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Abstract

This supplementary material contains the proofs of some results of the main article. It
also describes some topological properties of the space 𝐸 endowed with the distance 𝑑1
in the case of interacting particles in R𝑑 , as introduced in Section 2.4 of the main article.
All numbering and references in this supplementary material begin with the letter S, the
other references referring to the main article.
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1. Proofs of Section 2.3 about the Kolmogorov backward equation14

1.1. Proof of Theorem 115

On the one hand, for any 𝑥 ∈ 𝐸 , 𝑡 > 0 and 𝐴 ∈ E ,16

P𝑥(𝑋𝑡 ∈ 𝐴, 𝜏1 > 𝑡) = E𝑥

[
E𝑥(1𝑋𝑡 ∈𝐴 1𝜏1>𝑡 |(𝑌

(0)
𝑢 )𝑢≥0)

]
= E𝑥

[
E𝑥(1

𝑌
(0)
𝑡 ∈𝐴 1𝜏1>𝑡 |𝑌 (0))

]
= E𝑥

[
1
𝑌

(0)
𝑡 ∈𝐴 E𝑥(1𝜏1>𝑡 |𝑌 (0))

]
= E𝑥

[
1
𝑌

(0)
𝑡 ∈𝐴 e−

∫ 𝑡

0 𝛼(𝑌 (0)
𝑢 ) d𝑢

]
= E𝑌𝑥

[
1𝑌𝑡 ∈𝐴 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
. (1.1)

On the other hand, by construction of the process17

E𝑥 [1𝑋𝑡 ∈𝐴 |F𝜏1 ]1𝜏1≤𝑡 = 𝑄𝑡−𝜏1 (𝑋𝜏1 , 𝐴)1𝜏1≤𝑡
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2 F. LAVANCIER ET AL.

where F𝜏1 = {𝐹 ∈ F : 𝐹 ∩ {𝜏1 ≤ 𝑡} ∈ F𝑡 , ∀ 𝑡 ≥ 0} . Then18

P𝑥(𝑋𝑡 ∈ 𝐴, 𝜏1 ≤ 𝑡) = E𝑥 [E𝑥 [1𝑋𝑡 ∈𝐴 |F𝜏1 ]1𝜏1≤𝑡 ]
= E𝑥 [𝑄𝑡−𝜏1 (𝑋𝜏1 , 𝐴)1𝜏1≤𝑡 ]
= E𝑥 [E𝑥 [𝑄𝑡−𝜏1 (𝑋𝜏1 , 𝐴)1𝜏1≤𝑡 |𝜏1, 𝑌

(0)]]

= E𝑥

[∫
𝑦∈𝐸

𝐾(𝑌 (0)
𝜏1 , 𝑑𝑦)𝑄𝑡−𝜏1 (𝑦, 𝐴)1𝜏1≤𝑡

]
= E𝑥

[
E𝑥 [

∫
𝑦∈𝐸

𝐾(𝑌 (0)
𝜏1 , 𝑑𝑦)𝑄𝑡−𝜏1 (𝑦, 𝐴)1𝜏1≤𝑡 |𝑌 (0)]

]
= E𝑥

[∫ 𝑡

0

∫
𝑦∈𝐸

𝐾(𝑌 (0)
𝑠 , 𝑑𝑦)𝑄𝑡−𝑠(𝑦, 𝐴)𝛼(𝑌 (0)

𝑠 )e−
∫ 𝑠

0 𝛼(𝑌 (0)
𝑢 ) d𝑢 d𝑠

]
=

∫ 𝑡

0

∫
𝐸

𝑄𝑡−𝑠(𝑦, 𝐴)E𝑥

[
𝐾

(
𝑌

(0)
𝑠 , 𝑑𝑦

)
𝛼(𝑌 (0)

𝑠 )e−
∫ 𝑠

0 𝛼(𝑌 (0)
𝑢 ) d𝑢

]
d𝑠

=

∫ 𝑡

0

∫
𝐸

𝑄𝑡−𝑠(𝑦, 𝐴)E𝑌𝑥
[
𝐾 (𝑌𝑠 , 𝑑𝑦) 𝛼(𝑌𝑠)e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠. (1.2)

The result then follows gathering (1.1) and (1.2).19

1.2. Proof of Proposition 120

The proof is made up from Lemmas 1, 2 and 3, the approach being similar to [FellerFeller1971].21

In Lemma 1 we built a solution 𝑄𝑡 ,∞(𝑥, 𝐴) of (2.5) for any 𝑥 ∈ 𝐸 and 𝐴 ∈ E , while Lemmas 222

and 3 will imply the unicity of the solution.23

Lemma 1. For all 𝑥 ∈ 𝐸 and 𝐴 ∈ E , the function 𝑡 ∈ R+ ↦→ 𝑄𝑡 ,∞(𝑥, 𝐴) is a solution of (2.5).24

Proof. We will proceed as in the proof of Theorem 1. First25

P𝑥(𝑋𝑡 ∈ 𝐴,𝑇𝑝+1 > 𝑡, 𝜏1 > 𝑡) = P𝑥(𝑋𝑡 ∈ 𝐴, 𝜏1 > 𝑡) = E𝑌𝑥
[
1𝑌𝑡 ∈𝐴 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
.

Secondly, if the process jumps once before 𝑡 (at time 𝜏1) and is in 𝐴 at time 𝑡 with at most 𝑝 + 126

jumps, the process has at most 𝑝 jumps after the time 𝜏1. By construction of the process, the27

law of 𝑋𝑡 given 𝜏1 < +∞ and 𝑋𝑇1 is the same as the one of 𝑋𝑡−𝜏1 given 𝑋0 = 𝑋𝜏1 . We then28

obtain29

E𝑥 [1𝑋𝑡 ∈𝐴1𝜏1≤𝑡<𝑇𝑝+1 |F𝜏1 ] = 𝑄𝑡−𝜏1 , 𝑝(𝑋𝜏1 , 𝐴)1𝜏1≤𝑡 .

This leads to30

P𝑥(𝑋𝑡 ∈ 𝐴,𝑇𝑝+1 > 𝑡, 𝜏1 ≤ 𝑡) = E𝑥 [𝑄𝑡−𝜏1 , 𝑝(𝑋𝜏1 , 𝐴)1𝜏1≤𝑡 ]
= E𝑥 [E𝑥 [𝑄𝑡−𝜏1 , 𝑝(𝑋𝜏1 , 𝐴)1𝜏1≤𝑡 |𝑌 (0), 𝜏1]]

= E𝑥 [
∫
𝑦∈𝐸

𝑄𝑡−𝜏1 , 𝑝(𝑦, 𝐴)1𝜏1≤𝑡𝐾(𝑌 (0)
𝜏1 , 𝑑𝑦)]

= E𝑥 [E𝑥 [
∫
𝑦∈𝐸

𝑄𝑡−𝜏1 , 𝑝(𝑦, 𝐴)1𝜏1≤𝑡𝐾(𝑌 (0)
𝜏1 , 𝑑𝑦)|𝑌 (0)]]

= E𝑥 [
∫ 𝑡

0

∫
𝑦∈𝐸

𝑄𝑡−𝑠, 𝑝(𝑦, 𝐴)1𝜏1≤𝑡𝐾(𝑌 (0)
𝑠 , 𝑑𝑦)𝛼(𝑌 (0)

𝑠 )e−
∫ 𝑠

0 𝛼(𝑌 (0)
𝑢 ) d𝑢]]

=

∫ 𝑡

0

∫
𝐸

𝑄𝑡−𝑠, 𝑝(𝑦, 𝐴)E𝑌𝑥
[
𝐾 (𝑌𝑠 , 𝑑𝑦) 𝛼(𝑌𝑠)e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠.



Feller and ergodic properties of jump-move processes 3

We then obtain the induction formula31

𝑄𝑡 , 𝑝+1(𝑥, 𝐴) = E𝑌𝑥
[
1𝑌𝑡 ∈𝐴 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
+
∫ 𝑡

0

∫
𝐸

𝑄𝑡−𝑠, 𝑝(𝑦, 𝐴)E𝑌𝑥
[
𝐾 (𝑌𝑠 , 𝑑𝑦) 𝛼(𝑌𝑠)e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠.

This leads by monotone convergence to32

𝑄𝑡 ,∞(𝑥, 𝐴) = E𝑌𝑥
[
1𝑌𝑡 ∈𝐴 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
+
∫ 𝑡

0

∫
𝐸

𝑄𝑡−𝑠,∞(𝑦, 𝐴)E𝑌𝑥
[
𝐾 (𝑌𝑠 , 𝑑𝑦) 𝛼(𝑌𝑠)e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠.

Lemma 2. 𝑄𝑡 ,∞ is called the minimal solution of (2.5) in the sense that for any non-negative33

solution 𝑄𝑡 of (2.5), we have 𝑄𝑡 ≥ 𝑄𝑡 ,∞.34

Proof. Let 𝑄𝑡 be a non-negative solution of (2.5). Then for any 𝑥 ∈ 𝐸 and 𝐴 ∈ E35

𝑄𝑡 (𝑥, 𝐴) ≥ 𝑄𝑡 ,1(𝑥, 𝐴) = E𝑌𝑥
[
1𝑌𝑡 ∈𝐴 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
.

We then proceed by induction. If 𝑄𝑡 ≥ 𝑄𝑡 , 𝑝 then36

𝑄𝑡 (𝑥, 𝐴) = E𝑌𝑥
[
1𝑌𝑡 ∈𝐴 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
+
∫ 𝑡

0

∫
𝐸

𝑄𝑡−𝑠(𝑦, 𝐴)E𝑌𝑥
[
𝐾 (𝑌𝑠 , 𝑑𝑦) 𝛼(𝑌𝑠)e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠

≥ E𝑌𝑥
[
1𝑌𝑡 ∈𝐴 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
+
∫ 𝑡

0

∫
𝐸

𝑄𝑡−𝑠, 𝑝(𝑦, 𝐴)E𝑌𝑥
[
𝐾 (𝑌𝑠 , 𝑑𝑦) 𝛼(𝑌𝑠)e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠

= 𝑄𝑡 , 𝑝+1(𝑥, 𝐴).

Finally 𝑄𝑡 (𝑥, 𝐴) ≥ 𝑄𝑡 , 𝑝(𝑥, 𝐴) for every 𝑝 ≥ 1 and the result follows by letting 𝑝 go to infinity.37

Lemma 3. The minimal solution 𝑄𝑡 ,∞ is stochastic, i.e. 𝑄𝑡 ,∞(𝑥, 𝐸) = 1.38

Proof. Recall that 𝛼 is bounded by 𝛼∗ > 0. It is then enough to show by induction that39

𝑄𝑡 , 𝑝(𝑥, 𝐸) ≥ 1 − (1 − e−𝛼∗𝑡 )𝑝 for any 𝑝 ≥ 1. First40

𝑄𝑡 ,1(𝑥, 𝐸) = E𝑌𝑥
[
1𝑌𝑡 ∈𝐸 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
= E𝑌𝑥

[
e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
≥ E𝑥

(
e−𝛼∗𝑡

)
= e−𝛼∗𝑡 .

Then notice that41

P𝑥(𝜏1 ≤ 𝑡) = E𝑌𝑥
[
1 − e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
≤ 1 − e−𝛼∗𝑡 .

We then obtain by induction42

𝑄𝑡 , 𝑝+1(𝑥, 𝐸) = E𝑌𝑥
[
1𝑌𝑡 ∈𝐸 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
+
∫ 𝑡

0

∫
𝐸

𝑄𝑡−𝑠, 𝑝(𝑦, 𝐴)E𝑌𝑥
[
𝐾 (𝑌𝑠 , 𝑑𝑦) 𝛼(𝑌𝑠)e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠

≥ E𝑌𝑥
[
e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
+
∫ 𝑡

0

(
1 − (1 − e−𝛼∗(𝑡−𝑠))𝑝

)
E𝑌𝑥

[∫
𝐸

𝐾 (𝑌𝑠 , 𝑑𝑦) 𝛼(𝑌𝑠)e−
∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠

≥ E𝑌𝑥
[
e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
+
∫ 𝑡

0

(
1 − (1 − e−𝛼∗𝑡 )𝑝

)
E𝑌𝑥

[
𝛼(𝑌𝑠)e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠

= P𝑥(𝜏1 > 𝑡) +
(

1 − (1 − e−𝛼∗𝑡 )𝑝
)
P𝑥(𝜏1 ≤ 𝑡)

= 1 − (1 − e−𝛼∗𝑡 )𝑝 P𝑥(𝜏1 ≤ 𝑡) ≥ 1 − (1 − e−𝛼∗𝑡 )𝑝+1.
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By bringing together the last three lemmas it does not take long to prove Proposition43

1. By Lemma 1, 𝑄𝑡 ,∞ is a solution of (2.5). We now prove the unicity. Let 𝑄𝑡 be a44

non-negative sub-stochastic solution of (2.5). Lemma 2 entails 𝑄𝑡 (𝑥, 𝐴) ≥ 𝑄𝑡 ,∞(𝑥, 𝐴) and45

𝑄𝑡 (𝑥, 𝐸\𝐴) ≥ 𝑄𝑡 ,∞(𝑥, 𝐸\𝐴) for every 𝐴 ∈ E . We get then46

1 ≥ 𝑄𝑡 (𝑥, 𝐸) = 𝑄𝑡 (𝑥, 𝐴) +𝑄𝑡 (𝑥, 𝐸\𝐴) ≥ 𝑄𝑡 ,∞(𝑥, 𝐴) +𝑄𝑡 ,∞(𝑥, 𝐸\𝐴) = 𝑄𝑡 ,∞(𝑥, 𝐸) = 1

by Lemma 3 so 𝑄𝑡 (𝑥, 𝐴) = 𝑄𝑡 ,∞(𝑥, 𝐴) for every 𝐴 ∈ E .47

1.3. Proof of Proposition 248

We first show that 𝑄𝑡 ,(∞) is a solution of (2.5). Let 𝑛 ≥ 0, 𝑥 ∈ 𝐸𝑛 and 𝑝 ≥ 𝑛. If there is no49

jump before 𝑡, then50

P𝑥(𝑋𝑡 ∈ 𝐴, 𝜏1 > 𝑡, ∀𝑠 ∈ [0, 𝑡] 𝑛(𝑋𝑠) ≤ 𝑝) = P𝑥(𝑋𝑡 ∈ 𝐴, 𝜏1 > 𝑡).

