

who was born as the initial individual dies. Therefore the population just after the169

second death comprises solely of the descendants of the second individual at its death,170

which follows a Geom(exp(−𝛼)) distribution.171

9. Constant Lifetime distribution172

In this section, we explore further 𝐿 ≡ 1 and as in Section 8 we assume that all173

deaths are detected. However, we allow a time-inhomogeneous birth rate. That is, an174

individual born at time 𝑡 is alive on the interval [𝑡, 𝑡 + 1) and during this time gives175

birth at the points of a time-inhomogeneous Poisson point process with rate 𝛽𝑢 at time176

𝑢, so if there are 𝑥 individuals alive in the population at time 𝑢 the infinitesimal birth177

rate is 𝑥𝛽𝑢. Given that the first death is at time 0, the initial individual starts their178

lifetime at time 𝑡 = −1 and we require 𝛽𝑢 to be defined for 𝑢 ≥ −1, but unlike the179

general phase-type model given in Section 2 we do not require the birth rate to be180

constant before the first (detected) death.181

For 𝑠 ≥ −1 and 0 < 𝜏 ≤ 1, let 𝑍(𝑠, 𝜏) denote the number of offspring alive at182

time 𝑠 + 1 given there is a single individual alive at time 𝑠 who dies at time 𝑠 + 𝜏. It183

is straightforward using the exploration process outlined in Section 4.2, with minor184

modifications, to show that 𝑍(𝑠, 𝜏) is a zero-modified Geometric random variable with185
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probability mass function,186

P(𝑍(𝑠, 𝜏) = 0) = exp
(
−
∫ 𝑠+𝜏

𝑠

𝛽𝑢 𝑑𝑢

)
(9.1)

P(𝑍(𝑠, 𝜏) = 𝑘) =
[
1 − exp

(
−
∫ 𝑠+𝜏

𝑠

𝛽𝑢 𝑑𝑢

)]
[1 − 𝜋̃𝑠+1]𝑘−1 𝜋̃𝑠+1, (𝑘 = 1, 2, . . .).

(9.2)

where for 𝑡 ≥ 0, 𝜋̃𝑡 = exp(−
∫ 𝑡

𝑡−1 𝛽𝑢 𝑑𝑢) is the probability that an individual alive on187

the interval (𝑡 − 1, 𝑡] has no offspring. The main observations in deriving (9.1) and188

(9.2) are that (9.1) is the probability that the initial individual has no offspring and189

since 𝐿 ≡ 1 that any individual born in (𝑡 − 1, 𝑡] will be alive at time 𝑡. For 0 < 𝜏 ≤ 1,190

exp
(
−
∫ 𝑠+𝜏

𝑠

𝛽𝑢 𝑑𝑢

)
≥ 𝜋̃𝑠+1, (9.3)

and it follows using Lemma 3.1 that191

𝑍(𝑠, 𝜏) 𝐷
=


Geom(𝜋̃𝑠+1) with probability

1−exp
(
−
∫ 𝑠+𝜏
𝑠

𝛽𝑢 𝑑𝑢

)
1− 𝜋̃𝑠+1

,

0 with probability
exp

(
−
∫ 𝑠+𝜏
𝑠

𝛽𝑢 𝑑𝑢

)
− 𝜋̃𝑠+1

1− 𝜋̃𝑠+1
.

(9.4)

For 𝑡 ≥ 0, let S𝑡 denote the death times of all individuals who die before time 𝑡. Let192

R𝑡 = S𝑡\S𝑡−1, the set of death times in the interval (𝑡 − 1, 𝑡]. Then the cardinality of193

R𝑡 is 𝑅𝑡 = 𝑌 ∗(𝑡 − 1), the number of individuals alive at time 𝑡 − 1 and194

𝑌 ∗(𝑡)|S𝑡
𝐷
= 𝑌 ∗(𝑡)|R𝑡 ,

since no individuals born before time 𝑡 − 1 are alive at time 𝑡. Write R𝑡 = {(𝑡 − 1 +195

𝜌1), (𝑡 −1+ 𝜌2), . . . , (𝑡 −1+ 𝜌𝑅𝑡
)}, so 0 < 𝜌𝑖 ≤ 1 is the remaining lifetime at time 𝑡 −1196

of the 𝑖𝑡ℎ to die in the interval (𝑡 − 1, 𝑡]. Therefore if 𝑍̃1, 𝑍̃2, . . . , 𝑍̃𝑅𝑡
are independent197

random variables with 𝑍̃𝑖
𝐷
= 𝑍(𝑡 − 1, 𝜌𝑖), we have that198

𝑌 ∗(𝑡)|R𝑡
𝐷
=

𝑅𝑡∑︁
𝑖=1

𝑍̃𝑖 . (9.5)

