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The supplementary material contains an auxiliary lemma and the proofs of
all theoretical results in the main paper. We also provide some simulations to
support our asymptotic results.

Appendix A. An auxiliary lemma

Lemma A.1. Let f be an increasing integrable function on (0, 1), β > 1 and

s (t) =
∫ t

0
f (u) du+ β

∫ 1

t
f (u) du+ [(β − 1) t− β] f (t) ,

then s (t) is decreasing on (0, 1).

Proof. We directly prove it by definition. Let 0 < t1 ≤ t2 < 1, then

s (t2) − s (t1)

= (1 − β)
∫ t2

t1

f (u) du+ [(β − 1) t2 − β] f (t2) − [(β − 1) t1 − β] f (t2)

= − (β − 1)
∫ t2

t1

f (u) du+ (β − 1) [t2f (t2) − t1f (t1)] − β [f (t2) − f (t1)]

= (β − 1) t2 [f (t2) − f (t1)] + (β − 1) (t2 − t1) f (t1) − (β − 1)
∫ t2

t1

f (u) du

− β [f (t2) − f (t1)]

= [(β − 1) t2 − β] [f (t2) − f (t1)] + (β − 1)
[

(t2 − t1) f (t1) −
∫ t2

t1

f (u) du
]

≤ 0.

∗ Postal address: Department of Statistics and Finance, IIF, School of Management,
University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
∗∗ Email address: cyu@ustc.edu.cn
∗∗∗ Email address: tmao@ustc.edu.cn

1



2 Y. Hu et al

□

Appendix B. Proof of main results

B.1. Proof of results in Section 3.1

B.1.1. Proof of Theorem 3.1 For γ ∈ (1/β, 1), let

lp (γ) := ∥hγ∥q, kG(γ) :=
∫ 1

0
G−1(u)hγ(u)du,

then
zp,G,ε(γ) = εlp(γ) + kG(γ),

we only need to analyze lp and kG separately.
By the definition of hγ , we make the following direct calculation to obtain the

explicit expression:

hγ (u) = H ′
γ−(u) =

γ, if 0 < u ≤ τ

1−γ
1−τ + γ, if τ < u < 1

=

γ, if 0 < u ≤ τ

βγ, if τ < u < 1
. (B.1)

For the first term lp(γ), when p > 1, i.e., 1 < q < ∞, we have

lp (γ) = ∥hγ∥q = [τγq + βqγq (1 − τ)]1/q = γ [τ + βq (1 − τ)]1/q .

Obviously lp(γ) is a smooth function. Differentiate to lp (γ), we obtain its first
derivative:

l′p (γ) =
[
τ + βq (1 − τ)

]1/q + q−1[τ + βq (1 − τ)
]1/q−1 1 − βq

γ (β − 1) . (B.2)

Thus

l
′′

p (γ) = (1 − βq)2

q (β − 1)2 γ3

[
τ + βq (1 − τ)

]1/q−2 (
q−1 − 1

)
< 0.

This implies that lp (γ) is a strictly concave function. In addition, we have

l′p (1) = 1 + 1 − βq

q (β − 1) = q (β − 1) − (βq − 1)
q (β − 1) < 0, (B.3)

and
l′p (1/β) = β2−q

q(β − 1)
[
(q − 1) βq − qβq−1 + 1

]
> 0. (B.4)
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Now we turn to the function kG (γ). Continuity and Concavity of kG(γ) will
be checked subsequently. Indeed, according to (B.1), we have

kG (γ) =
∫ 1

0
G−1(u)hγ(u)du = γ

∫ τ

0
G−1 (u) du+ βγ

∫ 1

τ
G−1 (u) du. (B.5)

By the integrability of G−1 and the absolute continuity of integration on G−1,
we obtain kG(γ) is continuous. We emphasize here that no extra assumptions
on the continuity of G−1 are put on this theorem, hence including distributions
whose cdf contains flat parts, with connection to the jump discontinuity, where
kG(γ) is not differentiable. However, it is easy to check that kG (γ) always has
left and right derivatives on (1/β, 1). Specifically,

k′
G+(γ) =

∫ τ

0
G−1 (u) du+ γG−1 (τ+) ·

[
γ2 (β − 1)

]−1

+ β

∫ 1

τ
G−1 (u) du− βγG−1 (τ+) ·

[
γ2 (β − 1)

]−1

=
∫ τ

0
G−1 (u) du+ β

∫ 1

τ
G−1 (u) du− γ−1G−1 (τ+) . (B.6)

Similarly,

k′
G−(γ) =

∫ τ

0
G−1 (u) du+ β

∫ 1

τ
G−1 (u) du− γ−1G−1 (τ) . (B.7)

Here G−1 (τ−) is replaced by G−1 (τ) due to left continuity of G−1. Now it is
sufficient to show that both k′

G+(γ) and k′
G−(γ) are decreasing. Since the proof

simply rests on the monotonicity of G−1 (τ+) or G−1 (τ−), we assume that G−1

is continuous for simplicity. Hence, k′
G+(γ) = k′

G−(γ) = k′
G(γ). Noting that τ is

a strictly increasing function of γ, by Lemma A.1 we obtain that

k′
G(γ(τ)) =

∫ τ

0
G−1 (u) du+ β

∫ 1

τ
G−1 (u) du+ [(β − 1) τ − β]G−1 (τ)

is a decreasing function of τ .

Therefore continuity and strict concavity of zp,G,ε (γ) is attained by the above
arguments. In addition, zp,G,ε (γ) has left and right derivatives and together with
Eqs. (B.3), (B.4), (B.6), (B.7), denoted by z′

p,G,ε+ (γ) and z′
p,G,ε− (γ) respectively.