By construction of the process, if the first jump before 𝑡 is a death,51

P𝑥(𝑋𝑡 ∈ 𝐴, ∀𝑠 ∈ [0, 𝑡] 𝑛(𝑋𝑠) ≤ 𝑝 |F𝜏1 , a death occurs at 𝜏1)1𝜏1≤𝑡 = 𝑄𝑡−𝜏1 ,(𝑝)(𝑋𝜏1 , 𝐴)1𝜏1≤𝑡 ,

and if the first jump before 𝑡 is a birth,52

P𝑥(𝑋𝑡 ∈ 𝐴, ∀𝑠 ∈ [0, 𝑡] 𝑛(𝑋𝑠) ≤ 𝑝 |F𝜏1 , a birth occurs at 𝜏1)1𝜏1≤𝑡 = 𝑄𝑡−𝜏1 ,(𝑝)(𝑋𝜏1 , 𝐴)1𝜏1≤𝑡1𝑝>𝑛.

Following the same computations as in the proof of Theorem 1, we obtain53

𝑄𝑡 ,(𝑝)(𝑥, 𝐴) = E𝑌𝑥
[
1𝑌𝑡 ∈𝐴 e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]

+
∫ 𝑡

0

∫
𝐸𝑛+1

𝑄𝑡−𝑠,(𝑝)(𝑦, 𝐴)E𝑌𝑥
[
𝛽 (𝑌𝑠)𝐾𝛽 (𝑌𝑠 , 𝑑𝑦) e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠 1𝑝>𝑛

+
∫ 𝑡

0

∫
𝐸𝑛−1

𝑄𝑡−𝑠,(𝑝)(𝑦, 𝐴)E𝑌𝑥
[
𝛿 (𝑌𝑠)𝐾𝛿 (𝑌𝑠 , 𝑑𝑦) e−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢
]

d𝑠,

and 𝑄𝑡 ,(∞)(𝑥, 𝐴) satisfies (2.5) by continuity of the probability. The proof is then complete54

thanks to the unicity of the solution to (2.5).55

2. Proofs of Section 3.1 about Feller properties56

2.1. Proof of Proposition 357

Both results of the proposition are based on the following calculation, for any 𝑓 ∈ 𝑀𝑏(𝐸):58

𝑄𝑡 𝑓 (𝑥) − 𝑓 (𝑥) = E𝑌𝑥
[
𝑓 (𝑌𝑡 )e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
− 𝑓 (𝑥) + E𝑥

[
𝑓 (𝑋𝑡 )1𝑁𝑡≥1

]
= 𝑄𝑌

𝑡 𝑓 (𝑥) − 𝑓 (𝑥) + E𝑌𝑥
[
𝑓 (𝑌𝑡 )

(
e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢 − 1
)]

+ E𝑥

[
𝑓 (𝑋𝑡 )1𝑁𝑡≥1

]
.

The last two terms goes uniformly to 0 when 𝑡 → 0. Indeed,59 ���E𝑌𝑥 [
𝑓 (𝑌𝑡 )

(
e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢 − 1
)]

+ E𝑥

[
𝑓 (𝑋𝑡 )1𝑁𝑡≥1

] ��� ≤ || 𝑓 | |∞𝛼∗𝑡 + || 𝑓 | |∞P𝑥(𝑁𝑡 ≥ 1)

= | | 𝑓 | |∞𝛼∗𝑡 + || 𝑓 | |∞E𝑌𝑥
[(

1 − e−
∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
)]

≤ 2𝛼∗𝑡 | | 𝑓 | |∞.
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So we obtain directly the second point of the proposition. For the first point remark that when60

𝑓 ∈ 𝐶𝑏(𝐸), by continuity of 𝑓 ◦ 𝑌 and the dominated convergence theorem, lim𝑡→0𝑄
𝑌
𝑡 𝑓 (𝑥) =61

𝑓 (𝑥).62

2.2. Proof of Theorem 2 (part 1)63

The proof of the Feller continuous property of (𝑋𝑡 )𝑡≥0 is based on the following Lemma 464

that exploits the Feller continuous property of 𝑄𝑌
𝑡 , and on Lemma 5 which in addition makes65

use of the Feller continuous property of the jump kernel 𝐾 .66

Lemma 4. Assume that for any 𝑡 ≥ 0, 𝑄𝑌
𝑡 𝐶𝑏(𝐸) ⊂ 𝐶𝑏(𝐸). Then for any 𝑝 ≥ 1, 𝑓1, . . . 𝑓𝑝 ∈67

𝐶𝑏(𝐸) and 0 ≤ 𝑡1 < · · · < 𝑡𝑝 the function 𝑥 ↦→ E𝑌𝑥
[
𝑓1(𝑌𝑡1 ) . . . 𝑓𝑝(𝑌𝑡𝑝 )

]
is continuous.68

Furthermore, for any 𝑓 ∈ 𝐶𝑏(𝐸) the function 𝑥 ↦→ E𝑌𝑥 [ 𝑓 (𝑌𝑡 )e−
∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢] is continuous.69

Proof. To prove the first statement, we proceed first by induction on 𝑝 ≥ 1. Since 𝑥 ↦→70

E𝑌𝑥
[
𝑓1(𝑌𝑡1 )

]
= 𝑄𝑌

𝑡1
𝑓1(𝑥), the property is satisfied for 𝑝 = 1 because 𝑄𝑌

𝑡 𝐶𝑏(𝐸) ⊂ 𝐶𝑏(𝐸) for71

any 𝑡 ≥ 0 by assumption. Suppose now that the property is true for some 𝑝 ≥ 1. Let72

𝑓1, . . . , 𝑓𝑝+1 ∈ 𝐶𝑏(𝐸) and 0 ≤ 𝑡1 < · · · < 𝑡𝑝+1. Then73

E𝑌𝑥
[
𝑓1(𝑌𝑡1 ) . . . 𝑓𝑝+1(𝑌𝑡𝑝+1 )

]
= E𝑌𝑥

[
E𝑌𝑥
(
𝑓1(𝑌𝑡1 ) . . . 𝑓𝑝+1(𝑌𝑡𝑝+1 )

��𝑌𝑡1 , . . . , 𝑌𝑡𝑝 )]
= E𝑌𝑥

[
𝑓1(𝑌𝑡1 ) . . . 𝑓𝑝(𝑌𝑡𝑝 )E𝑌𝑥

(
𝑓𝑝+1(𝑌𝑡𝑝+1 )|𝑌𝑡𝑝

)]
= E𝑌𝑥

[
𝑓1(𝑌𝑡1 ) . . . 𝑓𝑝(𝑌𝑡𝑝 )𝑄𝑌

𝑡𝑝+1−𝑡𝑝 𝑓𝑝+1(𝑌𝑡𝑝 )
]
.

The function 𝑓𝑝 × 𝑄𝑌
𝑡𝑝+1−𝑡𝑝 𝑓𝑝+1 is continuous by assumption so we can apply the induction74

hypothesis.75

Regarding the second statement of the lemma, let us take 𝑓 ∈ 𝐶𝑏(𝐸) and 𝑡 ≥ 0. We have76

E𝑌𝑥
[
𝑓 (𝑌𝑡 )e−

∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢
]
= E𝑌𝑥

[
𝑓 (𝑌𝑡 )

∑︁
𝑘≥0

(−1)𝑘

𝑘!

(∫ 𝑡

0
𝛼(𝑌𝑢) d𝑢

)𝑘
]

=
∑︁
𝑘≥0

(−1)𝑘

𝑘!

∫ 𝑡

𝑢1=0
· · ·

∫ 𝑡

𝑢𝑘=0
E𝑌𝑥

[
𝑓 (𝑌𝑡 )𝛼(𝑌𝑢1 ) . . . 𝛼(𝑌𝑢𝑘

)
]

d𝑢1 . . . d𝑢𝑘

which is valid because 𝑓 × 𝛼𝑘 is bounded. For any 𝑢1 ≥ 0, . . . , 𝑢𝑘 ≥ 0, the function77

𝑥 ∈ 𝐸 ↦→ E𝑌𝑥
[
𝑓 (𝑌𝑡 )𝛼(𝑌𝑢1 ) . . . 𝛼(𝑌𝑢𝑘

)
]

is continuous by the first part of the proof and this78

expression is bounded uniformly in 𝑥 by ∥ 𝑓 ∥∞ × (𝛼∗)𝑘 ∈ 𝐿1([0, 𝑡]𝑘). Again, by normal79

convergence, we obtain the expected result.80

Lemma 5. Assume that 𝑄𝑌
𝑡 𝐶𝑏(𝐸) ⊂ 𝐶𝑏(𝐸) for any 𝑡 ≥ 0 and that 𝐾 𝐶𝑏(𝐸) ⊂ 𝐶𝑏(𝐸). Let81

𝑡 > 0. Then for any 𝑘 ≥ 1, for any bounded measurable function 𝜑 on 𝐸 × R+ such that 𝜑(., 𝑢)82

is continuous for any 𝑢 ≤ 𝑡, the function 𝑥 ↦→ E𝑥 [𝜑(𝑋𝑇𝑘 , 𝑇𝑘)1𝑇𝑘≤𝑡 ] is continuous.83
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Proof. We shall proceed by induction. For 𝑘 = 1,84

E𝑥 [𝜑(𝑋𝑇1 , 𝑇1)1𝑇1≤𝑡 ] = E𝑥 [1𝑇1≤𝑡 E𝑥 [𝜑(𝑋𝑇1 , 𝑇1)|𝑌 (0), 𝑇1]]

= E𝑥 [
∫
𝐸

𝐾(𝑌 (0)
𝑇1
, 𝑑𝑧)𝜑(𝑧, 𝑇1)1𝑇1≤𝑡 ]

= E𝑥 [
∫
𝐸

∫ 𝑡

0
𝐾(𝑌 (0)

𝑡1
, 𝑑𝑧)𝜑(𝑧, 𝑡1)𝛼(𝑌 (0)

𝑡1
)𝑒−

∫ 𝑡1
0 𝛼(𝑌 (0)

𝑢 ) d𝑢 d𝑡1]

=

∫ 𝑡

0
E𝑌𝑥 [𝐻(𝑌𝑡1 , 𝑡1)𝛼(𝑌𝑡1 )𝑒−

∫ 𝑡1
0 𝛼(𝑌𝑢) d𝑢] d𝑡1

where 𝐻(𝑥, 𝑢) =
∫
𝐸
𝐾(𝑥, 𝑑𝑧)𝜑(𝑧, 𝑢). Since 𝑧 ↦→ 𝜑(𝑧, 𝑡1) belongs to 𝐶𝑏(𝐸) for every 𝑡1 ≤ 𝑡,85

the Feller continuous property of 𝐾 entails the continuity of 𝑥 ↦→ 𝐻(𝑥, 𝑡1) for every 𝑡1 ≤ 𝑡.86

Consequently the function87

𝑥 ↦→ E𝑌𝑥 [𝐻(𝑌𝑡1 , 𝑡1)𝛼(𝑌𝑡1 )𝑒−
∫ 𝑡1

0 𝛼(𝑌𝑢) d𝑢]

is continuous for every 𝑡1 by Lemma 4. The functions 𝐻 and 𝛼 being bounded, the dominated88

convergence theorem yields the continuity of 𝑥 ↦→ E𝑥 [𝜑(𝑋𝑇1 , 𝑇1)1𝑇1≤𝑡 ], proving the statement89

for 𝑘 = 1. Assume now that the property holds for 𝑘 ≥ 1. We compute similarly90

E𝑥 [𝜑(𝑋𝑇𝑘+1 , 𝑇𝑘+1)1𝑇𝑘+1≤𝑡 ] = E𝑥 [E𝑥 [
∫
𝐸

𝐾(𝑌 (𝑘)
𝑇𝑘+1−𝑇𝑘 , 𝑑𝑧)𝜑(𝑧, 𝑇𝑘+1)1𝑇𝑘+1≤𝑡 |F𝑇𝑘 , 𝑌

(𝑘)]]

= E𝑥 [E𝑌𝑋𝑇𝑘
[
∫ 𝑡−𝑇𝑘

0

∫
𝐸

𝐾(𝑌𝜏 , 𝑑𝑧)𝜑(𝑧, 𝜏 + 𝑇𝑘)𝛼(𝑌𝜏)𝑒−
∫ 𝜏

0 𝛼(𝑌𝑢) d𝑢]1𝑇𝑘≤𝑡 ]

= E𝑥 [�̃�(𝑋𝑇𝑘 , 𝑇𝑘)1𝑇𝑘≤𝑡 ],

where91

�̃�(𝑥, 𝑢) = E𝑌𝑥 [
∫ 𝑡−𝑢

0

∫
𝐸

𝐾(𝑌𝜏 , 𝑑𝑧)𝜑(𝑧, 𝜏 + 𝑢)𝛼(𝑌𝜏)𝑒−
∫ 𝜏

0 𝛼(𝑌𝑢) d𝑢 d𝜏]

=

∫ 𝑡−𝑢

0
E𝑌𝑥 [𝐻(𝑌𝜏 , 𝜏 + 𝑢)𝛼(𝑌𝜏)𝑒−

∫ 𝜏

0 𝛼(𝑌𝑢) d𝑢] d𝜏.