It follows straightforwardly from (9.4) and (9.5) that𝑌 ∗(𝑡)|R𝑡 is a mixture of {NegBin(𝑘, 𝜋̃𝑡 ); 𝑘 =199

0, 1, . . . , 𝑅𝑡 }.200

We note that 𝑍(𝑠, 1) ∼ Geom(𝜋̃𝑠+1), so for 𝑋∗
𝑘
|T2:𝑘 = t2:𝑘

𝐷
= 𝑌 ∗(𝑠𝑘)|R𝑠𝑘 is a mixture201

of {NegBin(𝑘, 𝜋̃𝑡 ); 𝑘 = 1, 2, . . . , 𝑅𝑠𝑘 }. In particular, for 𝑘 = 2 with 0 < 𝑡2(= 𝑠2) ≤ 1,202

we have that203

𝑋∗
2 |𝑇2 = 𝑡2

𝐷
=


NegBin(2, 𝜋̃𝑡2) with probability

1−exp
(
−
∫ 0
𝑡2−1 𝛽𝑢 𝑑𝑢

)
1− 𝜋̃𝑡2

Geom(𝜋̃𝑡2) with probability
exp

(
−
∫ 0
𝑡2−1 𝛽𝑢 𝑑𝑢

)
− 𝜋̃𝑡2

1− 𝜋̃𝑡2

(9.6)
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In the time-homogeneous case where 𝛽𝑢 = 𝛼 (𝑢 ∈ R), we have that 𝜋̃𝑡 = 𝜋̄ = exp(−𝛼)204

(𝑡 ∈ R) and (9.6) becomes205

𝑋∗
2 |𝑇2 = 𝑡2 ∼

{
NegBin(2, 𝜋̄) with probability 1−exp(−(1−𝑡2)𝛼)

1−exp(−𝛼) = 1 − ℎ(𝑡2)
Geom(𝜋̄) with probability exp(−(1−𝑡2)𝛼)−exp(−𝛼)

1−exp(−𝛼) = ℎ(𝑡2),

where ℎ(·) is defined in (8.39), in agreement with (8.38).206

10. Initial individual’s birth time known207

In this section we consider the case where the birth time of the initial individual,208

𝑆0, is known and is equal to −𝑡0, say, for some 𝑡0 > 0. We derive the distribution of209

X1 in this case without any restrictions on the birth-rate, 𝛽𝑡 , or detection probabilities,210

d𝑡 , (−𝑡0 ≤ 𝑡 ≤ 0) prior to the first detected death.211

Let 𝜋̌0 = 1 − 𝜓(−𝑡0; 𝑡0) and for 𝑗 = 1, 2, . . . , 𝐽, let212

𝜂0
𝑗 =

𝜓 𝑗(−𝑡0; 𝑡0)
1 − 𝜋̌0

=
𝜓 𝑗(−𝑡0; 𝑡0)
𝜓(−𝑡0; 𝑡0)

. (10.1)

For a > −(1 − 𝜋̌0)𝜼̌0, let W̌(a) denote a 𝐽-dimensional random variable with, for213

𝜽 ∈ [0, 1]𝐽 , probability generating function (pgf)214

𝜑̌(𝜽; a) = E


𝐽∏
𝑗=1

𝜃
𝑊̌𝑗 (a)
𝑗


=

1 +∑𝐽
𝑗=1 𝑎 𝑗𝜃 𝑗

1 +∑𝐽
𝑗=1 𝑎 𝑗

× 𝜋̌0

1 − (1 − 𝜋̌0)
∑𝐽

𝑗=1 𝜂
𝑡
𝑗
𝜃 𝑗

. (10.2)

Note the similarity between the pgf of W̌(a) and the pgf of W(𝑡, a) defined in (3.4).215

Lemma 4. Suppose that the initial individual is born at time 𝑆0 = −𝑡0 for some 𝑡0 > 0.216

For 𝑗 = 1, 2, . . . , 𝐽, let217

𝑐 𝑗 =

∑𝐽
𝑖=1 𝜒𝑖

∑𝐽
𝑙=1 𝑑0,𝑙𝛾𝑙

[
𝜓𝑙(−𝑡0; 𝑡0)𝑝𝑖 𝑗(−𝑡0, 0, 𝑡0) − 𝜓 𝑗(−𝑡0; 𝑡0)𝑝𝑖𝑙(−𝑡0, 0, 𝑡0)

