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Appendix A Answer Set Programming

ASP (Gelfond and Lifschitz, 1991; Marek and Truszczynski, 1999) is a knowledge representation
language with roots in the research on the semantics of logic programming languages and non-
monotonic reasoning. The syntax of the language is defined as follows.

Let Σ be a signature containing constant, function and predicate symbols. Terms and atoms
are formed as in first-order logic. Aliteral is an atoma or its negation¬a. A rule is a statement
of the form:

h1 ∨ h2 . . . ∨ hk ← l1, . . . , lm, not lm+1, . . . , not ln (A1)

where eachhi andli is a literal andnot is calleddefault negationoperator. The intuitive meaning
of A1 is given in terms of a rational agent reasoning about its own beliefs and it is summarized by
the statement “a rational agent that believesl1, . . . , lm and has no reason to believelm+1, . . . , ln,
must believe one ofh1, . . . , hk.” If m = n = 0, symbol← is omitted and the rule is afact.
Rules of the form⊥ ← l1, . . . , not ln are abbreviated← l1, . . . , not ln, and calledconstraints,
intuitively meaning that{l1, . . . , not ln}must not be satisfied. A rule with variables is interpreted
as a shorthand for the set of rules obtained by replacing the variables with all possible variable-
free terms. Aprogramis a set of rules overΣ.

Next, we define the semantics of ASP. We say that a consistent setS of literals is closed under
a rule if{h1, . . . , hk}∩S 6= ∅ whenever{l1, . . . , lm} ⊆ S and{lm+1, . . . , ln}∩S = ∅. SetS is
an answer set of anot-free programΠ if S is the minimal set closed under its rules. The reduct,
ΠS , of a programΠ w.r.t.S is obtained fromΠ by removing every rule containing an expression
“not l” s.t. l ∈ S and by removing every other occurrence of notl. SetS is an answer set ofΠ
if it is the answer set ofΠS .

Appendix B Proofs of Theorems

In this appendix, we provide proofs of the main results of this paper.

B.1 Proof of Theorem 1

Before we proceed to the proof of Theorem 1, we need to introduce the following notions. Let
AD be an action description ofALIR, n be a positive integer, andΣ(AD) be the signature of
AD. Σn(AD) denotes the signature obtained as follows:

• const(Σn(AD)) = const(Σ(AD)) ∪ {0, . . . , n}
• pred(Σn(AD)) = {holds, u, split, occurs}

Let

αn(AD) = 〈Σn(AD), Πα(AD)〉, (B1)

where

Πα(AD) =
⋃

r∈AD

α(r), (B2)

andα(r) is defined as follows:

• α(e causesλ if l1, . . . , ln) is

χ(λ, I + 1)← occurs(e, I), χ(l1, I), . . . , χ(ln, I). (B3)
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if λ is a fluent literal. Ifλ is of the formu(f), the translation of the law is

u(f, I + 1)← occurs(e, I), χ(l1, I), . . . , χ(ln, I), not split(f, I). (B4)

χ(f, I + 1) ∨ χ(¬f, I + 1)← occurs(e, I), χ(l1, I), . . . , χ(ln, I), split(f, I). (B5)

• α(l0 if l1, . . . , ln) is

χ(l0, T )← χ(l1, T ), . . . , χ(ln, T ). (B6)

• α(e impossible ifl1, . . . , ln) is

←χ(l1, T ), . . . , χ(ln, T ), occurs(e, T ).

Let also

Φn(AD) = 〈Σn(AD), ΠΦ(AD)〉, (B7)

where

ΠΦ(AD) = Πα(AD) ∪Π (B8)

andΠ contains the following rules:

χ(F, I + 1)← χ(F, I), not χ(¬F, I + 1), not u(F, I + 1). (B9)

χ(¬F, I + 1)← χ(¬F, I), not χ(F, I + 1), not u(F, I + 1). (B10)

u(F, I + 1)← u(F, I), not χ(F, I + 1), not χ(¬F, I + 1). (B11)

Π also contains the following rules:

← χ(F, I), u(F, I). (B12)

← χ(¬F, I), u(F, I). (B13)

When we refer to a single action description, we drop argumentAD from the above expres-
sions.

For the rest of this section, we will focus on ground programs. In order to keep notation simple,
we will useαn andΦn to denote the ground versions of the programs previously defined.