Then we have

z′
p,G,ε+ (1/β) = l′p (1/β) + β

[∫ 1

0
G−1 (u) du−G−1 (0+)] > 0,
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and
z′

p,G,ε− (1) = l′p (1) +
∫ 1

0
G−1 (u) du−G−1 (1) < 0.

Thus the maximum point must lie in the open interval (1/β, 1), and

γ∗ = argmax
γ∈[ 1

β
,1]

zp,G,ε (γ) = sup
γ∈( 1

β
,1)

{
z′

p,G,ε− (γ) ≥ 0
}
.

Regarding the second conclusion, on the one hand, it is easy to verify that
Fp,G,ε,γ∗ ∈ Wp,G,ε. Therefore, by definition, we have eα(Fp,G,ε,γ∗) ≤ WCEWp,G,ε

α .
On the other hand, by Proposition 1, we have the opposite

eα(Fp,G,ε,γ∗) = max
γ∈[ 1

β
,1]

∫ 1

0
F−1

p,G,ε,γ∗(u)hγ(u)du ≥
∫ 1

0
F−1

p,G,ε,γ∗(u)hγ∗(u)du.

While the right side of the above inequality is indeed zp,G,ε(γ∗), form which we
complete the proof. □

B.1.2. Proof of Theorem 3.2 When p = 1, q = ∞,

l1(γ) = ∥hγ∥∞ =

βγ, if 1
β ≤ γ < 1

1, if γ = 1
.

Having obtained the continuity and concavity of kG(γ) on (1/β, 1), the same
properties hold for z1,G,ε(γ) quite obviously, because l1(γ) is linear on (1/β, 1). As
pointed out above Theorem 3.2, we simply need to consider supγ∈( 1

β
,1) z1,G,ε (γ),

thus the discontinuity of z1,G,ε(γ) on γ = 1 is negligible. Moreover, we have

z′
1,G,ε+ (1/β) = εβ + β

[∫ 1

0
G−1 (u) du−G−1 (0+)] > 0,

and

z′
1,G,ε−

(
1−) = εβ +

∫ 1

0
G−1 (u) du−G−1 (1) = εβ + µG − ess supG .

Consequently, if ess supG ≤ µG + εβ, then z′
1,G,ε− (γ) is always positive on

(1/β, 1), and

WCEW1,G,ε
α = sup

γ∈( 1
β

,1)
z1,G,ε (γ) = lim

γ→1−
z1,G,ε (γ) = εβ + µG.
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It follows that for any sequence τn ∈ (0, 1) such that τn → 1, or equivalently,
γ(τn) → 1,

lim
n→∞

z1,G,ε(γ(τn)) = WCEW1,G,ε
α ,

which implies that for any given δ > 0, when n becomes large enough, we have

z1,G,ε(γ(τn)) > WCEW1,G,ε
α −δ.

Now, Proposition 2 entails that

eα(Fn,G,ε) = eα(FG,ε,γ(τn)) ≥
∫ 1

0
F−1

G,ε,γ(τn))(u)hγ(τn)(u)du = z1,G,ε(γ(τn)).

Then the end of the proof of assertion (i) is an opposite inequality eα(Fn,G,ε) ≤
WCEW1,G,ε

α by definition. If ess supG > µG + εβ, then z′
1,G,ε− (1−) < 0, which

indicates that γ∗ ∈ (1/β, 1). The subsequent proof is essentially the same as
that of Theorem 3.1 and is omitted here.

□

B.1.3. Proof of Proposition 4 The conclusion for the situation when G is
degenerate is obvious due to assertion (i) in Theorem 3.1. Now if G is non-
degenerate and α > 1/2, µG is strictly less than eα(G) according to equation
(12) in [1], which yields our conclusion under ess supG ≤ µG + βε. While under
ess supG > µG +βε, we know form assertion (ii) in Theorem 3.2 that there exists
γ∗ < 1 such that

WCEW1,G,ε
α = z1,G,ε(γ∗) =

∫ 1

0
G−1(u)hγ∗(u)du+ βεγ∗ < eα(G) + βε,

where the last inequality uses Proposition 1. Hence we complete the proof. □

B.1.4. Proof of Theorem 3.3 By Theorem 3.2, we know there exists a
unique maximum value point γ∗ ∈ (1/β, 1). Denote by γ∗ the corresponding
maximizer, i.e. τ ∗ = (β − 1/γ∗)

/
(β − 1) or see Eq.(3.1) Under the assumption

that G−1 is continuous, z1,G,ε is differentiable. Viewing τ as pivot, we rewrite
z′

1,G,ε (γ(τ)) as

z′
1,G,ε (γ(τ)) = εβ + µG + (β − 1)

[ ∫ 1

τ
G−1 (u) du−G−1 (τ) (1 − τ)

]
−G−1 (τ) .

(B.8)
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By substituting τ0 = G (εβ/2) into Eq.(B.8), we obtain

z′
1,G,ε (γ(τ0)) = εβ/2 + µG + (β − 1)

[∫ 1

τ0

G−1 (u) du−G−1 (τ0) (1 − τ0)
]
> 0,

Taking β large enough, then we have τ ∗ ∈ (G(εβ/2), 1). Thus

WCEW1,G,ε
α = z1,G,ε (γ∗) = G−1 (τ ∗)

= µG + εβ + (β − 1)
[ ∫ 1

τ∗
G−1 (u) du−G−1 (τ ∗) (1 − τ ∗)

]
= µG + εβ + β ·O

( ∫ 1

τ∗
G−1 (u) du

)
= µG + εβ + β ·O

( ∫ 1

G(εβ/2)
G−1 (u) du

)
= µG + εβ +O

(
βEG

[
Y 1{Y >εβ/2}

] )
,

where the second and third equalities are simple transformations of z′
1,G,ε (γ(τ ∗)) =

0. Note that βEG
[
Y 1{Y >εβ/2}

]
= o(1) due to EG[(Y +)2] < ∞, which completes

the proof. □

B.1.5. Proof of Example 3.1 It is easy to verify that G−1(τ) = 1
/√

1 − τ

and
∫ 1

τ G
−1(u)du = 2

√
1 − τ , so

z′
1,G,ε (γ(τ)) = εβ + 2 + (β − 1)(1 − τ)1/2 − (1 − τ)−1/2.