By Lemma 4, 𝑥 ↦→ E𝑌𝑥 [𝐻(𝑌𝜏 , 𝜏 + 𝑢)𝛼(𝑌𝜏)𝑒−
∫ 𝜏

0 𝛼(𝑌𝑢) d𝑢] is continuous for each 𝑢, 𝜏, so �̃�(., 𝑢) is92

continuous for every 𝑢 ≤ 𝑡. We then obtain the result applying the induction hypothesis.93

We are now in position to prove the first part of Theorem 2 about the Feller continuous94

property of (𝑋𝑡 )𝑡≥0. We compute for 𝑡 > 0, 𝑥 ∈ 𝐸 and 𝑓 ∈ 𝐶𝑏(𝐸)95

𝑄𝑡 𝑓 (𝑥) =
∞∑︁
𝑘=0

E𝑥 [ 𝑓 (𝑋𝑡 )1𝑁𝑡=𝑘]

= E𝑌𝑥 [ 𝑓 (𝑌𝑡 )𝑒−
∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢] +
∑︁
𝑘≥1

E𝑥 [ 𝑓 (𝑋𝑡 )1𝑇𝑘≤𝑡<𝑇𝑘+1 ]

= 𝜓(𝑥, 𝑡) +
∑︁
𝑘≥1

E𝑥 [ 𝑓 (𝑋𝑡 )1𝑇𝑘+1−𝑇𝑘>𝑡−𝑇𝑘1𝑇𝑘≤𝑡 ]
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where 𝜓(𝑥, 𝑡) = E𝑌𝑥 [ 𝑓 (𝑌𝑡 )𝑒−
∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢] .We get from Lemma 4 that 𝜓(., 𝑡) belongs to 𝐶𝑏(𝐸) for96

every 𝑡 > 0. Then97

E𝑥 [ 𝑓 (𝑋𝑡 )1𝑇𝑘+1−𝑇𝑘>𝑡−𝑇𝑘1𝑇𝑘≤𝑡 ] = E𝑥 [1𝑇𝑘≤𝑡 𝑓 (𝑌
(𝑘)
𝑡−𝑇𝑘 )E𝑥 [1𝑇𝑘+1−𝑇𝑘>𝑡−𝑇𝑘 |F𝑇𝑘 , 𝑌

(𝑘)]]

= E𝑥 [ 𝑓 (𝑌 (𝑘)
𝑡−𝑇𝑘 )e−

∫ 𝑡−𝑇𝑘
0 𝛼(𝑌 (𝑘)

𝑢 ) d𝑢1𝑇𝑘≤𝑡 ] (2.1)

= E𝑥 [E𝑌𝑋𝑇𝑘
[ 𝑓 (𝑌𝑡−𝑇𝑘 )𝑒−

∫ 𝑡−𝑇𝑘
0 𝛼(𝑌𝑢) d𝑢]1𝑇𝑘≤𝑡 ] (2.2)

= E𝑥 [𝜓(𝑋𝑇𝑘 , 𝑡 − 𝑇𝑘)1𝑇𝑘≤𝑡 ],

so Lemma 5 entails that 𝑥 ↦→ E𝑥 [𝜓(𝑋𝑇𝑘 , 𝑡 − 𝑇𝑘)1𝑇𝑘≤𝑡 ] is continuous for every 𝑘 ≥ 1. The98

domination99 ��E𝑥 [𝜓(𝑋𝑇𝑘 , 𝑡 − 𝑇𝑘)1𝑇𝑘≤𝑡 ]
�� ≤ ∥ 𝑓 ∥∞P𝑥(𝑇𝑘 ≤ 𝑡)
≤ ∥ 𝑓 ∥∞P(𝑁∗

𝑡 ≥ 𝑘)

where 𝑁∗𝑡 ∼ P(𝛼∗𝑡) (by (2.3)) allows us to conclude that 𝑥 ↦→ 𝑄𝑡 𝑓 (𝑥) is continuous.100

2.3. Proof of Theorem 2 (part 2)101

Our aim is to prove the Feller property of (𝑋𝑡 )𝑡≥0 assuming that for every 𝑡 > 0,𝑄𝑌
𝑡 𝐶0(𝐸) ⊂102

𝐶0(𝐸) and that 𝐾 𝐶0(𝐸) ⊂ 𝐶0(𝐸). We follow the same steps as for the proof of Theorem 2103

(part 1), by first inspecting the consequences of𝑄𝑌
𝑡 𝐶0(𝐸) ⊂ 𝐶0(𝐸) in Lemma 6 and second the104

additional effect of 𝐾 𝐶0(𝐸) ⊂ 𝐶0(𝐸) in Lemma 7.105

Lemma 6. Suppose that for every 𝑡 > 0, 𝑄𝑌
𝑡 𝐶0(𝐸) ⊂ 𝐶0(𝐸). Then106

(i). for any 𝑓 ∈ 𝐶0(𝐸), lim𝑡→0 ∥𝑄𝑌
𝑡 𝑓 − 𝑓 ∥∞ = 0,107

(ii). for any 𝑡 > 0, supp𝑠∈[0,𝑡 ] 𝑄𝑌
𝑠𝐶0(𝐸) ⊂ 𝐶0(𝐸),108

(iii). for any 𝑓 ∈ 𝐶0(𝐸) the function 𝑥 ↦→ E𝑌𝑥 [ 𝑓 (𝑌𝑡 )e−
∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢] is continuous.109

Proof. By continuity of (𝑌𝑡 )𝑡≥0, lim
𝑡→0

𝑄𝑌
𝑡 𝑓 (𝑥) = 𝑓 (𝑥) for every 𝑓 ∈ 𝐶0(𝐸) and every 𝑥 ∈ 𝐸 .110

As proved in [Revuz and YorRevuz and Yor1991], this is equivalent when 𝑄𝑌
𝑡 𝐶0(𝐸) ⊂ 𝐶0(𝐸)111

to lim𝑡→0 ∥𝑄𝑌
𝑡 𝑓 − 𝑓 ∥∞ = 0, which proves the first statement of the lemma.112

Concerning the second property, let 𝜀 > 0 and 𝑓 ∈ 𝐶0(𝐸). Fix 𝜂( 𝑓 ) > 0 such that for every113

𝑠 < 𝜂( 𝑓 ), ∥𝑄𝑌
𝑠 𝑓 − 𝑓 ∥∞ ≤ 𝜀 and 𝑠(𝑥) ∈ [0, 𝑡] satisfying supp𝑠∈[0,𝑡 ] 𝑄𝑌

𝑠 𝑓 (𝑥) = 𝑄𝑌
𝑠(𝑥) 𝑓 (𝑥). Then114

we have115

𝑄𝑌
⌊2𝑛𝑠(𝑥)/𝑡⌋𝑡

2𝑛
𝑓 (𝑥) ≤ max

𝑘=0,...,2𝑛
𝑄𝑌

𝑘𝑡
2𝑛
𝑓 (𝑥) ≤ supp

𝑠∈[0,𝑡 ]
𝑄𝑌

𝑠 𝑓 (𝑥).
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So116 ����� supp
𝑠∈[0,𝑡 ]

𝑄𝑌
𝑠 𝑓 (𝑥) − max

𝑘=0,...,2𝑛
𝑄𝑌

𝑘𝑡
2𝑛
𝑓 (𝑥)

����� ≤
����� supp
𝑠∈[0,𝑡 ]

𝑄𝑌
𝑠 𝑓 (𝑥) −𝑄𝑌

⌊2𝑛𝑠(𝑥)/𝑡⌋𝑡
2𝑛

𝑓 (𝑥)

�����
=

����𝑄𝑌
𝑠(𝑥) 𝑓 (𝑥) −𝑄𝑌

⌊2𝑛𝑠(𝑥)/𝑡⌋𝑡
2𝑛

𝑓 (𝑥)
����

=

����𝑄𝑌
⌊2𝑛𝑠(𝑥)/𝑡⌋𝑡

2𝑛
(𝑄𝑌

𝑠(𝑥)− ⌊2𝑛𝑠(𝑥)/𝑡⌋𝑡
2𝑛

𝑓 (𝑥) − 𝑓 (𝑥))
����

≤ ∥𝑄𝑌

𝑠(𝑥)− ⌊2𝑛𝑠(𝑥)/𝑡⌋𝑡
2𝑛

𝑓 − 𝑓 ∥∞

≤ 𝜀

whenever 𝑡2−𝑛 ≤ 𝜂( 𝑓 ). This leads to lim𝑛→∞ ∥ supp𝑠∈[0,𝑡 ] 𝑄𝑌
𝑠 𝑓 −max𝑘=0,...,2𝑛 𝑄

𝑌
𝑘𝑡2−𝑛 𝑓 ∥∞ = 0.117

Since max𝑘=0,...,2𝑛 𝑄
𝑌
𝑘𝑡2−𝑛 𝑓 ∈ 𝐶0(𝐸) for 𝑓 ∈ 𝐶0(𝐸) by assumption and𝐶0(𝐸) is a closed subset118

of 𝑀𝑏(𝐸) for ∥.∥∞, we deduce that supp𝑠∈[0,𝑡 ] 𝑄𝑌
𝑠 𝑓 ∈ 𝐶0(𝐸).119

We finally prove the third point of the lemma in a similar way as in the proof of Lemma120

4. First we show by induction on 𝑝 ≥ 1 that for any 𝑡 ≥ 0 and 0 ≤ 𝑢1 ≤ · · · ≤ 𝑢𝑝 ≤ 𝑡 and121

𝑓 ∈ 𝐶0(𝐸) the function 𝑥 ↦→ E𝑌𝑥
[
𝑓 (𝑌𝑡 )𝛼(𝑌𝑢1 ) . . . 𝛼(𝑌𝑢𝑝

)
]

is in 𝐶0(𝐸). Indeed for 𝑝 = 1122

E𝑥

[
𝑓 (𝑌𝑡 )𝛼(𝑌𝑢1 )

]
= E𝑥

[
𝛼(𝑌𝑢1 )E𝑥

[
𝑓 (𝑌𝑡 )|F𝑢1

] ]
= E𝑥

[
𝛼(𝑌𝑢1 )𝑄𝑌

𝑡−𝑢1 𝑓 (𝑌𝑢1 )
]
= 𝑄𝑌

𝑢1

(
𝛼 ×𝑄𝑌

𝑡−𝑢1 𝑓
)

(𝑥)

and 𝑄𝑌
𝑢1

(
𝛼 ×𝑄𝑌

𝑡−𝑢1
𝑓
)
∈ 𝐶0(𝐸) by assumption. For the induction step we just write123

E𝑌𝑥
[
𝑓 (𝑌𝑡 )𝛼(𝑌𝑢1 ) . . . 𝛼(𝑌𝑢𝑝

)𝛼(𝑌𝑢𝑝+1 )
]
= E𝑌𝑥

[
𝛼(𝑌𝑢1 ) . . . 𝛼(𝑌𝑢𝑝

)(𝑄𝑌
𝑡−𝑢𝑝+1 𝑓 × 𝛼)(𝑌𝑢𝑝+1 )

]
that is in 𝐶0(𝐸) by assumption and the induction hypothesis. We then obtain the continuity of124

the function125

𝑥 ↦→ E𝑌𝑥 [ 𝑓 (𝑌𝑡 )e−
∫ 𝑡

0 𝛼(𝑌𝑢) d𝑢]
similarly as in the proof of Lemma 4.126

Lemma 7. Assume that for every 𝑡 > 0, 𝑄𝑌
𝑡 𝐶0(𝐸) ⊂ 𝐶0(𝐸) and that 𝐾 𝐶0(𝐸) ⊂ 𝐶0(𝐸). Let127

𝑡 > 0. Then for every 𝑘 ≥ 1 and all 𝑔 ∈ 𝐶0(𝐸), 𝑥 ↦→ E𝑥 [𝑔(𝑋𝑇𝑘 )1𝑇𝑘≤𝑡 ] vanishes at infinity.128

Proof. Let us prove the result by induction. For 𝑘 = 1,129 ��E𝑥 [𝑔(𝑋𝑇1 )1𝑇1≤𝑡 ]
�� = ����∫ 𝑡

0
E𝑥 [𝐾𝑔(𝑌𝑠)𝛼(𝑌𝑠)𝑒−

∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢] d𝑠
����

≤ 𝛼∗
∫ 𝑡

0
E𝑥 [𝐾 |𝑔 |(𝑌𝑠)] d𝑠

≤ 𝛼∗𝑡 supp𝑠∈[0,𝑡 ] 𝑄
𝑌
𝑠 𝐾 |𝑔 |(𝑥).