]∑𝐽
𝑖=1 𝜒𝑖

∑𝐽
𝑙=1 𝑑0,𝑙𝛾𝑙𝑝𝑖𝑙(−𝑡0, 0, 𝑡0)

(10.3)

Then218

X1 ∼ W̌(0) + W̌(č), (10.4)

where W̌(0) and W̌(č) are independent random variables.219

Proof. The proof is similar to the proof of Lemma 5.2. We show that220

E


𝐽∏
𝑗=1

𝜃
𝑋

𝑗

1
𝑗

������ 𝑆0 = −𝑡0
 =

1 +∑𝐽
𝑗=1 𝑐 𝑗𝜃 𝑗

1 +∑𝐽
𝑗=1 𝑐 𝑗

×
[

𝜋̌0

1 − (1 − 𝜋̌0)
∑𝐽

𝑗=1 𝜂
𝑡
𝑗
𝜃 𝑗

]2

, (10.5)
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from which the lemma follows immediately.221

For 𝑖 = 1, 2, . . . , 𝐽, the initial individual is type 𝑖 at birth with probability 𝜒𝑖.222

Therefore, for any 𝜽 ∈ [0, 1]𝐽 , we have that223

E


𝐽∏
𝑗=1

𝜃
𝑋

𝑗

1
𝑗

������ 𝑆0 = −𝑡0
 =

∑𝐽
𝑖=1 𝜒𝑖𝐻𝐷(𝜽;−𝑡0, 𝑡0; e𝑖)∑𝐽
𝑖=1 𝜒𝑖𝐻𝐷(1;−𝑡0, 𝑡0; e𝑖)

. (10.6)

(c.f. (5.7)). Using Corollary 5.1 along with (5.2), we have that224

𝐻𝐷(𝜽;−𝑡0, 𝑡0; e𝑖) =
𝐽∑︁
𝑙=1

𝑑0,𝑙𝛾𝑙
𝜁(−𝑡0; 𝑡0)[

1 −∑𝐽
𝑗=1 𝜓 𝑗(−𝑡0; 𝑡0)𝜃 𝑗

]2

×
𝑝𝑖𝑙(−𝑡0, 0, 𝑡0)

1 −
𝐽∑︁
𝑗=1

𝜓 𝑗(−𝑡0; 𝑡0)𝜃 𝑗

 + 𝜓𝑙(−𝑡0; 𝑡0)
𝐽∑︁
𝑗=1

𝑝𝑖 𝑗(−𝑡0; 𝑡0)𝜃 𝑗

 .
(10.7)

By summing (10.7) over 𝑖 and simplifying, we have that225

𝐽∑︁
𝑖=1

𝜒𝑖𝐻𝐷(𝜽;−𝑡0, 𝑡0; e𝑖) =
𝜁(−𝑡0; 𝑡0)

∑𝐽
𝑖=1 𝜒𝑖

∑𝐽
𝑙=1 𝑑𝑙,0𝛾𝑙𝑝𝑖𝑙(−𝑡0, 0, 𝑡0)[

1 −∑𝐽
𝑗=1 𝜓 𝑗(−𝑡0; 𝑡0)𝜃 𝑗

]2

1 +
𝐽∑︁
𝑗=1

𝑐 𝑗𝜃 𝑗

 .
(10.8)

By setting 𝜽 = 1 in (10.8) and substituting into (10.6), we have that (10.5) and the226

lemma is proved.227

It is straightforward to modify Theorem 3.1 to obtain X𝑘 |T2:𝑘 in the case where228

𝑆0 = −𝑡0 using Lemma 4 for X1. We set 𝜋0 = 𝜋̌0 and 𝜼0 = 𝜼̌0 and for 𝑡 > 0, construct229

𝜋𝑡 and 𝜼𝑡 using (3.1) and (3.2), respectively. Given the base step X1
𝐷
= W̌(0) + W̌(č),230

the inductive step proceeds as in Theorem 3.1 (b), with X2:𝑘 |T2:𝑘 = t2:𝑘 now being231

a mixture of 𝑘! random variables each consisting of the sum of 𝑘 + 1 independent232

zero-modified geometric random variables.233

11. Numerical Results234

In this section we present two additional examples to demonstrate the approximation235

given in Section 3.5.2.236

The first example is a simulated branching process with 𝐿 ∼ Gamma(4, 4) up until237

the 500𝑡ℎ death was observed. For 𝑘 = 1, 2, . . . , 500, let 𝛼𝑘 and 𝜀𝑘 denote the birth238

rate and the probability of detecting the death of a type-4 individual, respectively,239

between the (𝑘 − 1)𝑠𝑡 and 𝑘 𝑡ℎ detected death. (Remember that since the lifetime is240

an Erlang distribution only type-4 individuals can die.) The birth rate and detection241

probability changed after every 100 detected deaths with (𝛼𝑘 , 𝜀𝑘) = (𝛼200+𝑘 , 𝜀200+𝑘) =242