Setting it to zero, we obtain

WCEW1,G,ε
α = G−1(τ ∗) = 2(β − 1)

−(2 + εβ) +
√

(εβ + 2)2 + 4(β − 1)
.

Let a = 2(β − 1), b = εβ + 2, we have

WCEW1,G,ε
α = a

−b+
√
b2 + 2a

= 1
2
(√

b2 + 2a+ b
)

= b

2
(
1 +

√
1 + 2a

b2

)
=
(εβ + 2

2
)(

2 + 2(β − 1)
(εβ + 2)2 + o (1/β)

)
= εβ + 2 + 1/ε+ o(1).
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□

Before giving the concrete proof of Theorems 3.4-3.7, we provide a sketch
of our strategy. As indicated in the proof of Example 1 ( Eq.(B.24) below), we
know that the maximizer γ∗ ≈ 1/p when G is a degenerate distribution function.
From this point of intuition, we wish to maintain this asymptotic behavior of the
maximizer by imposing some additional conditions on the reference distribution
G. Technically, we describe in as much detail as possible the rate at which γ∗

tends to 1/p through tedious but elementary asymptotic expansion. Ultimately,
this asymptotic maximizer is carried into the optimized function to acquire the
result after simplification. In this process, we constantly and flexibly use the
Taylor expansion and test for the range of maximizer by Eq. (3.1). The detailed
proofs are as follows.

B.1.6. Proof of Theorem 3.4 For convenience, denote Λ (τ) := z′
1,G,ε (γ(τ)).

The maximizer τ ∗ is the unique zero point of Λ on (0, 1). Next, we rewrite Λ(τ)
by the following steps.∫ 1

τ
G−1(u)du =

∫ ∞

G−1(τ)
xdG(x) = EG[Y 1{Y >G−1(τ)}

]
=
∫ ∞

0
P
(
Y 1{Y >G−1(τ)} > t

)
dt

=
∫ ∞

0
P
(
Y > t, Y > G−1(τ)

)
dt

= G−1(τ)G(G−1(τ)) +
∫ ∞

G−1(τ)
G(t)dt

= G−1(τ)(1 − τ) +
∫ ∞

G−1(τ)
G(t)dt,

which implies that

Λ (τ) = εβ + µG + (β − 1)
∫ ∞

G−1(τ)
G(t)dt−G−1(τ). (B.9)
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Before evaluating τ ∗, we need the following two limits:

lim
x→∞

∫∞
x G(x)dx
G(x)x

= lim
x→∞

−G(x)
G

′(x)x+G(x)

= lim
x→∞

−x−θL(x)
−θx−θL(x) + x1−θL′(x) + x−θL(x)

= 1
θ − 1 , (B.10)

and

lim
x→∞

x

(∫ ∞

x
G(t)dt− xG(x)

θ − 1

)

= lim
x→∞

−G(x) − G(x)
θ−1 − G

′(x)x
θ−1

− 1
x2

= lim
x→∞

x2
(

θ

θ − 1x
−θL(x) + x

θ − 1
(
−θx−θ−1L(x) + x−θL′(x)

))
= 1
θ − 1 lim

x→∞
x3−θL′(x) = 0. (B.11)

Actually, Eq. (B.11) is stronger than Eq. (B.10), and both of them are special
cases of Karamata’s Theorem (Proposition 1.5.10 in [2]). We use the different
two equations flexibly for different purposes.

In the following, we obtain that

G−1(τ ∗)
β

= ε+ cβ1−θ + o(β1−θ), where c =

µG + ζ/ε, θ = 2
ε1−θζ/(θ − 1), θ < 2

, (B.12)

and only give the proof when θ < 2. In fact, let c1 be a real number such that
c1 < c, and τ1 = G(εβ + c1β

2−θ). Substituting Eq. τ1 into Eq. (B.9), together
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with Eq. (B.10), we obtain

Λ(τ1) = εβ + µG + β

∫ ∞

G−1(τ1)
G(t)dt−G−1(τ1) + o(1)

= β

θ − 1G
−1(τ1)(1 − τ1) + o

(
βG−1(τ1)(1 − τ1)

)
− c1β

2−θ

= β

θ − 1(εβ + c1β
2−θ)(εβ + c1β

2−θ)−θL(εβ + c1β
2−θ) − c1β

2−θ + o
(
βG−1(τ1)(1 − τ1)

)
= ε1−θβ2−θ

θ − 1
(
1 + c1ε

−1β1−θ
) (

1 + c1ε
−1β1−θ

)−θ
(ζ + o(1)) − c1β

2−θ + o(β2−θ)

= β2−θ

(
ζε1−θ

θ − 1 − c1 + o(1)
)

→ ∞,

which means τ1 < τ∗, or equivalently,
(
G−1(τ ∗)/β − ε

)
βθ−1 > c1 when β is large

enough. Taking c2 > c, we can similarly obtain the opposite inequality. Then
let β → ∞:

c1 ≤ lim inf
β→∞

(
G−1(τ ∗)

β
− ε

)
βθ−1 ≤ lim sup

β→∞

(
G−1(τ ∗)

β
− ε

)
βθ−1 ≤ c2.