Since 𝐾 𝐶0(𝐸) ⊂ 𝐶0(𝐸), the function 𝐾 |𝑔 | belongs to 𝐶0(𝐸), so supp𝑠∈[0,𝑡 ] 𝑄𝑌
𝑠 𝐾 |𝑔 | ∈ 𝐶0(𝐸)130

by Lemma 6. This entails in particular that 𝑥 ↦→ E𝑥 [𝑔(𝑋𝑇1 )1𝑇1≤𝑡 ] vanishes at infinity. Let now131

𝑘 ≥ 1 and assume that 𝑥 ↦→ E𝑥 [𝑔(𝑋𝑇𝑘 )1𝑇𝑘≤𝑡 ]) vanishes at infinity. We compute similarly132

E𝑥 [𝑔(𝑋𝑇𝑘+1 )1𝑇𝑘+1≤𝑡 ] = E𝑥 [E𝑌𝑋𝑇𝑘
[
∫ 𝑡−𝑇𝑘

0

∫
𝐸

𝐾(𝑌𝑠 , 𝑑𝑧)𝑔(𝑧)𝛼(𝑌𝑠)𝑒−
∫ 𝑠

0 𝛼(𝑌𝑢) d𝑢]1𝑇𝑘≤𝑡 ]
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and133 ��E𝑥 [𝑔(𝑋𝑇𝑘+1 )1𝑇𝑘+1≤𝑡 ]
�� ≤ 𝛼∗E𝑥 [E𝑋𝑇𝑘

[
∫ 𝑡

0
𝐾 |𝑔 |(𝑌𝑠) d𝑠]1𝑇𝑘≤𝑡 ]

= 𝛼∗E𝑥 [
∫ 𝑡

0
𝑄𝑌

𝑠 𝐾 |𝑔 |(𝑋𝑇𝑘 ) d𝑠1𝑇𝑘≤𝑡 ]

≤ 𝛼∗𝑡E𝑥 [supp𝑠∈[0,𝑡 ] 𝑄
𝑌
𝑠 𝐾 |𝑔 |(𝑋𝑇𝑘 )1𝑇𝑘≤𝑡 ] .

Since supp𝑠∈[0,𝑡 ] 𝑄𝑌
𝑠 𝐾 |𝑔 | ∈ 𝐶0(𝐸), the result follows from the induction hypothesis.134

In order to prove Theorem 2 (part 2), first remark that 𝑥 ↦→ 𝑄𝑡 𝑓 (𝑥) is continuous for135

𝑓 ∈ 𝐶0(𝐸) and any 𝑡 ≥ 0. This follows by the same arguments as in the proof of Theorem 2136

(part 1) taking 𝑓 ∈ 𝐶0(𝐸). Indeed, using the same notation as in the proof of Lemma 5, we obtain137

that the function 𝐻(., 𝑢) belongs to 𝐶0(𝐸) for any 𝑢 ≤ 𝑡 by the assumption 𝐾 𝐶0(𝐸) ⊂ 𝐶0(𝐸)138

and Lemma 6 (item 3.). The conclusion of Lemma 5 then follows by the same proof, using139

Lemma 6 instead of Lemma 4. Similarly, the proof of Theorem 2 (part 1) with the same140

substitution entails that 𝑄𝑡 𝑓 ∈ 𝐶𝑏(𝐸).141

The strong continuity of 𝑄𝑡 follows by Proposition 3 and the first statement of Lemma 6.142

It remains to prove that 𝑥 ↦→ 𝑄𝑡 𝑓 (𝑥) vanishes at infinity. By the same decomposition of143

𝑄𝑡 𝑓 as in the proof of Theorem 2 (part 1), we obtain using in particular (2.2) that for any 𝑗 ≥ 1144

|𝑄𝑡 𝑓 (𝑥)| ≤ 𝑄𝑌
𝑡 | 𝑓 |(𝑥) +

𝑗∑︁
𝑘=1

E𝑥 [supp𝑠∈[0,𝑡 ] 𝑄
𝑌
𝑠 | 𝑓 |(𝑋𝑇𝑘 )1𝑇𝑘≤𝑡 ] + ∥ 𝑓 ∥∞P(𝑁∗

𝑡 ≥ 𝑗) (2.3)

where 𝑁∗
𝑡 ∼ P(𝛼∗𝑡). Let 𝜀 > 0. First, 𝑄𝑌

𝑡 | 𝑓 | ∈ 𝐶0(𝐸) by assumption, so that 𝑄𝑌
𝑡 | 𝑓 |(𝑥) ≤ 𝜀/3145

for 𝑥 outside a compact set. Second, since lim 𝑗→∞ P(𝑁∗
𝑡 ≥ 𝑗) = 0, there exists 𝑗0 ≥ 1 such that146

∥ 𝑓 ∥∞P(𝑁∗
𝑡 ≥ 𝑗) ≤ 𝜀/3. Third, Lemma 7 entails that for every 𝑘 ≤ 𝑗0 the function147

𝑥 ↦→ E𝑥 [supp𝑠∈[0,𝑡 ] 𝑄
𝑌
𝑠 | 𝑓 |(𝑋𝑇𝑘 )1𝑇𝑘≤𝑡 ]

vanishes at infinity because supp𝑠∈[0,𝑡 ] 𝑄𝑌
𝑠 | 𝑓 | ∈ 𝐶0(𝐸) by Lemma 6. It is therefore bounded148

by 𝜖/ 𝑗0 for 𝑥 outside a compact set. Combining these three results in (2.3) concludes the proof.149

3. Proof of Theorem 3 about the infinitesimal generator150

Let 𝑓 ∈ 𝐿𝑌0 , 𝑥 ∈ 𝐸 and ℎ > 0. We decompose 1
ℎ

(𝑄ℎ 𝑓 (𝑥) − 𝑓 (𝑥)) as151

1
ℎ

(𝑄ℎ 𝑓 (𝑥) − 𝑓 (𝑥)) =
1
ℎ

(
E𝑌𝑥

[
𝑓 (𝑌ℎ)e−

∫ ℎ

0 𝛼(𝑌𝑢) d𝑢
]
− 𝑓 (𝑥) + E𝑥

[
𝑓 (𝑋ℎ)1𝑁ℎ=1

]
+ E𝑥

[
𝑓 (𝑋ℎ)1𝑁ℎ≥2

])
= E𝑌𝑥

[
𝑓 (𝑌ℎ) − 𝑓 (𝑥)

ℎ

]
+ 𝑇(𝑥),

where152

𝑇(𝑥) = −1
ℎ
E𝑌𝑥

[
𝑓 (𝑌ℎ)

∫ ℎ

0
𝛼(𝑌𝑢) d𝑢

]
+ 1
ℎ
E𝑌𝑥

[
𝑓 (𝑌ℎ)

(
e−

∫ ℎ

0 𝛼(𝑌𝑢) d𝑢 − 1 +
∫ ℎ

0
𝛼(𝑌𝑢) d𝑢

)]
+ 1
ℎ
E𝑥

[
𝑓 (𝑋ℎ)1𝑁ℎ=1

]
+ 1
ℎ
E𝑥

[
𝑓 (𝑋ℎ)1𝑁ℎ≥2

]
. (3.1)
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To prove the theorem, we thus need to show that for any 𝑓 ∈ 𝐿𝑌0153

supp
𝑥∈𝐸

|𝑇(𝑥) + 𝛼(𝑥) 𝑓 (𝑥) − 𝛼(𝑥)𝐾 𝑓 (𝑥)| −→
ℎ↘0

0.

Following (3.1), we denote 𝑇(𝑥) = 𝑇1(𝑥) + 𝑇2(𝑥) + 𝑇3(𝑥) + 𝑇4(𝑥) and we shall prove that154

supp
𝑥∈𝐸

|𝑇1(𝑥) + 𝛼(𝑥) 𝑓 (𝑥)| −→
ℎ↘0

0, (3.2)
155

supp
𝑥∈𝐸

|𝑇2(𝑥)| −→
ℎ↘0

0, (3.3)
156

supp
𝑥∈𝐸

|𝑇3(𝑥) − 𝛼(𝑥)𝐾 𝑓 (𝑥)| −→
ℎ↘0

0, (3.4)
157

supp
𝑥∈𝐸

|𝑇4(𝑥)| −→
ℎ↘0

0. (3.5)

For (3.2), we compute for ℎ > 0 and 𝑥 ∈ 𝐸 ,158

𝑇1(𝑥) + 𝛼(𝑥) 𝑓 (𝑥) = 𝛼(𝑥) 𝑓 (𝑥) − 1
ℎ
E𝑌𝑥

[
𝑓 (𝑌ℎ)

∫ ℎ

0
𝛼(𝑌𝑢) d𝑢

]
=

1
ℎ

∫ ℎ

0
E𝑌𝑥

[
𝛼(𝑥) 𝑓 (𝑥) −𝑄𝑌

ℎ−𝑢 𝑓 (𝑌𝑢)𝛼(𝑌𝑢)
]

d𝑢

=
1
ℎ

∫ ℎ

0
E𝑌𝑥 [𝛼(𝑥) 𝑓 (𝑥) − 𝑓 (𝑌𝑢)𝛼(𝑌𝑢)] d𝑢 + 1

ℎ

∫ ℎ

0
E𝑌𝑥

[
𝑓 (𝑌𝑢)𝛼(𝑌𝑢) −𝑄𝑌

ℎ−𝑢 𝑓 (𝑌𝑢)𝛼(𝑌𝑢)
]

d𝑢

=

∫ 1

0

(
𝑓 × 𝛼 −𝑄𝑌

ℎ𝑣( 𝑓 × 𝛼)
)

(𝑥) d𝑣 +
∫ 1

0
E𝑌𝑥

[
𝛼(𝑌ℎ𝑣)

(
𝑓 −𝑄𝑌

ℎ(1−𝑣) 𝑓
)

(𝑌ℎ𝑣)
]

d𝑣.

So,159

|𝑇1(𝑥) + 𝛼(𝑥) 𝑓 (𝑥)| ≤
∫ 1

0
∥𝑄𝑌

ℎ𝑣( 𝑓 × 𝛼) − 𝑓 × 𝛼∥∞ d𝑣 + 𝛼∗
∫ 1

0
∥𝑄𝑌

ℎ(1−𝑣) 𝑓 − 𝑓 ∥∞ d𝑣,

that does not depend on 𝑥 ∈ 𝐸 and converges to zero when ℎ ↘ 0 by the dominated convergence160

theorem, the fact that 𝑓 ∈ 𝐿𝑌0 and the assumption 𝛼 × 𝑓 ∈ 𝐿𝑌0 . This proves (3.2).161

Now for 𝑓 ∈ 𝐿𝑌0 and 𝑥 ∈ 𝐸162

|𝑇2(𝑥)| ≤ ∥ 𝑓 ∥∞
2ℎ

E𝑌𝑥

[(∫ ℎ

0
𝛼(𝑌𝑢) d𝑢

)2]
≤ ∥ 𝑓 ∥∞(𝛼∗)2

2
ℎ,

that does not depend on 𝑥 ∈ 𝐸 and converges to zero when ℎ ↘ 0, proving (3.3).163

For (3.4), we have for any 𝑓 ∈ 𝐿𝑌0 ,164

𝑇3(𝑥) =
1
ℎ
E𝑥

[
𝑓 (𝑋ℎ)1𝜏1≤ℎ1𝜏2>ℎ−𝜏1

]
=

1
ℎ
E𝑥

[
𝑓 (𝑌 (1)

ℎ−𝜏1
)1𝜏1≤ℎP𝑥

(
𝜏2 > ℎ − 𝜏1

��F𝜏1 , 𝑌
(1) )]

=
1
ℎ
E𝑥

[
𝑓 (𝑌 (1)

ℎ−𝜏1
)1𝜏1≤ℎe−

∫ ℎ−𝜏1
0 𝛼

(
𝑌

(1)
𝑢

)
d𝑢
]

=
1
ℎ
E𝑥

[
1𝜏1≤ℎE

𝑌
𝑋𝜏1

[
𝑓 (𝑌ℎ−𝜏1 )e−

∫ ℎ−𝜏1
0 𝛼(𝑌𝑢) d𝑢

] ]
=

1
ℎ
E𝑥

[
1𝜏1≤ℎE

𝑌
𝑋𝜏1

[
𝑓 (𝑌ℎ−𝜏1 )

] ]
+ 1
ℎ
E𝑥

[
1𝜏1≤ℎE

𝑌
𝑋𝜏1

[
𝑓 (𝑌ℎ−𝜏1 )

(
e−

∫ ℎ−𝜏1
0 𝛼(𝑌𝑢) d𝑢 − 1

)] ]
.

(3.6)
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The second term above converges uniformly to 0 when ℎ ↘ 0 because165 ����1ℎE𝑥

[
1𝜏1≤ℎE

𝑌
𝑋𝜏1

[
𝑓 (𝑌ℎ−𝜏1 )

(
e−

∫ ℎ−𝜏1
0 𝛼(𝑌𝑢) d𝑢 − 1

)] ] ���� ≤ ℎ𝛼∗∥ 𝑓 ∥∞
ℎ

P𝑥(𝜏1 ≤ ℎ) ≤ (𝛼∗)2∥ 𝑓 ∥∞ℎ.