(𝛼400+𝑘 , 𝜀400+𝑘) = (2.0, 0.25) and (𝛼100+𝑘 , 𝜀100+𝑘) = (𝛼300+𝑘 , 𝜀300+𝑘) = (0.5, 0.5) (𝑘 =243
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1, 2, . . . , 100). Since E[𝐿] = 1 the branching process alternates after every 100244

detected deaths between being super-critical (𝑅0 = 2) and sub-critical (𝑅0 = 0.5).245

In Figure 5, we plot the number of individuals alive, of each type and total number,246

immediately after a detected death against the number of detected deaths from a single247

realisation of the branching process, along with the median (𝑋̂ 𝑗

𝑘
, 𝑗 = 1, 2, 3; 𝑋̂∗

𝑘
) of the248

approximate distribution derived in Section 3.5.2. We also include the 5% and 95%249

quantiles of the approximate distribution, denoted 𝑙𝑘 and 𝑢𝑘 , with [𝑙𝑘 , 𝑢𝑘] shaded for250

𝑘 = 1, 2, . . . , 500. We observe that there is very different behaviour over time in the251

number of individuals of the four types (four stages of the Erlang distribution). For252

all four types the approximation captures the trajectories of the number of individuals253

alive of that type.254

As in Section 7, we assess the performance of the approximate distribution based255

on 100 branching processes realisations using a P-P plot (Figure 6), of ũ·,500, 𝑗 , the256

ordered u·,500, 𝑗 ( 𝑗 = 1, 2, 3, 4), where 𝑢𝑖,𝑘, 𝑗 (𝑖 = 1, 2, . . . , 100; 𝑘 = 1, 2, . . . , 500; 𝑗 =257

1, 2, 3, 4) are obtained using (7.1). The P-P plots demonstrate good performance of the258

approximate distribution for number of each type alive after the 500𝑡ℎ detected death.259

We also considered the above branching process with the detection probability changed260

in the sub-critical phases, in particular, we considered (a) 𝜀100+𝑘 = 𝜀300+𝑘 = 0.25,261

no change in the detection probability and (b) 𝜀100+𝑘 = 𝜀300+𝑘 = 0.75, a more262

signficant change in the detection probability. We noted better performance of263

the approximation distribution in (a) and worse performance of the approximation264

distribution in (b) supporting the notion that the approximation becomes worse as the265

detection probability changes more dramatically.266

The second example is a simulated epidemic in a population of 2000 individuals267

with 𝐿 ∼ Gamma(2, 2), infection rate 𝛽 = 1.5(= 𝑅0), detection probability 𝜀 = 0.4268

(the probability an individual is detected on entering the removed state) and 1 initial269

infective in an otherwise susceptible population. The epidemic resulted in 480 detected270

removals (out of a total of 1239 removals) and we estimate the number of infectives of271

each type (each stage of the Erlang distribution) immediately after each removal. For272

𝑘 = 1, 2, . . . , 480, let 𝛼𝑘 denote the birth rate between the (𝑘 − 1)𝑠𝑡 and 𝑘 𝑡ℎ detected273

removal (death) of the approximating branching process. We set274

𝛼𝑘 = 𝛽
1
𝑁

{
𝑁 − 𝑘 − 1

𝜀
− E[𝑋̂∗

𝑘 |T2:𝑘−1 = t2:𝑘−1]
}

(11.1)

where (𝑘 − 1)/𝜀 and E[𝑋̂∗
𝑘−1 |T2:𝑘−1 = t2:𝑘−1] are the estimated mean numbers of275

removed and infectives immediately after the (𝑘 − 1)𝑠𝑡 detected removal. Note that276

if 𝜀 = 1, all removals are detected, the equation for 𝛼𝑘 given by (11.1) reduces to277

the equation given in [2], Section 7. In Figure 7, we plot the number of infectives,278

of each type and in total, immediately after a detected removal against the number of279

detected removals, along with the approximate median (𝑋̂ 𝑗

𝑘
, 𝑗 = 1, 2; 𝑋̂∗

𝑘
) calculated280

using Section 3.5.2. We also include the 5% and 95%, 𝑙𝑘 and 𝑢𝑘 with [𝑙𝑘 , 𝑢𝑘] shaded281

for 𝑘 = 1, 2, . . . , 480. We observe that the branching process approximation provides282

a good approximation to the trajectory of the total number, and the number of each283

type, of infectives over the entire course of the epidemic.284
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Figure 5: Number of individuals alive (solid line) and median of approximate distribution
𝑋̂ 𝑧
𝑘
|t2:𝑘 (𝑧 = 1, 2, 3, 4) (dashed line) up to the 500𝑡ℎ detected death with 𝐿 ∼ Gamma(4, 4),