Finally, letting c1 ↑ c , c2 ↓ c, we complete the proof of Eq. (B.12). Note that
Eq. (B.12) is actually the conclusion when θ = 2. When θ < 2, together with
Eq. (B.11) and the assumption θ > 3/2, we obtain

WCEW1,G,ε
α =G−1(τ ∗) = εβ + µG + β

∫ ∞

G−1(τ∗)
G(t)dt+ o(1)

=εβ + µG + β

θ − 1G
−1(τ ∗)(1 − τ ∗)

+ β

G−1(τ ∗)G
−1(τ ∗)

( ∫ ∞

G−1(τ∗)
G(t)dt− G−1(τ ∗)G(G−1(τ ∗))

θ − 1
)

+ o(1)

=εβ + µG + ε1−θβ2−θ

θ − 1
(
1 + cε−1β1−θ + o(β1−θ)

) (
1 + cε−1β1−θ + o(β1−θ)

)−θ

(
ζ + o(βθ−2)

)
+
(
ε+ o(1)

)
o(1) + o(1)

=εβ + µG + ζε1−θ

θ − 1 β
2−θ + o(1),

where the fourth equality holds due to the fact that ζ − L(x) = o(xθ−2), which
is a conclusion from the assumption limx→∞ x3−θL′(x) = 0. We thus complete
the proof. □



10 Y. Hu et al

B.1.7. Proof of Theorem 3.5 For convenience, denote ω (τ) := z′
p,G,ε (γ(τ)).

Therefore, the maximizer τ ∗ satisfies

τ ∗ = sup
τ∈(0,1)

{ω (τ) ≥ 0}.

Simplifying the result in Eq. (B.7) and combining it with Eq. (B.2), we find
that

ω (τ) =ε
{[
τ + βq (1 − τ)

]1/q + q−1(1 − βq)
[
τ + βq (1 − τ)

]1/q−1(1 − τ + (β − 1)−1)}
+ µG +G−1 (τ) + (β − 1)

[ ∫ 1

τ
G−1 (u) du−G−1 (τ) (1 − τ)

]
.

First we prove that

1 − τ ∗ = sβ−1 + dβ−1/p−1 + o
(
β−1/p−1

)
, (B.13)

or equivalently,
[(1 − τ ∗) β − s]β1/p → d, (B.14)

where s = p − 1, d = ε−1qs2−1/q∆G, and ∆G = ess supG −µG. To do so, we
take d1 such that d1 > d, and let τ2 = 1 − sβ−1 − d1β

−1/p−1. Now substituting
τ2 into ω (τ), we obtain

ω (τ2) =ε
[
βq−1

(
s+ d1β

−1/p
)

− sβ−1 − d1β
−1/p−1 + 1

]1/q

+ εq−1[τ2 + βq (1 − τ2)
]1/q−1[

sβ−1 + d1β
−1/p−1 + (β − 1)−1]

− εq−1βq[βq−1(s+ d1β
−1/p) − sβ−1 − d1β

−1/p−1 + 1
]1/q−1[1 − τ2 + (β − 1)−1]

+ µG +G−1 (τ2) + (β − 1)
[ ∫ 1

τ2

G−1 (u) du−G−1 (τ2) (1 − τ2)
]

= : A1 + A2 − A3 + A4 + A5. (B.15)

Before analyzing the five terms above, an elementary observation is q−1−p−1 =
q + q−1 − 2 > 0, and further β1−q = o

(
β−1/p

)
, which is significant for our



An extreme Worst-case Expectile 11

calculation when ignoring higher order infinitesimal. For the first term A1,

A1 = ε
[
βq−1(s+ d1β

−1/p)− sβ−1 − d1β
−1/p−1 + 1

]1/q

= εs1/qβ1/p
[
1 + d1s

−1β−1/p + s−1β1−q − β−q − d1s
−1β−1/p−q

]1/q

= εs1/qβ1/p
[
1 + d1s

−1β−1/p + o
(
β−1/p)]1/q

= εs1/qβ1/p
[
1 + d1s

−1q−1β−1/p + o
(
β−1/p)]

= εs1/qβ1/p + εd1q
−1s1/q−1 + o (1) . (B.16)

For A2, we notice that τ + βq (1 − τ) ≥ 1, so A2 ≤ εq−1[sβ−1 + d1β
−1/p−1 +

(β − 1)−1], which implies
A2 = o (1) . (B.17)

For A3, similar to the analysis of A1, we have

A3 =εq−1[τ2 + βq (1 − τ2)
]1/q−1[

sβ−1 + d1β
−1/p−1 + (β − 1)−1

]
=εq−1βqs1/q−1β(q−1)(1/q−1)

[
1 + d1sβ

−1/p + o
(
β−1/p)]1/q−1

[
sβ−1 + d1β

−1/p−1 + (β − 1)−1
]

=εq−1βqs1/q−1β(q−1)(1/q−1)
[
1 + d1sβ

−1/p (1/q − 1) + o
(
β−1/p)][

pβ−1 + d1β
−1/p−1 + o

(
β−1/p−1)]

=εq−1βq−1s1/q−1β(q−1)(1/q−1)
[
p+ pc2

s
(1/q − 1) β−1/p + d1β

−1/p + o
(
β−1/p)]

=εq−1β1/ps1/q−1
[
p− d1sβ

−1/p + d1β
−1/p + o

(
β−1/p)]

=εβ1/ps1/qp

q (p− 1) − εd1q
−1s1/q−2 + εd1q

−1s1/q−1 + o (1)

=εβ1/ps1/q − εd1q
−1s1/q−2 + εd1q

−1s1/q−1 + o (1) . (B.18)

For A4 and A5, due to the left continuity of G−1, we obtain

A4 = −∆G+G−1 (1) −G−1 (τ2) = −∆G+ o (1) . (B.19)
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and

A5 = (β − 1)
(∫ 1

τ2

G−1 (u) du−G−1 (τ2) (1 − τ2)
)

≤ (1 − τ1) (β − 1)
(
G−1 (1) −G−1 (τ2)

)
=
(
s+ o (1)

)
o (1) = o (1) . (B.20)

Adding up equation Eqs. (B.16), (B.17), (B.18), (B.19), (B.20), we obtain

ω (τ2) = εd1q
−1s1/q−2 − ∆G+ o (1) = ε (d1 − d)q−1s1/q−2 + o (1) . (B.21)

Thus, when β is large enough, we have ω (τ2) > 0, in other words, 1 − τ ∗ ≤
sβ−1 + d1β

−1/p−1, or equivalently,

[(1 − τ ∗) β − s] β1/p ≤ d1.