Let us now consider the first term in (3.6) and prove that it converges uniformly to 𝛼(𝑥)𝐾 𝑓 (𝑥).166

1
ℎ
E𝑥

[
1𝜏1≤ℎE

𝑌
𝑋𝜏1

[
𝑓 (𝑌ℎ−𝜏1 )

] ]
=

1
ℎ
E𝑥

[
1𝜏1≤ℎE𝑥

[
E𝑌𝑋𝜏1

[
𝑓 (𝑌ℎ−𝜏1 )

] ��𝑌 (0), 𝜏1

] ]
=

1
ℎ
E𝑥

[
1𝜏1≤ℎ

∫
𝐸

E𝑌𝑧
[
𝑓 (𝑌ℎ−𝜏1 )

]
𝐾

(
𝑌

(0)
𝜏1 , d𝑧

)]
=

1
ℎ
E𝑥

[
1𝜏1≤ℎ

∫
𝐸

𝑄𝑌
ℎ−𝜏1

𝑓 (𝑧)𝐾
(
𝑌

(0)
𝜏1 , d𝑧

)]
=

1
ℎ
E𝑥

[∫ ℎ

0

∫
𝐸

𝑄𝑌
ℎ−𝑠 𝑓 (𝑧)𝐾

(
𝑌

(0)
𝑠 , d𝑧

)
𝛼(𝑌 (0)

𝑠 )e−
∫ 𝑠

0 𝛼(𝑌 (0)
𝑢 ) d𝑢 d𝑠

]
= E𝑌𝑥

[∫ 1

0

∫
𝐸

𝑄𝑌
ℎ(1−𝑣) 𝑓 (𝑧)𝐾 (𝑌ℎ𝑣 , d𝑧)𝛼(𝑌ℎ𝑣)e−

∫ ℎ𝑣

0 𝛼(𝑌𝑢) d𝑢 d𝑣
]

= E𝑌𝑥

[∫ 1

0

∫
𝐸

𝑄𝑌
ℎ(1−𝑣) 𝑓 (𝑧)𝐾 (𝑌ℎ𝑣 , d𝑧)𝛼(𝑌ℎ𝑣) d𝑣

]
+ E𝑌𝑥

[∫ 1

0

∫
𝐸

𝑄𝑌
ℎ(1−𝑣) 𝑓 (𝑧)𝐾 (𝑌ℎ𝑣 , d𝑧)𝛼(𝑌ℎ𝑣)

(
e−

∫ ℎ𝑣

0 𝛼(𝑌𝑢) d𝑢 − 1
)

d𝑣
]
.

On one hand,167 ����E𝑌𝑥 [∫ 1

0

∫
𝐸

𝑄𝑌
ℎ(1−𝑣) 𝑓 (𝑧)𝐾 (𝑌ℎ𝑣 , d𝑧)𝛼(𝑌ℎ𝑣)

(
e−

∫ ℎ𝑣

0 𝛼(𝑌𝑢) d𝑢 − 1
)

d𝑠
] ���� ≤ 𝛼∗∥ 𝑓 ∥∞E𝑌𝑥 [∫ 1

0

∫ ℎ𝑣

0
𝛼(𝑌𝑢) d𝑢 d𝑣

]
≤ (𝛼∗)2∥ 𝑓 ∥∞ ℎ,

which tends uniformly to 0 when ℎ ↘ 0. And on the other hand,168 ����E𝑌𝑥 [∫ 1

0

∫
𝐸

𝑄𝑌
ℎ(1−𝑣) 𝑓 (𝑧)𝐾 (𝑌ℎ𝑣 , d𝑧)𝛼(𝑌ℎ𝑣) d𝑣

]
− 𝛼(𝑥)𝐾 𝑓 (𝑥)

����
≤
∫ 1

0

���E𝑌𝑥 [
𝛼(𝑌ℎ𝑣)𝐾𝑄𝑌

ℎ(1−𝑣) 𝑓 (𝑌ℎ𝑣) − 𝛼(𝑌ℎ𝑣)𝐾 𝑓 (𝑌ℎ𝑣)
] ��� d𝑣 +

∫ 1

0

��E𝑌𝑥 [𝛼(𝑌ℎ𝑣)𝐾 𝑓 (𝑌ℎ𝑣) − 𝛼(𝑥)𝐾 𝑓 (𝑥)]
�� d𝑣

≤ 𝛼∗
∫ 1

0
∥𝐾𝑄𝑌

ℎ(1−𝑣) 𝑓 − 𝐾 𝑓 ∥∞ d𝑣 +
∫ 1

0

��𝑄𝑌
ℎ𝑣(𝛼 × 𝐾 𝑓 )(𝑥) − (𝛼 × 𝐾 𝑓 )(𝑥)

�� d𝑣

≤ 𝛼∗
∫ 1

0
∥𝑄𝑌

ℎ(1−𝑣) 𝑓 − 𝑓 ∥∞ d𝑣 +
∫ 1

0
∥𝑄𝑌

ℎ𝑣(𝛼 × 𝐾 𝑓 ) − (𝛼 × 𝐾 𝑓 )∥∞ d𝑣,

converges to 0 when ℎ ↘ 0 by the dominated convergence theorem and the fact that 𝑓 ∈ 𝐿𝑌0169

and 𝛼×𝐾 𝑓 ∈ 𝐿𝑌0 . The latter is implied by the fact that by assumption 𝑔 := 𝐾 𝑓 ∈ 𝐿𝑌0 , implying170

𝛼 × 𝑔 ∈ 𝐿𝑌0 . This proves (3.4).171

To complete the proof, it remains to remark that (3.5) follows from the following, using172

(2.3),173

|𝑇4(𝑥)| ≤ ∥ 𝑓 ∥∞
ℎ

P𝑥(𝑁ℎ ≥ 2) ≤ ∥ 𝑓 ∥∞ (𝛼∗)2

2
ℎ + 𝑜

ℎ↘0
(ℎ).
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4. Topological results for systems of interacting particles in R𝒅
174

We detail the topological properties of the state space 𝐸 for systems of interacting particles175

in 𝑊 ⊂ R𝑑 , introduced in Section 2.4. Remember that in this setting 𝐸 = ∪∞
𝑛=0𝐸𝑛 where176

𝐸𝑛 = 𝜋𝑛(𝑊𝑛) with 𝜋𝑛((𝑥1, . . . , 𝑥𝑛)) = {𝑥1, . . . , 𝑥𝑛}, and we have equipped the space 𝐸 with the177

distance 𝑑1 defined for 𝑥 = {𝑥1, . . . , 𝑥𝑛(𝑥)} and 𝑦 = {𝑦1, . . . , 𝑦𝑛(𝑦)} in 𝐸 such that 𝑛(𝑥) ≤ 𝑛(𝑦)178

by179

𝑑1(𝑥, 𝑦) =
1
𝑛(𝑦)

(
min

𝜎∈S𝑛(𝑦)

𝑛(𝑥)∑︁
𝑖=1

(∥𝑥𝑖 − 𝑦𝜎(𝑖)∥ ∧ 1) + (𝑛(𝑦) − 𝑛(𝑥))

)
,

with 𝑑1(𝑥,Ø) = 1 and where S𝑛 denotes the set of permutations of {1, . . . , 𝑛}.180

We verify in this section that if 𝑊 is a closed subset of R𝑑 (possibly 𝑊 = R𝑑), then181

(𝐸, 𝑑1) is a locally compact and complete set, strengthening results already obtained in182

[Schuhmacher and XiaSchuhmacher and Xia2008]. We also show that 𝑛(.) and 𝜋𝑛(.) are183

continuous under this topology, as claimed in Section 2.4. We continue with the proof184

of Proposition 4, which clarifies the meaning of converging sequences in (𝐸, 𝑑1), and of185

Proposition 5 that describes the compact sets of 𝐸𝑛 and 𝐸 , along with some useful corollaries.186

We finally show that the Hausdorff distance is not appropriate in our setting, not the least187

because it does not make 𝑛(.) continuous.188

In the following, we will often use in a equal way the spaces
(
R𝑛𝑑 , ∥.∥

)
and

(
(R𝑑)𝑛, ∥.∥𝑛

)
189

where190

∥𝑥∥𝑛 =
1
𝑛

𝑛∑︁
𝑖=1

∥𝑥𝑖 ∥.

Indeed, introducing the natural bĳection 𝜓𝑛 : 𝑧 ∈ R𝑛𝑑 ↦→ (𝑧1, . . . , 𝑧𝑛) ∈ (R𝑑)𝑛 we observe that191

for any 𝑧 ∈ R𝑛𝑑 , ∥𝑧∥/𝑛 ≤ ∥𝜓𝑛(𝑧)∥𝑛 ≤ ∥𝑧∥/
√
𝑛 by the Cauchy-Schwarz inequality. The norms192

being equivalent, we henceforth abusively confuse 𝑧 and 𝜓𝑛(𝑧). Similarly, any function from193

R𝑛𝑑 to R𝑑 can be seen as a function from (R𝑑)𝑛 to R𝑑 and we will confuse the two points of194

view.195

We start in the following lemmas with the continuity of 𝑛(.) and 𝜋𝑛(.). We will use the196

following straightforward property, for all 𝑥, 𝑦 ∈ 𝐸 ,197

𝑑1(𝑥, 𝑦) ≥ |𝑛(𝑦) − 𝑛(𝑥)|
𝑛(𝑥) ∨ 𝑛(𝑦)

. (4.1)

Lemma 8. The function 𝑛(.) : (𝐸, 𝑑1) → (N, |.|) is continuous.198

Proof. Take 𝑥 ∈ 𝐸 and a sequence (𝑥(𝑝))𝑝≥0 such that 𝑑1(𝑥(𝑝), 𝑥) → 0 as 𝑝 → ∞. Assume199

that the sequence (𝑛(𝑥(𝑝)))𝑝≥0 is not bounded. We then may define a subsequence (𝑛(𝑥(𝑝′)))𝑝′≥0200

such that 𝑛(𝑥(𝑝′)) → ∞, and by (4.1) we obtain201

𝑑1(𝑥, 𝑥(𝑝′)) ≥ |𝑛(𝑥) − 𝑛(𝑥(𝑝′))|
𝑛(𝑥) ∨ 𝑛(𝑥(𝑝′))

−→
𝑝′→∞

1,

which is a contradiction. The sequence (𝑛(𝑥(𝑝)))𝑝≥0 is therefore bounded by some 𝑀 > 0,202

which gives again by (4.1)203

|𝑛(𝑥(𝑝)) − 𝑛(𝑥)| ≤ (𝑀 ∨ 𝑛(𝑥)) 𝑑1(𝑥(𝑝), 𝑥) −→
𝑝→∞

0,

that is204

𝑛(𝑥(𝑝)) −→
𝑝→∞

𝑛(𝑥).
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Lemma 9. The projection 𝜋𝑛 : (𝑊𝑛, ∥.∥𝑛) → (𝐸𝑛, 𝑑1) is continuous.205

Proof. Let 𝑥, 𝑦 ∈ 𝑊𝑛. Then206

𝑑1(𝜋𝑛(𝑥), 𝜋𝑛(𝑦)) =
1
𝑛

(
min
𝜎∈S𝑛

𝑛∑︁
𝑖=1

(∥𝑥𝑖 − 𝑦𝜎(𝑖)∥ ∧ 1)

)
≤ 1
𝑛

𝑛∑︁
𝑖=1

(∥𝑥𝑖 − 𝑦𝑖 ∥ ∧ 1) ≤ ∥𝑥 − 𝑦∥𝑛.

From Lemma 9 we deduce that (𝐸, 𝑑1) is a locally compact space.207

Corollary 1. Let𝑊 a closed subset of R𝑑 . Then (𝐸, 𝑑1) is a locally compact space.208

Proof. First recall that 𝑑1(𝑥,Ø) = 1 so {Ø} is a compact neighborhood of Ø. Now take209

𝑥 = {𝑥1, . . . , 𝑥𝑛} ∈ 𝐸𝑛 with 𝑛 ≥ 1. The space 𝑊𝑛 is locally compact so there exists 𝐾 ⊂ 𝑊𝑛
210

a compact neighborhood of (𝑥1, . . . , 𝑥𝑛). Now set �̃� = 𝜋𝑛(𝐾). Then, 𝑥 ∈ �̃� and �̃� is a211

compact set by Lemma 9. We show that there is an open set containing 𝑥 which is included212

in �̃� . By definition there exists 𝜀 ∈ (0, 1
2 ) such that 𝐵∥ .∥𝑛 ((𝑥1, . . . , 𝑥𝑛), 𝜀) ∩𝑊𝑛 ⊂ 𝐾 , where213

𝐵∥ .∥𝑛 ((𝑥1, . . . , 𝑥𝑛), 𝜀) is the open ball centred at (𝑥1, . . . , 𝑥𝑛) with radius 𝜀 for the norm ∥.∥𝑛.214

If 𝑧 ∈ 𝐵𝑑1 (𝑥, 𝜀) ∩ 𝐸𝑛 there exists 𝜎 ∈ S𝑛 such that215

1
𝑛

𝑛∑︁
𝑖=1

∥𝑥𝑖 − 𝑧𝜎(𝑖)∥ < 𝜀,

so 𝑧 = 𝜋𝑛((𝑧𝜎(1), . . . , 𝑧𝜎(𝑛))) and (𝑧𝜎(1), . . . , 𝑧𝜎(𝑛)) ∈ 𝐵∥ .∥𝑛 ((𝑥1, . . . , 𝑥𝑛), 𝜀) ∩𝑊𝑛. To sum up,216