(𝛼𝑘 , 𝜀𝑘) = (𝛼200+𝑘 , 𝜀200+𝑘) = (𝛼400+𝑘 , 𝜀400+𝑘) = (2.0, 0.25) and (𝛼100+𝑘 , 𝜀100+𝑘) =

(𝛼300+𝑘 , 𝜀300+𝑘) = (0.5, 0.5) (𝑘 = 1, 2, . . . , 100). The shaded area represents the probability
mass between the 5% and 95% quantiles of 𝑋̂ 𝑧

𝑘
|t2:𝑘 . Top left: Number of Type 1 individuals

alive; Top right: Number of Type 2 individuals alive; Bottom left: Number of Type 3 individuals
alive; Bottom right: Number of Type 4 individuals alive.

We again assess the performance of the approximate distribution based on 100285

epidemic realisations with the population size and parameters given above. We restrict286

attention to epidemics which take-off and result in at least 100 detected removals with287

the number of detected removals ranging from 383 to 548. In Figure 8, we use P-P plots288

of the ũ·,𝑘, 𝑗 (𝑘 = 100, 200, 300, 𝑗 = 1, 2). The plots show that using the branching289

process approximation with birth rate given by (11.1) provides a good approximation290

for the number of infectives of each type in the epidemic process.291
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Figure 6: P-P plots based on 100 simulations of the ordered quantiles of ũ·,500, 𝑗 ( 𝑗 = 1, 2, 3, 4),
where 𝐿 ∼ Gamma(4, 4), (𝛼𝑘 , 𝜀𝑘) = (𝛼200+𝑘 , 𝜀200+𝑘) = (𝛼400+𝑘 , 𝜀400+𝑘) = (2.0, 0.25) and
(𝛼100+𝑘 , 𝜀100+𝑘) = (𝛼300+𝑘 , 𝜀300+𝑘) = (0.5, 0.5) (𝑘 = 1, 2, . . . , 100). Top left: Number of Type
1 individuals alive; Top right: Number of Type 2 individuals alive; Bottom left: Number of
Type 3 individuals alive; Bottom right: Number of Type 4 individuals alive.
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Figure 7: Number of infectives (solid line) and median 𝑋̂ 𝑧
𝑘
|t2:𝑘 (𝑧 = ∗, 1, 2, 3) (dashed line)

after each detected removal 𝑘 in an epidemic in a population of size 2000 which infects
480 detected removals with infection rate 𝛽 = 1.5, removal detection probability 𝜀 = 0.4
and 𝐿 ∼ Gamma(2, 2). For the branching process approximation 𝛼𝑘 = 𝛽{𝑁 − (𝑘 − 1)/𝜀 −
E[𝑋̂∗

𝑘−1 |T2:𝑘−1 = t2:𝑘−1]}/𝑁 . The shaded area represents the probability mass between the 5%
and 95% quantiles of 𝑋̂ 𝑧

𝑘
|t2:𝑘 . Top left: Total number of infectives; Top right: Number of Type

1 infectives; Bottom left: Number of Type 2 infectives
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Figure 8: P-P plots based on 100 simulations of the ordered quantiles of ũ·,𝑘, 𝑗 for 𝑘 =

100, 200, 300 and 𝑗 = 1, 2, where 𝐿 ∼ Gamma(2, 2), , 𝛼𝑘 = 𝛽{𝑁− (𝑘−1)/𝜀−E[𝑋̂∗
𝑘−1 |T2:𝑘−1 =

t2:𝑘−1]}/𝑁 . Top left: Number of Type 1 infectives 𝑘 = 100; Top right: Number of Type 2
infectives 𝑘 = 100; Middle left: Number of Type 1 infectives 𝑘 = 200; Middle right: Number
of Type 2 infectives 𝑘 = 200; Bottom left: Number of Type 1 infectives 𝑘 = 300; Bottom right:
Number of Type 2 infectives 𝑘 = 300.