Similarly, for any d2 < d, we have

[(1 − τ ∗) β − s] β1/p ≥ d2.

Together with the two equations above and let β → ∞:

d2 ≤ lim inf
β→∞

[(1 − τ ∗) β − s] β1/p ≤ lim sup
β→∞

[(1 − τ ∗) β − s] β1/p ≤ d1.

Finally, letting d2 ↑ d and d1 ↓ d, we complete the proof for Eq. (B.14). Next
substituting Eq. (B.15) into zp,G,ε (γ), we have

γ∗ = 1
(1 − τ ∗) β + τ ∗

= 1
p+ dβ−1/p + o

(
β−1/p

)
= p−1

1 + d
pβ

−1/p + o
(
β−1/p

)
= p−1 − dp−2β−1/p + o

(
β−1/p

)
. (B.22)

Similar to A1,

[
τ ∗ + βq (1 − τ ∗)

]1/q = s1/qβ1/p + dq−1s1/q−1 + o (1) .
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Due to Eq. (B.22),
µGτ

∗ = p−1µG + o (1) .

Recall Eq. (B.20), we have

(β − 1)
∫ 1

τ∗
G−1 (u) du = (β − 1)G−1 (τ ∗) (1 − τ ∗) + o (1)

=
(
G−1 (τ ∗) −G−1 (1)

)
(β − 1) (1 − τ ∗)

+G−1 (1) (β − 1) (1 − τ ∗) + o (1)
=o (1)

(
s+ o (1)

)
+G−1 (1)

(
s+ o (1)

)
+ o (1)

=sG−1 (1) + o (1) .

Together with the above equations and Eq. (B.22), we obtain

(β − 1) γ∗
∫ 1

τ∗
G−1 (u) du = q−1G−1 (1) + o (1) . (B.23)

Combining Eqs. (B.22) and (B.23), we have

zp,G,ε (γ∗) =εγ∗[τ ∗ + βq (1 − τ ∗)
]1/q + µGγ

∗ + (β − 1) γ∗
∫ 1

τ∗
G−1 (u) du

=ε
[
1/p− dp−2β−1/p + o

(
β−1/p)][s1/qβ1/p + dq−1s1/q−1 + o (1)

]
+ p−1µG + q−1G−1 (1) + o (1)

=εp−1s1/qβ1/p + εdp−1s1/q
(
q−1s−1 − p−1

)
+ p−1µG + q−1G−1 (1) + o (1)

=εp−1s1/qβ1/p + p−1µG + q−1G−1 (1) + o (1) ,

which completes the proof of this theorem. □

B.1.8. Proof of Example 1 The result WCEW1,G,ε
α = εβ + x0 is obvious.

Hence we consider p > 1. When G(x) = 1{x≥x0}, according to Eq. (B.5),

kG(γ) = γτx0 + βγ(1 − τ)x0 = x0[γ + (β − 1)γ(1 − τ)] = x0.
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Regarding lp, we obtain

lp(γ) = γ
[
τ + βq(1 − τ)

]1/q

= γ
[
βq + 1 − βq

β − 1
(
β − 1/γ

)]1/q

=
[βq − 1
β − 1 γ

q−1 + β − βq

β − 1 γ
q
]1/q

:=
(
υ(γ)
β − 1

)1/q

. (B.24)

Notice that kG(γ) is a constant, so we only need to maximize lp(γ), or equiva-
lently, υ(γ). By the first order condition, we obtain

γ∗ = 1
p

(
βq − 1
βq − β

)
,

and we can verify that γ∗ (1/β, 1). Then substituting it into Eq. (B.24), we
obtain

lp(γ∗) = γ∗
[
βq + 1 − βq

β − 1
(
β − 1/γ∗)]1/q

= 1
p

(
βq − 1
βq − β

)[
βq + 1 − βq

β − 1
(
β − p(βq − β)

βq − 1
)]1/q

= 1
p

(
1 + β − 1

βq − β

)[
(p− 1)βq−1β − β2−q

β − 1

]1/q

= p−1(p− 1)1/qβ1/p

(
1 + β − 1

βq − β

)(
1 + 1 − β2−q

β − 1

)1/q

.

□

B.1.9. Proof of Theorem 3.6 As explained after Theorem 3.6, only item
(ii) would be checked. Since both zp,G,ε and zicx

p,G,ε are strictly concave on [1/β],
we only need to show that zicx

p,G,ε(γ) > zp,G,ε(γ) for all γ ∈ (1/β, 1). Equivalently,
we need to prove that for all β > 1, q > 1 and τ ∈ (0, 1), it holds that

(τ + βq(1 − τ))1/q < 1 + (β − 1)(1 − τ)1/q.

Let x = (1 − τ)1/q ∈ (0, 1), the above inequality is transformed to

1 + (βq − 1)xq < (1 + (β − 1)x)q .
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noticing that the above two functions are equal at β = 1, we differentiate to β
to obtain the desired result. □

B.2. Proof of Section 3.2

B.2.1. Proof of Theorem 3.7 First, we need to calculate [hγ ]q. Let

x̂ = argmin
x∈R

∫ 1

0

∣∣hγ (u) − x
∣∣qdu = argmin

x∈R

{
τ |x− γ|q + (1 − τ) |βγ − x|q

}
.

Obviously x̂ ∈ [γ, βγ], hence we let f (x) = τ (x− γ)q + (1 − τ) (βγ − x)q, take
the derivative and make it equal to 0,

f ′ (x̂) = qτ (x̂− γ)q−1 − q (1 − τ) (βγ − x̂)q−1 = 0. (B.25)

We obtain τ (x̂− γ)q−1 (βγ − x̂) = (1 − τ) (βγ − x̂)q, which gives

f (x̂) = τγ (β − 1) (x̂− γ)q−1 = (βγ − 1) (x̂− γ)q−1 .