𝐵𝑑1 (𝑥, 𝜀) ∩ 𝐸𝑛 ⊂ 𝜋𝑛
(
𝐵∥ .∥𝑛 ((𝑥1, . . . , 𝑥𝑛), 𝜀) ∩𝑊𝑛

)
⊂ �̃�,

so �̃� is a compact neighborhood of 𝑥 in 𝐸𝑛 and so in 𝐸 .217

A further consequence of Lemma 9 is the following result, that will turn to be useful when218

considering the Feller continuous property of a process on 𝐸 .219

Corollary 2. If 𝑓 ∈ 𝐶𝑏(𝐸) then for any 𝑛 ≥ 1, 𝑓 ◦ 𝜋𝑛 ∈ 𝐶𝑏(𝑊𝑛).220

Proof. For any 𝑛 ≥ 1 and 𝑓 ∈ 𝐶𝑏(𝐸), the function 𝑓 ◦ 𝜋𝑛 is well-defined on𝑊𝑛, continuous221

as the composition of two continuous functions and bounded by ∥ 𝑓 ∥∞.222

Let us now prove that (𝐸, 𝑑1) is a complete space.223

Proposition 1. Suppose that𝑊 is closed. Then (𝐸, 𝑑1) is a complete space and for any 𝑛 ≥ 1,224

(𝐸𝑛, 𝑑1) is also complete.225

Proof. Let (𝑥(𝑝))𝑝≥0 be a Cauchy sequence in (𝐸, 𝑑1). First, we show that the sequence226

(𝑛(𝑥(𝑝)))𝑝≥0 is constant for 𝑝 large enough. Fix 𝜀 ∈ (0, 1). There exists 𝑞 ≥ 0 such that for any227

𝑝 ≥ 𝑞, 𝑑1(𝑥(𝑝), 𝑥(𝑞)) < 𝜀, so by (4.1)228 ��𝑛(𝑥(𝑝)) − 𝑛(𝑥(𝑞))
�� ≤ (𝑛(𝑥(𝑝)) ∨ 𝑛(𝑥(𝑞))) 𝜀 ≤ (𝑛(𝑥(𝑝)) + 𝑛(𝑥(𝑞))) 𝜀,

implying that (1 − 𝜀) 𝑛(𝑥(𝑝)) ≤ (1 + 𝜀) 𝑛(𝑥(𝑞)) and 𝑛(𝑥(𝑝)) ≤ 𝑛(𝑥(𝑞))(1 + 𝜀)/(1− 𝜀). This entails229

that the sequence (𝑛(𝑥(𝑝)))𝑝≥0 is bounded by some 𝑁0 > 0. Now take 𝜀 ∈ (0, 1) and 𝑝1 ≥ 0230

such that for any 𝑝 ≥ 𝑝1, 𝑑1(𝑥(𝑝), 𝑥(𝑝1)) < 𝜀/𝑁0. Write 𝑛 = 𝑛(𝑥(𝑝1)) for short. Then by (4.1)231

one has for any 𝑝 ≥ 𝑝1232 ��𝑛(𝑥(𝑝)) − 𝑛
�� ≤ (𝑛(𝑥(𝑝)) ∨ 𝑛) 𝑑1(𝑥(𝑝), 𝑥(𝑝1)) ≤ 𝑁0 𝑑1(𝑥(𝑝), 𝑥(𝑝1)) ≤ 𝜀 < 1,
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which implies that 𝑛(𝑥(𝑝)) = 𝑛 for all 𝑝 ≥ 𝑝1.233

Second, we may fix 𝑝2 ≥ 0 such that 𝑑1(𝑥(𝑝), 𝑥(𝑞)) ≤ 𝜀 for any 𝑝, 𝑞 ≥ 𝑝2. Finally let234

𝑝0 = max(𝑝1, 𝑝2), so that for all 𝑝, 𝑞 ≥ 𝑝0,235

𝑑1(𝑥(𝑝), 𝑥(𝑞)) =
1
𝑛

min
𝜎∈S𝑛

𝑛∑︁
𝑖=1

∥𝑥(𝑝)
𝑖

− 𝑥(𝑞)
𝜎(𝑖)∥ ≤ 𝜀.

In particular for 𝑞 = 𝑝0, this leads to min𝜎∈S𝑛

∑𝑛
𝑖=1 ∥𝑥

(𝑝0)
𝑖

− 𝑥(𝑝)
𝜎(𝑖)∥/𝑛 ≤ 𝜀 for any 𝑝 ≥ 𝑝0. The236

minimum over𝜎 is reached for some𝜎𝑝0 , 𝑝 ∈ S𝑛, so that we may define the sequence (𝑥(𝑝))𝑝≥𝑝0237

in𝑊𝑛 by 𝑥(𝑝) = (𝑥(𝑝)
𝜎𝑝0 , 𝑝(1), . . . , 𝑥

(𝑝)
𝜎𝑝0 , 𝑝(𝑛)) satisfying ∥𝑥(𝑝)−𝑥(𝑝0)∥𝑛 ≤ 𝜀 for all 𝑝 ≥ 𝑝0. Then for238

𝑝, 𝑞 ≥ 𝑝0, ∥𝑥(𝑝) − 𝑥(𝑞)∥𝑛 ≤ 2𝜀. This proves that the sequence (𝑥(𝑝))𝑝≥𝑝0 is a Cauchy sequence239

in the finite dimensional vector space ((R𝑑)𝑛, ∥.∥𝑛), implying its convergence to some 𝑥 ∈ 𝑊𝑛
240

because𝑊 is a closed set. Finally for 𝑝 ≥ 𝑝0241

𝑑1(𝑥(𝑝), 𝜋𝑛(𝑥)) = 𝑑1(𝜋𝑛(𝑥(𝑝)), 𝜋𝑛(𝑥)) ≤ ∥𝑥(𝑝) − 𝑥∥𝑛 ≤ 2𝜀,

which proves that (𝑥(𝑝))𝑝≥0 converges to 𝜋𝑛(𝑥) in 𝐸 , and so (𝐸, 𝑑1) is complete.242

Finally for any 𝑛 ≥ 1, (𝐸𝑛, 𝑑1) is also complete as a closed subset of (𝐸, 𝑑1) by continuity243

of 𝑛(.).244

4.1. Proof of Proposition 4245

Let 𝑥 ∈ 𝐸 and set 𝑛 = 𝑛(𝑥). By Lemma 8, if 𝑥(𝑝) converges to 𝑥 as 𝑝 → ∞, i.e.246

𝑑1(𝑥(𝑝), 𝑥) → 0, then 𝑛(𝑥(𝑝)) tends to 𝑛, which means that there exists 𝑝0 ≥ 1 such that247

𝑛(𝑥(𝑝)) = 𝑛 for all 𝑝 ≥ 𝑝0. From the definition of 𝑑1, for any 𝑝 ≥ 𝑝0 there exists a permutation248

𝜎𝑝 ∈ S𝑛 satisfying249

𝑑1(𝑥(𝑝), 𝑥) =
1
𝑛

𝑛∑︁
𝑖=1

(∥𝑥𝑖 − 𝑥(𝑝)
𝜎𝑝(𝑖)∥ ∧ 1).

Assume that there exists 𝑖 ∈ {1, . . . , 𝑛} such that lim sup𝑝→∞ ∥𝑥𝑖 − 𝑥(𝑝)
𝜎𝑝(𝑖)∥ > 0. We then may250

fix 𝜂 > 0 and a subsequence (𝜑(𝑝))𝑝≥𝑝0 , both depending on 𝑖, such that for every 𝑝 ≥ 𝑝0,251

∥𝑥𝑖 − 𝑥(𝜑(𝑝))
𝜎𝜑(𝑝)(𝑖)∥ ≥ 𝜂. This implies 𝑑1(𝑥(𝜑(𝑝)), 𝑥) ≥ (𝜂 ∧ 1)/𝑛 and lim sup𝑝→∞ 𝑑1(𝑥(𝑝), 𝑥) > 0252

which is a contradiction. Finally, for every 𝑖 = 1, . . . , 𝑛, lim sup𝑝→∞ ∥𝑥𝑖 − 𝑥(𝑝)
𝜎𝑝(𝑖)∥ = 0, proving253

the result.254

4.2. Proof of Proposition 5 and corollaries255

In order to prove this proposition, we first recall the following definitions and results (see256

e.g. [BourbakiBourbaki1966]):257

• A finite subset 𝐿 of a metric space (𝑋, 𝑑) is called an 𝜀−net, for 𝜀 > 0, if the following258

property is satisfied :259

∀ 𝑥 ∈ 𝑋, ∃ 𝑙 ∈ 𝐿, 𝑠.𝑡. 𝑑(𝑥, 𝑙) ≤ 𝜀.

• A metric space (𝑋, 𝑑) is said to be totally bounded if it contains an 𝜀−net for any 𝜀 > 0.260

• Let (𝑋, 𝑑) a metric space. Then (𝑋, 𝑑) is compact if and only if (𝑋, 𝑑) is totally bounded261

and complete.262
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To prove the first statement of the proposition, let 𝐴 be a closed subset of (𝐸𝑛, 𝑑1). We start263

by assuming that we may fix 𝜀 ∈ (0, 1/𝑛) and 𝑤 ∈ 𝑊 such that264

∀ 𝑅 > 0, ∃ 𝑥 = {𝑥1, ..., 𝑥𝑛} ∈ 𝐴, max
1≤𝑘≤𝑛

{∥𝑥𝑘 − 𝑤∥} > 𝑅 + 𝑛𝜀, (4.2)

and we show that 𝐴 is not a compact set because it does not contain any 𝜀−net. Take265

𝐿 = {𝑙(1), . . . , 𝑙(𝑁 )} a finite subset of 𝐴 and let us define266

𝑅0 = max
1≤𝑖≤𝑁

max
1≤𝑘≤𝑛

{∥𝑙(𝑖)
𝑘

− 𝑤∥}.

By (4.2) we may define 𝑥 ∈ 𝐴 and 1 ≤ 𝑗 ≤ 𝑛 such that267

∥𝑥 𝑗 − 𝑤∥ = max
1≤𝑘≤𝑛

{∥𝑥𝑘 − 𝑤∥} > 𝑅0 + 𝑛𝜀.

This leads for all 𝜎 ∈ S𝑛 and 1 ≤ 𝑖 ≤ 𝑁 to268

∥𝑥 𝑗 − 𝑙(𝑖)𝜎( 𝑗)∥ ≥
���∥𝑥 𝑗 − 𝑤∥ − ∥𝑙(𝑖)

𝜎( 𝑗) − 𝑤∥
��� = ∥𝑥 𝑗 − 𝑤∥ − ∥𝑙(𝑖)

𝜎( 𝑗) − 𝑤∥ > 𝑛𝜀

and for any 1 ≤ 𝑖 ≤ 𝑁269

𝑑1(𝑥, 𝑙(𝑖)) =
1
𝑛

min
𝜎∈S𝑛

𝑛∑︁
𝑘=1

(
∥𝑥𝑘 − 𝑙(𝑖)𝜎(𝑘)∥ ∧ 1

)
≥ 1
𝑛

min
𝜎∈S𝑛

(
∥𝑥 𝑗 − 𝑙(𝑖)𝜎( 𝑗)∥ ∧ 1

)
>
𝑛𝜀

𝑛
= 𝜀.

Therefore 𝐿 cannot be an 𝜀−net and A cannot be a compact set.270

Let us now prove the converse. Fix 𝑤 ∈ 𝑊 and assume that there exists a positive 𝑅 such271

that for all 𝑥 ∈ 𝐴,272

max
1≤𝑘≤𝑛

{∥𝑥𝑘 − 𝑤∥} ≤ 𝑅.

Under this assumption, 𝐴 is a subset of273

𝐶 := {𝑥 ∈ 𝐸𝑛,
1
𝑛

𝑛∑︁
𝑘=1

∥𝑥𝑘 − 𝑤∥ ≤ 𝑅}.