Rewrite Eq. (B.25) as

x̂− γ

βγ − x̂
=
(1 − τ

τ

) 1
q−1

=
( 1 − γ

βγ − 1

) 1
q−1

=: a,

which implies x̂ =
(

aβ−1
a+1

)
γ, and further

x̂− γ = a

a+ 1 (β − 1) γ = (1 − γ)
1

q−1

(1 − γ)
1

q−1 + (βγ − 1)
1

q−1
(β − 1) γ. (B.26)

Substituting Eq. (B.26) into Eq. (B.25), we obtain

f (x̂) = (1 − γ) (βγ − 1) (β − 1)q−1 γq−1[
(βγ − 1)p−1 + (1 − γ)p−1

]q−1 .

Finally, we obtain

[hγ ]q = f (x̂)1/q = (β − 1)1/p
[
γ (βγ − 1)s (1 − γ)s

(βγ − 1)s + (1 − γ)s

]1/p

, (B.27)

where s = p − 1 > 0. Next, we only need to solve maxγ∈[ 1
β

,1] [hγ ]q. Let g (γ) =
γ(βγ−1)s(1−γ)s

(βγ−1)s+(1−γ)s . Note that g is a nonnegative function on [1/β, 1] with g (1) =
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g (1/β) = 0, so it must attain its maximum on (1/β, 1). Differentiate to it:

g′ (γ) =(βγ − 1)s−1 (1 − γ)s−1

(βγ − 1)s + (1 − γ)s

[
(βγ − 1)p (1 − pγ) + (1 − γ)p (pβγ − 1)

]
=(βγ − 1)s−1 (1 − γ)s−1

(βγ − 1)s + (1 − γ)s ω (γ) ,

where ω (γ) := (βγ − 1)p (1 − pγ) + (1 − γ)p (pβγ − 1). We claim that ω (γ) has
only one zero point on (1/β, 1), denoted by γ∗, which also means

γ∗ = argmin
γ∈[ 1

β
,1]

[hγ ]q .

The proof of WCEMp,µ,σ
α = eα(Fp,µ,σ,γ∗) is totally similar to that of Theorem 3.1

according to Proposition 3. Consequently, we need to analyze the behavior of
γ∗ and divide this problem into three situations.

We first take p = 2 into account as a special and important case. At this time,

ω (γ) = (βγ − 1)2 (1 − 2γ) + (1 − γ)2 (2βγ − 1)

=
(
β2γ2 − 2βγ + 1

)
(1 − 2γ) +

(
γ2 − 2γ + 1

)
(2βγ − 1)

= β2γ2 − 2βγ + 1 − 2β2γ3 + 4βγ2 − 2γ − γ2 + 2γ − 1 + 2βγ3 − 4βγ2 + 2βγ
= (β − 1) γ2 (β + 1 − 2βγ) .

Immediately, we obtain γ∗ = (β + 1)/2β. And substituting this into Eq. (B.27)
we see

[hγ∗ ]q =
√
β − 1

γ∗
(

β−1
2

) (
β−1
2β

)
(β − 1) γ∗

1/2

= β − 1
2
√
β
.

Thus the conclusion when p = 2 is obtained.

Before analyzing the situation when p ̸= 2, an elementary and necessary
observation is as follows:

ω (1/p) = (1 − 1/p)p (β − 1) > 0. (B.28)

Next we consider p > 2. Let κ be a number between p+2/p−2 and p−1, taking
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β large enough, we have

ω
(
1/p+ β−κ) = − pβ−κ

(
β/p+ β1−κ − 1

)p
+
(
1 − 1/p− β−κ)p (β + pβ1−κ − 1

)
= − βp−κ

pp−1

(
1 + pβ−κ − pβ−1

)p
+ (1 − 1/p)p β

[
1 − pβ−κ/(p− 1)

]p
(
1 + pβ−κ − β−1

)
= − βp−κ

pp−1

[
1 +O

(
β−1

)]
+ (1 − 1/p)p β

[
1 +O

(
β−κ) ][1 +O

(
β−1

) ]
= − βp−κ

pp−1 + (1 − 1/p)p β +O (1) +O
(
βp−κ−1

)
.

Note that when p > 2, p− κ > 1 and p− κ− 1 < 1 − 2/p < 1, so as β → ∞,

ω
(
1/p+ β−κ) < 0. (B.29)

Together with Eqs. (B.28) and (B.29) , we have

γ∗ = 1/p+O
(
β−κ) .

Furthermore,

( 1 − γ∗

βγ∗ − 1

)p−1
βp−1 =

[
β/q +O

(
β1−κ

)
β/p− 1 +O (β1−κ)

]p−1

→ (p− 1)p−1 ,

which implies ( 1 − γ∗

βγ∗ − 1

)p−1
= O

(
β1−p

)
= O

(
β−κ) .

Due to Eq. (B.27), we finally obtain

[hγ∗ ]q = (β − 1)1/p
[(

1/p+O
(
β−κ))1/p (1/q +O

(
β−κ))1/q

] [
1 +

(( 1 − γ∗

βγ∗ − 1
)p−1)]−1/p

= (β − 1)1/p

p1/pq1/q

[
1 +O

(
β−κ)] [1 +O

(
β−κ)] [1 + o

(
β−κ)]

= (β − 1)1/p

p1/pq1/q
+O

(
β1/p−κ

)
= (β − 1)1/p

p1/pq1/q
+ o

(
β2−p−1/p

)
,

which completes the proof of p > 2.
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When p < 2, the same arguments can be applied but are more tedious. First,
we should determine the speed of convergence γ∗ → 1/p, i.e.,

γ∗ = p−1 +mβ1−p + nβ2(1−p) + o
(
β2(1−p)), (B.30)

where m = (p− 1)p/p, n = −(p− 1)2p (1 + 1/p(p− 1)). The proof of the above
equation is totally similar to Eq. (B.14). Now we have to substitute Eq. (B.30)
into Eq. (B.27), before doing so, we need the following second-order Taylor
expansion. For real number λ,

(1 + x)λ = 1 + λx+ λ(λ− 1)x2/2 + o(x2). (B.31)

Then

(γ∗)1/p =
(
p−1 +mβ1−p + nβ2(1−p) + o

(
β2(1−p)))1/p

= p−1/p
(
1 +mpβ1−p + npβ2(1−p) + o

(
β2(1−p)))1/p

= p−1/p
(
1 +mβ1−p + nβ2(1−p) − (2pq)−1 · p2m2β2(1−p) + o

(
β2(1−p)))

= p−1/p
(
1 +mβ1−p + β2(1−p)(n− (2q)−1pm2)+ o

(
β2(1−p))), (B.32)

where the third equation uses Eq. (B.31). Similarly,

(1 − γ∗)1/q = q−1/q
(
1 −mβ1−p −β2(1−p)

(
n+ (2p)−1qm2

)
+ o
(
β2(1−p))). (B.33)

And again,( 1 − γ∗

βγ∗ − 1

)p−1
=β1−p

( 1 − γ∗

γ∗ − 1/β
)p−1

=β1−p

(
p− 1 −mpβ1−p − npβ2(1−p) + o

(
β2(1−p))

1 +mpβ1−p + npβ2(1−p) + o
(
β2(1−p))− pβ−1

)p−1

=(p− 1)p−1β1−p
(
1 −mp(p− 1)−1β1−p + o

(
β1−p))p−1

(
1 +mpβ1−p + o

(
β1−p

) )1−p

=(p− 1)p−1β1−p
(
1 −mpβ1−p + o

(
β1−p))(

1 −mp(p− 1)β1−p + o
(
β1−p))

=(p− 1)p−1β1−p
(
1 −mp2β1−p + o

(
β1−p)).
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Furthermore,[
1 +

( 1 − γ∗

βγ∗ − 1

)p−1
]−1/p

=
[
1 + (p− 1)p−1β1−p −mp2(p− 1)p−1β2(1−p) + o

(
β2(1−p)

) ]−1/p

=1 − (p− 1)p−1p−1β1−p +mp(p− 1)p−1β2(1−p)

+ (p+ 1)(p− 1)p−1(2p)−2β2(1−p) + o
(
β2(1−p)

)
,

(B.34)

where we use Eq. (B.31) again. Then together with Eqs. (B.27), (B.32), (B.33),
(B.34), we obtain

[hγ∗ ]q =(β − 1)1/p(γ∗)1/p(1 − γ∗)1/q

[
1 +

( 1 − γ∗

βγ∗ − 1

)p−1
]−1/p

=(β − 1)1/p

p1/pq1/q

[
1 − (p− 1)p−1

pβp−1 +
(

−m2 − pm2

q
− qm2

p

+(p+ 1)(p− 1)p−1

2p2

)
β2(1−p) + o

(
β2(1−p)

)]

=(β − 1)1/p

p1/pq1/q

[
1 − (p− 1)p−1

pβp−1 +
(

(p− 1)2p−1

p2 + (p− 1)2p

p

+(p− 1)p−1(p+ 1)
2p2

)
β(2(1−p)) + o

(
β2(1−p)

)]
,

which completes the proof.

□

Appendix C. Additional simulations

In this section, some examples of the worst-case value of expectiles are cal-
culated and the efficiency of our approximation at an extreme level is explored.
Specifically, we let the level α vary from 0.9 to 0.99, and the corresponding β

lies in [9, 99]. Then two aspects are taken into account: one is the behavior
of WCEM

α with α tending to 1 for various ambiguity sets M, the other is the
difference between precise and approximate values of WCEM

α . The following
simulations all demonstrate our theoretical results.
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C.1. A simulation study on Theorem 3.3

We illustrate the worst-case value of expectile WCEW1,G,ε
α in Theorem 3.3 for

the reference distribution G satisfying the condition EG[(Y +)2] < ∞, which
includes the standard normal distribution N (0, 1) and the Pareto distribution
Pa(1, 3) with density function 3x−4

1{x>1}. In addition to the precise and approx-
imate values of WCEW1,G,ε

α , the expectile of reference distribution G is also drawn
on the chart. In addition, to balance the computability and aesthetics of the
results, we choose ε to be 0.1 and 0.2, respectively. From Figure C.1, we see that
the worst-case value of expectile has a dramatic increase near α = 1, although the
expectile of reference distribution grows much slower, which indicates potential
extreme risk due to the ambiguity of distribution. It is worth mentioning that
both simulations and theoretical results reveal that the trend of WCEW1,G,ε

α

as α → 1 is independent of a particular reference distribution whenever the
condition in Theorem 3.3 is satisfied. Finally, our approximation is obviously of
good efficiency, implying the correctness of our results, especially in the case of
a normal distribution.

(a) Approximate and Precise Values
of WCEW1,N (0,1),0.1

α and Expectile of
N (0, 1).

2.5

5.0

7.5

10.0

0.900 0.925 0.950 0.975
α

Normal, p=1

Precise

Approximate

N(0,1)

(b) Approximate and Precise Values
of WCEW1,P a(1,3),0.2

α and Expectile of
P a(1, 3).

5

10

15

20

0.900 0.925 0.950 0.975
α

Pareto, p=1

Precise

Approximate

Pareto(1,3)

Figure C.1: WCEW1,G,ε
α through level α ∈ [0.9, 0.99]: (a). G is the standard normal

distribution N (0, 1) and ε = 0.1. (b). G is the Pareto distribution Pa(1, 3) and
ε = 0.2. The precise value (red line), approximate value (green line) in Theorem 3.3
and expectile of reference distribution G (blue line) are presented.
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C.2. A simulation study on Theorem 3.4

We first introduce two important examples of heavy-tailed distributions that
will be used later. One is the generalized Pareto distribution with two parameters
σ and ξ, whose survival function is

G1(x) =
(

1 + ξx

σ

)−1/ξ

= x−1/ξL1(x), x > 0, with L1(x) =
(
x−1 + ξ

σ

)−1/ξ
.