Let us show that 𝐶 is a compact set. To this end we define w = (𝑤, . . . , 𝑤) ∈ 𝑊𝑛 and274

write �̄�∥ .∥𝑛 (w, 𝑅) for the closed ball of radius 𝑅 and center w for the norm ∥.∥𝑛 on the finite275

dimensional vector space (R𝑑)𝑛. The closed set �̄�∥ .∥𝑛 (w, 𝑅) ∩ 𝑊𝑛 is then a compact set of276

𝑊𝑛 and by continuity of the projection 𝜋𝑛, we get that 𝜋𝑛
(
�̄�∥ .∥𝑛 (w, 𝑅) ∩𝑊𝑛

)
is a compact277

set of 𝐸𝑛. Let us prove that 𝜋𝑛
(
�̄�∥ .∥𝑛 (w, 𝑅) ∩𝑊𝑛

)
= 𝐶 to conclude the proof. First, if278

𝑥 = {𝑥1, . . . , 𝑥𝑛} ∈ 𝐶 then 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ �̄�∥ .∥𝑛 (w, 𝑅) ∩𝑊𝑛 and 𝜋𝑛(𝑥) = 𝑥. Second, if279

𝑥 = 𝜋𝑛(𝑥) with 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ �̄�∥ .∥𝑛 (w, 𝑅) ∩𝑊𝑛, then280

1
𝑛

𝑛∑︁
𝑘=1

∥𝑥𝑘 − 𝑤∥ = ∥𝑥 − w∥𝑛 ≤ 𝑅

which proves the claim. The set 𝐶 is then compact and so is 𝐴 because it is a closed set.281
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Let us finally prove the second statement of Proposition 5 by contradiction. Let 𝐴 be a282

compact subset of 𝐸 and suppose that P = {𝑝 ≥ 0, 𝐴 ∩ 𝐸𝑝 ≠ ∅} is infinite. Then we can283

construct a sequence (𝑦𝑝)𝑝∈P with 𝑦𝑝 ∈ 𝐴 ∩ 𝐸𝑝 . But 𝐴 is a compact set so there exists a284

subsequence (𝑦𝑝′ )𝑝′∈P which converges to some 𝑦 ∈ 𝐸 when 𝑝′ → ∞. But by Lemma 8,285

𝑛(𝑦𝑝′ ) = 𝑝′ → 𝑛(𝑦) as 𝑝′ → ∞ which is absurd, concluding the proof.286

We end this section with two corollaries of Proposition 5.287

Corollary 3. If𝑊 is a compact set, then (𝐸𝑛, 𝑑1) is a compact set for any 𝑛 ≥ 1.288

Proof. 𝑊 is a compact set of R𝑑 so it is bounded, i.e. we may fix a non-negative 𝑅 such289

that ∥𝑤∥ ≤ 𝑅 for any 𝑤 ∈ 𝑊. Let 𝑤 ∈ 𝑊 and 𝑥 ∈ 𝐸𝑛. Then290

max
1≤𝑘≤𝑛

{∥𝑥𝑘 − 𝑤∥} ≤ max
1≤𝑘≤𝑛

∥𝑥𝑘 ∥ + ∥𝑤∥ ≤ 2𝑅.

𝐸𝑛 is therefore a compact set by the first statement of Proposition 5.291

Corollary 4. If 𝑓 ∈ 𝐶0(𝐸) then for any 𝑛 ≥ 1, 𝑓 ◦ 𝜋𝑛 ∈ 𝐶0(𝑊𝑛).292

Proof. Take 𝑓 ∈ 𝐶0(𝐸) and 𝜀 > 0. There exists a compact set 𝐵 ⊂ 𝐸 such that if 𝑥 ∉ 𝐵 then293

| 𝑓 (𝑥)| < 𝜀. In this case 𝐵𝑛 := 𝐵∩ 𝐸𝑛 is a compact set because 𝐸𝑛 is closed so by Proposition 5294

there exists𝑤 ∈ 𝑊 and 𝑅 ≥ 0 such that for any 𝑥 = {𝑥1, . . . , 𝑥𝑛} ∈ 𝐵𝑛, max1≤𝑘≤𝑛 ∥𝑥𝑘−𝑤∥ ≤ 𝑅.295

Then for any 𝑧 ∉ �̄�∥ .∥𝑛 (𝑤, 𝑅/𝑛) we get | 𝑓 ◦ 𝜋𝑛(𝑧)| < 𝜀.296

4.3. The Hausdorff distance is not appropriate297

For systems of particles in R𝑑 , we have equipped 𝐸 with the distance 𝑑1 defined in (2.7).298

A common alternative distance between random sets is the Hausdorff distance defined for299

𝑥 = {𝑥1, . . . , 𝑥𝑛(𝑥)} and 𝑦 = {𝑦1, . . . , 𝑦𝑛(𝑦)} in 𝐸 by300

𝑑𝐻 (𝑥, 𝑦) = max
{

max
1≤𝑖≤𝑛(𝑥)

min
1≤ 𝑗≤𝑛(𝑦)

∥𝑥𝑖 − 𝑦 𝑗 ∥, max
1≤ 𝑗≤𝑛(𝑦)

min
1≤𝑖≤𝑛(𝑥)

∥𝑥𝑖 − 𝑦 𝑗 ∥
}
.

Yet we show in this section that this distance does not make the function 𝑛(.) continuous, which301

has serious consequences on the structure of 𝐶𝑏(𝐸) with this topology. In particular, we show302

that a simple uniform death kernel is not even Feller continuous in this setting.303

As a preliminary, for the Hausdorff distance to be a proper distance, we must focus on simple304

point configurations only. We therefore consider for any 𝑛 ≥ 1305

�̃�𝑛 =
{
(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, 𝑖 ≠ 𝑗 =⇒ 𝑥𝑖 ≠ 𝑥 𝑗

}
,

and the state space is306

�̃� =
⋃
𝑛≥0

�̃�𝑛,

where �̃�𝑛 = �̃�𝑛(�̃�𝑛) and �̃�𝑛 is the same projection function as in Section 2.4 but defined on307

�̃�𝑛. Then we have308

Lemma 10. The Hausdorff distance 𝑑𝐻 is a proper distance function on �̃� .309

Proof. Symmetry is obvious and triangle inequality is well known for 𝑑𝐻 . We only prove310

the identity of indiscernibles. Let 𝑥 = {𝑥1, . . . , 𝑥𝑛(𝑥)} and 𝑦 = {𝑦1, . . . , 𝑦𝑛(𝑦)} in �̃� satisfying311

𝑑𝐻 (𝑥, 𝑦) = 0. This implies312

min
1≤ 𝑗≤𝑛(𝑦)

∥𝑥𝑖 − 𝑦 𝑗 ∥ = 0
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for any 𝑖 ∈ {1, ..., 𝑛(𝑥)}, leading for any 𝑖 ∈ {1, ..., 𝑛(𝑥)} to the existence of 𝑗 ∈ {1, ..., 𝑛(𝑦)}313

such that 𝑥𝑖 = 𝑦 𝑗 . Since 𝑥 and 𝑦 are simple, we deduce that 𝑛(𝑦) ≥ 𝑛(𝑥). We obtain similarly314

𝑛(𝑥) ≥ 𝑛(𝑦) and then 𝑛(𝑥) = 𝑛(𝑦). We then may define a permutation 𝜎 ∈ S𝑛 such that for all315

𝑖 ∈ {1, ..., 𝑛(𝑥)}, 𝑥𝑖 = 𝑦𝜎(𝑖) which means that 𝑥 = 𝑦 in �̃� .316

We now verify that 𝑛(.) is not continuous for this topology.317

Lemma 11. Assume that �̊� ≠ ∅. Then the function 𝑛(.) is not continuous on (�̃� , 𝑑𝐻 ).318

Proof. Assume without loss of generality that 0 ∈ �̊� . Let 𝑘 ≥ 1 and 𝑦 ∈ R𝑑 such319

that ∥𝑦∥ = 1/𝑘 . Take 𝑘 large enough so that 𝑦 ∈ 𝑊 . Then |𝑛 ({0, 𝑦}) − 𝑛({0})| = 1 and320

𝑑𝐻 ({0, 𝑦} , {0}) = 1/𝑘 → 0 as 𝑘 → ∞, proving the result.321

This result reveals a singularity caused by the distance 𝑑𝐻 . As a consequence, a simple322

uniform death kernel is not even Feller continuous, as proved in the following lemma.323

Lemma 12. Assume that �̊� ≠ ∅ and consider for 𝑓 ∈ 𝑀𝑏(�̃�) the kernel324

𝐾 𝑓 (𝑥) =
1
𝑛(𝑥)

𝑛(𝑥)∑︁
𝑖=1

𝑓 (𝑥 \ 𝑥𝑖).

Then 𝐾𝐶𝑏(�̃�) is not included in 𝐶𝑏(�̃�), i.e. 𝐾 is not Feller continuous.325

Proof. Consider the function 𝑓 (𝑥) = max1≤𝑖≤𝑛(𝑥) 𝑥𝑖,1 ∧ 1 where 𝑥𝑖,1 is the first coordinate326

of 𝑥𝑖 ∈ 𝑊 . This function is bounded and satisfies for any 𝑥, 𝑦 ∈ �̃� ,327

| 𝑓 (𝑥) − 𝑓 (𝑦)| ≤
���� max
1≤𝑖≤𝑛(𝑥)

𝑥𝑖,1 − max
1≤ 𝑗≤𝑛(𝑦)

𝑦 𝑗 ,1

���� , (4.3)

for any 𝑥, 𝑦 ∈ �̃� . Let us show that the latter bound is lower than 𝑑𝐻 (𝑥, 𝑦). Let I0 =328

argmax1≤𝑖≤𝑛(𝑥)𝑥𝑖,1 and J0 = argmax1≤ 𝑗≤𝑛(𝑦)𝑦 𝑗 ,1. This follows from the fact that for any329

𝑖0 ∈ I0 and 𝑗0 ∈ J0,330

𝑑𝐻 (𝑥, 𝑦) ≥ max
1≤𝑖≤𝑛(𝑥)

min
1≤ 𝑗≤𝑛(𝑦)

∥𝑥𝑖 − 𝑦 𝑗 ∥ ≥ min
1≤ 𝑗≤𝑛(𝑦)

∥𝑥𝑖0 − 𝑦 𝑗 ∥ ≥ min
1≤ 𝑗≤𝑛(𝑦)

|𝑥𝑖0 ,1 − 𝑦 𝑗 ,1 | = |𝑥𝑖0 − 𝑦 𝑗0 |.

So by (4.3) | 𝑓 (𝑥) − 𝑓 (𝑦)| ≤ 𝑑𝐻 (𝑥, 𝑦), proving that 𝑓 ∈ 𝐶𝑏(�̃�).331

Assume without loss of generality that 0 ∈ �̊� . Let 𝑎 ∈ 𝑊 , 𝑎 ≠ 0, and 𝑎𝑘 = (1/𝑘, 0, . . . , 0) ∈332

R𝑑 with 𝑘 large enough to ensure 𝑎𝑘 ∈ 𝑊 . Consider the sequence 𝑥(𝑘) = {0, 𝑎, 𝑎𝑘} and let333

𝑥 = {0, 𝑎} so that 𝑑𝐻 (𝑥(𝑘), 𝑥) = 1/𝑘 tends to 0 as 𝑘 → ∞. On the one hand,334

𝐾 𝑓 (𝑥(𝑘)) =
1
3
[ 𝑓 ({0, 𝑎𝑘}) + 𝑓 ({𝑎, 𝑎𝑘}) + 𝑓 ({0, 𝑎})] = (1/𝑘) + (1/𝑘) ∨ 𝑎1 + 𝑎1

3
−→
𝑘→∞

2𝑎1
3
,

and on the other hand,335

𝐾 𝑓 (𝑥) =
1
2

( 𝑓 ({0}) + 𝑓 ({𝑎})) = 𝑎1
2

whereby 𝐾 𝑓 ∉ 𝐶𝑏(�̃�).336
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5. Proof of Proposition 6337

First we show that if (𝑍 |𝑛
𝑡 )𝑡≥0 is a Feller continuous process on 𝑊𝑛 for every 𝑛 ≥ 1 then338

(𝑌𝑡 )𝑡≥0 is a Feller continuous process on 𝐸 . Indeed, let 𝑥 ∈ 𝐸 and a sequence (𝑥(𝑝))𝑝≥0339

converging to 𝑥. By Proposition 4 we may fix 𝑝0 ≥ 1 such that 𝑛(𝑥(𝑝)) = 𝑛(𝑥) := 𝑛 for340

any 𝑝 ≥ 𝑝0 and a sequence of permutations 𝜎𝑝 of {1, . . . , 𝑛} such that for any 1 ≤ 𝑖 ≤ 𝑛,341

𝑥
(𝑝)
𝜎𝑝(𝑖) → 𝑥𝑖 as 𝑝 → ∞. We then obtain for any 𝑓 ∈ 𝐶𝑏(𝐸) and 𝑝 ≥ 𝑝0, using the permutation342

equivariance property of (𝑍 |𝑛
𝑡 )𝑡≥0 (that allows us to arbitrarily choose the ordering of its initial343

value), the continuity of its transition kernel, and Corollary 2, that344

E
(
𝑓 (𝑌𝑡 ) |𝑌0 = 𝑥(𝑝)) = E

(
𝑓 (𝑌 |𝑛

𝑡 ) |𝑌0 = 𝑥(𝑝)
)

= E
(
𝑓 ◦ 𝜋𝑛(𝑍 |𝑛

𝑡 ) |𝑍 |𝑛
0 = (𝑥(𝑝)

𝜎𝑝(1), . . . , 𝑥
(𝑝)
𝜎𝑝(𝑛))

)
−→
𝑝→∞

E
(
𝑓 ◦ 𝜋𝑛(𝑍 |𝑛

𝑡 ) |𝑍 |𝑛
0 = (𝑥1, . . . , 𝑥𝑛)

)
= E ( 𝑓 (𝑌𝑡 ) |𝑌0 = 𝑥) .