Here we assume that 1/2 ≤ ξ < 2/3. It is not difficult to verify that all conditions
in Theorem 3.4 are satisfied with ζ = (σ/ξ)1/ξ and θ = 1/ξ. We simply denote
this distribution as GPD(σ, ξ). Moreover, its expectation µG1 is σ/(1 − ξ).

The other is Fréchet distribution with one parameter θ, whose survival func-
tion is

G2(x) = 1 − e−x−θ = x−θL2(x), x > 0, with L2(x) = xθ
(
1 − e−x−θ

)
.

We impose the parameter θ satisfies 3/2 < θ ≤ 2 so that the conditions in
Theorem 3.4 are again satisfied with ζ = 1. Similarly, we denote this distribution
as Frechet(θ). We can check its expectation µG2 is Γ(1 − 1/θ).

In Figure C.2, we illustrate the worst-case value of expectile WCEW1,G,ε
α in a

similar way as Section C.1, but the distributions GPD(1, 5/9) and Frechet(1.6)
are considered as the reference distributions. Another difference here is that we
choose ε to be 1 in both cases to support our theoretical results. As we mentioned
before, the general trends of WCEW1,G,ε

α with α → 1 are again independent
of specific reference distributions, just the same as Theorem 3.4 showing that
the main term is ε α

1−α , which has nothing to do with G. The difference is
that when θ < 2, there is a diverging quantity ζε1−θ

θ−1 β
2−θ that relies heavily on

the reference distribution G, rather than simply the constant µG in Theorem
3.3. Another phenomenon worth noting is that WCEW1,G,ε

α still has much more
rapid growth than the expectile of the reference distribution, even though G has
much heavier tails than before, reflecting the extensive extreme risk caused by
ambiguity. Overall, the simulations provide strong evidence for the efficiency of
our approximation with extra expansion.

C.3. Simulation of Theorem 3.5

Due to the limitations of our technology, Theorem 3.5 simply concentrates on
the situations when p > 1 and G−1(1) < ∞, where the latter is a strong assump-
tion. Therefore, we choose G to be the most common bounded distribution: Beta
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distribution with two parameters ψ1 and ψ2, denoted by Beta(ψ1, ψ2). Figure C.3
shows higher accuracy for different p and G than previous results when G−1(1) is
unbounded. Especially when α > 0.975, the two lines representing the exact and
approximate values for WCEWp,G,ε

α almost coincide. Of course, the distribution
G and index ε we chose are to make the results more aesthetic.

(a) Approximate and Precise Values
of WCEW1,GP D(1,5/9),1

α and Expectile of
GP D(1, 5/9).

30

60

90

0.900 0.925 0.950 0.975
α

p=1, GPD(1,5/9)

Precise

Approximate

GPD(1,5/9)

(b) Approximate and Precise Values
of WCEW1,F rechet(1.6),1

α and Expectile of
F rechet(1.6).

30

60

90

0.900 0.925 0.950 0.975
α

p=1, Frechet(1.6)

Precise

Approximate

Frechet(1.6)

Figure C.2: WCEW1,G,ε
α through level α ∈ [0.9, 0.99]: (a). G is the generalized Pareto

distribution GPD(1, 5/9) and ε = 1. (b) G is the Fréchet distribution with parameter
θ = 1.6 and ε is set to 1. Precise value (red line), approximate value (green line), and
expectile of reference distribution G (blue line) are presented.

C.4. A simulation study on Theorem 3.6

We perform simulations on Theorem 3.6. Here we assume that µ = 0 and
σ = 1 for the sake of simplicity. We choose different values of p: 4, 3, 1.5,
1.2, situations both when p > 2 and p < 2 are included. From the above two
panels in Figure C.4, we see the efficiency of the one-term expansion in Theorem
3.6. (ii) behaves better as p increases, which is consistent with our portrayal
for the residual term, i.e. o

(
β2−p− 1

p

)
. In Figure 4(c), we illustrate the precise

and approximate value for WCEM1.5,0,1
α . Noting that when p = 1.5, the first

correction item η1p
− 1

p q− 1
q (β − 1)

1
pβ1−p is not o(1), it indicates the necessity for

the extra expansions in Theorem 3.6. (iii). At last, β
1
p

−2p+2 tends to infinity,
when p = 1.2. Even though Theorem 3.6. (iii) shows that the residual term is
o(β

1
p

−2p+2), Figure 4(d) reveals that the error does not converge.
In Figure C.5, we demonstrate the difference between approximate and precise
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(a) Approximate and Precise Values of
WCEW1.5,Beta(3,2),0.5

α .

2
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6

0.900 0.925 0.950 0.975
α

p=1.5, Beta(3,2)

Precise

Approximate

(b) Approximate and Precise Values of
WCEW3,Beta(2,3),1

α .

2.2

2.6

3.0

0.900 0.925 0.950 0.975
α

p=3, Beta(2,3)

Precise

Approximate

Figure C.3: WCEWp,G,ε
α through level α ∈ [0.9, 0.99]: (a). G is Beta distribution

Beta(3, 2) and ε = 0.5, p=1.5. (b) G is the Beta distribution Beta(2, 3) and ε is set to
1. Precise (red line), and approximate (green line) values in Theorem 3.5 are presented.

values of WCEMp,0,1
α for 1.3, 1.25, 1.2, 1.15, 1.1. It appears that the error term

becomes increasingly uncontrollable as p approaches 1, hence it seems that there
does not appear to be a unified approximation when p → 1.
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Figure C.4: WCEMp,0,1
α for p = 4, 3, 1.5, 1.2 with varying level α ∈ [0.9, 0.99]. Both

precise (red line) and approximate (green line) values in Theorem 3.6 are presented.
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Figure C.5: Difference between approximate and precise values of WCEMp,0,1
α for p =

1.3, 1.25, 1.2, 1.15, 1.1 and varying levels α ∈ [0.9, 0.99]
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