Second, let us prove that if (𝑍 |𝑛
𝑡 )𝑡≥0 is a Feller process on 𝑊𝑛 for every 𝑛 ≥ 1 then (𝑌𝑡 )𝑡≥0345

is a Feller process on 𝐸 . Let 𝑓 ∈ 𝐶0(𝐸). We start by the strong continuity. Take 𝜀 > 0. By the346

second statement of Proposition 5 there exists 𝑛0 ≥ 0 such that 𝑛(𝑥) > 𝑛0 ⇒ | 𝑓 (𝑥)| < 𝜀
4 . So347

for any 𝑥 ∈ 𝐸 ,348 ��𝑄𝑌
𝑡 𝑓 (𝑥) − 𝑓 (𝑥)

�� ≤ ��𝑄𝑌
𝑡 𝑓 (𝑥) − 𝑓 (𝑥)

�� 1𝑛(𝑥)≤𝑛0 + E𝑥 [| 𝑓 (𝑌𝑡 )|]1𝑛(𝑥)>𝑛0 + 𝑓 (𝑥)1𝑛(𝑥)>𝑛0

≤
𝑛0∑︁
𝑛=0

���𝑄𝑌 |𝑛
𝑡 𝑓 (𝑥) − 𝑓 (𝑥)

��� 1𝑥∈𝐸𝑛
+ 𝜀

4
+ 𝜀

4

≤
𝑛0∑︁
𝑛=1

���E( 𝑓 (𝜋𝑛(𝑍 |𝑛
𝑡 )) | 𝑍 |𝑛

0 = (𝑥1, . . . , 𝑥𝑛)
)
− 𝑓 (𝜋𝑛((𝑥1, . . . , 𝑥𝑛)))

��� 1𝑥∈𝐸𝑛
+ 𝜀

2

≤
𝑛0∑︁
𝑛=1

∥𝑄𝑍 |𝑛
𝑡 ( 𝑓 ◦ 𝜋𝑛) − 𝑓 ◦ 𝜋𝑛∥∞ + 𝜀

2
.

By Corollary 4, for any 𝑛 = 1, . . . , 𝑛0, there exists 𝑡𝑛 > 0 such that349

𝑡 ∈ (0, 𝑡𝑛) =⇒ ∥𝑄𝑍 |𝑛
𝑡 ( 𝑓 ◦ 𝜋𝑛) − 𝑓 ◦ 𝜋𝑛∥∞ <

𝜀

2𝑛0
.

So for any 𝑡 ∈ (0, 𝑡(𝜀)) where 𝑡(𝜀) = min
1≤𝑛≤𝑛0

𝑡𝑛, we get ∥𝑄𝑌
𝑡 𝑓 − 𝑓 ∥∞ < 𝜀, which proves the350

strong continuity of 𝑄𝑌
𝑡 at 0.351

It remains to show that 𝑄𝑌
𝑡 𝐶0(𝐸) ⊂ 𝐶0(𝐸). Continuity follows from above. Take now352

𝑓 ∈ 𝐶0(𝐸) and fix 𝜀 > 0 and 𝐵 ⊂ 𝐸 a compact set such that 𝑥 ∉ 𝐵 ⇒ | 𝑓 (𝑥)| < 𝜀
2 . By353

Proposition 5 there exists 𝑛0 ≥ 0 such that 𝑥 ∈ 𝐵 ⇒ 𝑛(𝑥) ≤ 𝑛0. Also by Corollary 4 we can fix354

for any 𝑛 = 1, . . . , 𝑛0 a compact set 𝐴𝑛 of𝑊𝑛 such that 𝑧 ∉ 𝐴𝑛 ⇒
���𝑄𝑍 |𝑛

𝑡 ( 𝑓 ◦ 𝜋𝑛)(𝑧)
��� < 𝜀/(2𝑛0).355

Then, 𝐴 =
⋃𝑛0

𝑛=1 𝜋𝑛(𝐴𝑛) is a compact set of 𝐸 and for any 𝑥 ∉ {Ø} ∪ 𝐴 ∪ 𝐵356

∥𝑄𝑌
𝑡 𝑓 (𝑥)∥ ≤

𝑛0∑︁
𝑛=1

∥𝑄𝑍 |𝑛
𝑡 ( 𝑓 ◦ 𝜋𝑛)((𝑥1, . . . , 𝑥𝑛)∥ + 𝜀

2
≤ 𝜀.
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6. Proof of Theorem 5357

We recall and complete notations introduced in Section 4.1 of the main article regarding the358

coupling between 𝑋 and 𝜂. The coupled process is �̌� = (𝑋 ′, 𝜂′), where from Theorem 4, 𝑋 ′
359

and 𝜂′ have the same distributions as 𝑋 and 𝜂. We denote by 𝑇𝑗 and 𝑡 𝑗 the jump times of 𝑋360

and 𝜂. Similarly we denote by 𝑇 ′
𝑗

and 𝑡′
𝑗

the jump times of 𝑋 ′ and 𝜂′. To prove Theorem 5, we361

start with the following lemma where 𝑠0 := inf{𝑡 ≥ 𝑡1, 𝜂𝑡 = 0} is the time of the first return of362

𝜂 in the state 0 and 𝑆Ø := inf{𝑡 ≥ 𝑇1, 𝑋𝑡 = Ø} is the time of the first return of (𝑋𝑡 )𝑡≥0 in the363

state Ø.364

Lemma 13. Suppose that 0 is an ergodic state for the simple process 𝜂, that is E0(𝑠0) < ∞.365

Then lim
𝑡→∞

𝑄𝑡 (Ø, 𝐴) exists for all 𝐴 ∈ E . Suppose moreover that for all 𝑛 ≥ 0, E𝑛(𝑠0) < ∞.366

Then, lim
𝑡→∞

𝑄𝑡 (𝑥, 𝐴) exists for all 𝑥 ∈ 𝐸 , 𝐴 ∈ E , and is independent of 𝑥.367

Proof. Let 𝑠0 := inf{𝑡 ≥ 𝑡′1, �̌�𝑡 ∈ 𝐸 × {0}}. Using the first statement of Theorem 4, we368

can prove that P(Ø,0)(𝑠0 > 𝑡) = P0(𝑠0 > 𝑡). Similarly, by the second statement of this theorem,369

P(Ø,0)(𝑆Ø > 𝑡) = PØ(𝑆Ø > 𝑡) where 𝑆Ø := inf{𝑡 ≥ 𝑇 ′
1 , �̌�𝑡 ∈ {Ø} × N}. We thus have370

PØ(𝑆Ø > 𝑡) = P(Ø,0)(𝑆Ø > 𝑡) ≤ P(Ø,0)(𝑠0 > 𝑡) = P0(𝑠0 > 𝑡),

where the inequality comes from Proposition 7.371

By the assumptions of Lemma 13, this implies that 𝑆Ø < ∞ PØ − 𝑎.𝑠. and that372

EØ(𝑆Ø) =
∫ ∞

0
PØ(𝑆Ø > 𝑡) d𝑡 ≤

∫ ∞

0
P0(𝑠0 > 𝑡) d𝑡 < ∞,

proving that Ø is an ergodic state for the process (𝑋𝑡 )𝑡≥0. Note moreover that 𝑆Ø has a373

density with respect to the Lebesgue measure, that we denote by 𝜇Ø. This comes from the374

fact that 𝜏𝑗 has a density for any 𝑗 , so does 𝑇𝑗 , whereby given a Lebesgue null set 𝐼 ∈ B(R),375

PØ(𝑆Ø ∈ 𝐼) ≤ ∑∞
𝑗=1 PØ(𝑇𝑗 ∈ 𝐼) = 0.376

We have the following equation377

𝑄𝑡 (Ø, 𝐴) = PØ(𝑋𝑡 ∈ 𝐴, 𝑆Ø > 𝑡) +
∫ 𝑡

0
PØ(𝑋𝑡 ∈ 𝐴, 𝑆Ø ∈ d𝑠)

= PØ(𝑋𝑡 ∈ 𝐴, 𝑆Ø > 𝑡) +
∫ 𝑡

0
PØ(𝑋𝑡 ∈ 𝐴|𝑆Ø = 𝑠)𝜇Ø(𝑠) d𝑠

= PØ(𝑋𝑡 ∈ 𝐴, 𝑆Ø > 𝑡) +
∫ 𝑡

0
𝑄𝑡−𝑠(Ø, 𝐴)𝜇Ø(𝑠) d𝑠.

This is a renewal equation and we may apply the renewal theorem given in [FellerFeller1971,378

Chapter XI]. To this end, denote by Z(𝑡) = 𝑄𝑡 (Ø, 𝐴), 𝜉(𝑡) = PØ(𝑋𝑡 ∈ 𝐴, 𝑆Ø > 𝑡) and 𝐹{𝐼} =379

PØ(𝑆Ø ∈ 𝐼). Remark that Z is bounded, 𝜉 is non-negative, bounded by 1 and directly Riemann380

integrable on R+ because it is dominated by the monotone integrable function 𝑡 ↦→ PØ(𝑆Ø > 𝑡).381

Moreover, 0 < EØ(𝑆Ø) < ∞ and since 𝑆Ø has a density, 𝐹 is not arithmetic. Then, by the382

renewal theorem, we obtain:383

𝑄𝑡 (Ø, 𝐴) = Z(𝑡) −→
𝑡→∞

1
EØ(𝑆Ø)

∫ ∞

0
𝜉(𝑢) d𝑢 =

1
EØ(𝑆Ø)

∫ ∞

0
PØ(𝑋𝑢 ∈ 𝐴, 𝑆Ø > 𝑢) d𝑢 (6.1)

which proves the first statement of Lemma 13.384
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Let now turn to the second part of Lemma 13. Let 𝑥 ∈ 𝐸𝑛. By the arguments as in the385

beginning of the proof, we get that 𝑆Ø < ∞, P𝑥 − 𝑎.𝑠. and that E𝑥(𝑆Ø) ≤ E𝑛(𝑠0) < ∞. We386

have387

𝑄𝑡 (𝑥, 𝐴) = P𝑥(𝑋𝑡 ∈ 𝐴)

= P𝑥(𝑋𝑡 ∈ 𝐴, 𝑆Ø > 𝑡) +
∫ 𝑡

0
P𝑥(𝑋𝑡 ∈ 𝐴|𝑆Ø = 𝑠)𝜇Ø(𝑠) d𝑠

= P𝑥(𝑋𝑡 ∈ 𝐴, 𝑆Ø > 𝑡) +
∫ 𝑡

0
PØ(𝑋𝑡−𝑠 ∈ 𝐴)𝜇Ø(𝑠) d𝑠

= P𝑥(𝑋𝑡 ∈ 𝐴, 𝑆Ø > 𝑡) +
∫ 𝑡

0
𝑄𝑡−𝑠(Ø, 𝐴)𝜇Ø(𝑠) d𝑠.

The first term tends to 0 as 𝑡 → ∞ because it is dominated by P𝑥(𝑆Ø > 𝑡) and we know that
P𝑥(𝑆Ø < ∞) = 1. For the second term, for all 𝑠 ≥ 0, we have by (6.1)

𝑄𝑡−𝑠(Ø, 𝐴)1[0,𝑡 ](𝑠) −→
𝑡→∞

1
EØ(𝑆Ø)

∫ ∞

0
PØ(𝑋𝑢 ∈ 𝐴, 𝑆Ø > 𝑢) d𝑢.

Moreover |𝑄𝑡−𝑠(Ø, 𝐴)1[0,𝑡 ](𝑠)𝜇Ø(𝑠)| ≤ 𝜇Ø(𝑠) which is integrable. So by the dominated
convergence theorem,

𝑄𝑡 (𝑥, 𝐴) −→
𝑡→∞

1
EØ(𝑆Ø)

∫ ∞

0
PØ(𝑋𝑢 ∈ 𝐴, 𝑆Ø > 𝑢) d𝑢

which is independent of 𝑥.388

We are now in position to prove Theorem 5. The conditions (4.6) or (4.7) of [Karlin and McGregorKarlin and McGregor1957]389

imply the assumptions made in Lemma 13. We then deduce that 𝜇(𝐴) := lim𝑡→∞𝑄𝑡 (𝑥, 𝐴)390

exists for all 𝑥 ∈ 𝐸 and 𝐴 ∈ E , and is independent of 𝑥. It is a probability measure because for391

any 𝑡 ≥ 0 and 𝑥 ∈ 𝐸 , 𝑄𝑡 (𝑥, .) is a probability measure.392

Let us prove that 𝜇 is an invariant measure. The previous convergence reads393 ∫
𝐸

𝑓 (𝑦)𝑄𝑠(𝑥, 𝑑𝑦) −→
𝑠→∞

∫
𝐸

𝑓 (𝑦)𝜇(𝑑𝑦). (6.2)

where 𝑓 = 1𝐴 with 𝐴 ∈ E . It is not difficult to extend it to any step function and by limiting394

arguments to any 𝑓 ∈ 𝑀+
𝑏

(𝐸). By the Markov property, for all 𝑡, 𝑠 ≥, 𝑥 ∈ 𝐸 and 𝐴 ∈ E ,395

𝑄𝑡+𝑠(𝑥, 𝐴) =
∫
𝐸

𝑄𝑡 (𝑦, 𝐴)𝑄𝑠(𝑥, 𝑑𝑦).

Letting 𝑠 tend to ∞, we obtain that the left hand side converges to 𝜇(𝐴), while for the right
hand side, we may apply (6.2) to 𝑓 = 𝑄𝑡 (., 𝐴) ∈ 𝑀+

𝑏
(𝐸) to finally obtain

𝜇(𝐴) =
∫
𝐸

𝑄𝑡 (𝑦, 𝐴)𝜇(𝑑𝑦).

Finally, if 𝜈 is a probability measure on 𝐸 , such that for any 𝐴 ∈ E396

𝜈(𝐴) =
∫
𝐸

𝑄𝑡 (𝑦, 𝐴)𝜈(𝑑𝑦),
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then as 𝑄𝑡 (𝑥, 𝐴) ≤ 1, taking 𝑡 → ∞, we get by the dominated convergence theorem397

𝜈(𝐴) =
∫
𝐸

𝜇(𝐴)𝜈(𝑑𝑦) = 𝜇(𝐴).

Hence 𝜇 is the unique invariant probability measure.398
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