The following notation will be useful in our further discussion. Given a time pointt, a stateσ,
and a compound actiona, let

χ(σ, t) = {χ(l, t) | l ∈ σ ∩ Lit} ∪
{u(f, t) | u(f) ∈ σ}

occurs(a, t) = {occurs(e, t) | e ∈ a}
(B14)

These sets can be viewed as the representation ofσ anda in ASP. Let also

split(qt, t) = {split(f, t) | f ∈ qt}

which represents a set of fluents to which reasoning by cases should be applied according to a
qualifierqt.

For any action descriptionAD, stateσ0, and qualified action sequences = 〈a0/q0, . . . , an−1/

qn−1〉, let Φn(σ0, s) denote

Φn ∪ {occurs(ai, i) | ai is in s} ∪ {split(qi, i) | qi is in s} (B15)

Where possible, we drop the first argument, and denote the program byΦn(σ0, s). Also, for
convenience, we writeΦ1(σ0, a0, q0) whenn = 1.
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An important property ofCnZ that we will use later is:

Lemma 3
For every fluentf , u(f) ∈ CnZ iff u(f) ∈ S.

Proof
The thesis follows trivially from the observation that proper extended literals do not occur in
stateconstraints.

The following lemma will be helpful in proving the main result of this section. It states the
correspondence between (single) transitions of the transition diagram and answer sets of the
corresponding ASP program.

Lemma 4
Let AD be an action description andT (AD) be the transition diagram it describes. Then,
〈σ0, a0, σ1〉 ∈ T (AD) iff σ1 = {l | χ(l, 1) ∈ A} ∪ {u(f) | u(f, 1) ∈ A} for some qualifierq0

and some answer setA of Φ1(σ0, a0, q0).

Proof
Let us define

Yσ0,a0,q0 = χ(σ0, 0) ∪ occurs(a0, 0) ∪ split(q0, 0) (B16)

and

Φ1(σ0, a0, q0) = Φ1 ∪ Yσ0,a0,q0

Left-to-right. Let us construct the qualifierq0 as:

q0 = {f | e causesu(f) if Γ ∈ AD, (B17)

e ∈ a0, Γ ⊆ σ0, and

u(f) 6∈ σ1}

The setq0 is an ASP representation of a qualifierq0 in a qualified action sequence.
Let us show that, if〈σ0, a0, σ1〉 ∈ T (AD), then

A = Yσ0,a0,q0 ∪ χ(σ1, 1) (B18)

is an answer set ofΦ1(σ0, a0, q0). Notice that〈σ0, a0, σ1〉 ∈ T (AD) implies thatσ1 is a state.
Herein, we refer toΦ1(σ0, a0, q0) asP .

Let us prove thatA is the minimal set of literals closed under the rules of the reductPA. Let
Nα1(AD) be the set of rules ofα1(AD) of form (B4).PA contains:

a) setYσ0,a0,q0 .
b) all rules inα1(AD) \ Nα1(AD).
c) a rule

u(f, 1)← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0).

for every fluentf such thatsplit(f, 0) 6∈ A.
d) a rule

χ(l, 1)← χ(l, 0)

for every fluent literall such thatχ(l, 1) ∈ A and a rule

χ(¬l, 1)← χ(¬l, 0)

for every fluent literal¬l such thatχ(¬l, 1) ∈ A.
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e) a rule

u(f, 1)← u(f, 0)

for every fluentf such thatu(f, 1) ∈ A.

Note that becauseA is an answer set,χ(f, 1) ∈ A ⇔ χ(¬f, 1) 6∈ A andu(f, 1) 6∈ A. The
conditions forχ(¬f) ∈ A andu(f) ∈ A can be similarly described.

A is closed underPA. We will prove it for every rule of the program.

1. Rules of groups (a), (d), and (e): obvious.
2. Rules of group (b) encoding dynamic laws of the forme causesλ if l1, . . . , ln whenλ is a fluent

literal:

χ(λ, 1)← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0).

If {o(e, 0), χ(l1, 0), . . . , χ(ln, 0)} ⊆ A, then, by (B18),{l1, . . . , ln} ⊆ σ0 ande ∈ a0. There-
fore, the preconditions of the dynamic law are satisfied byσ0. Hence (4) impliesλ ∈ σ1. By
(B18),χ(λ, 1) ∈ A.

3. Rules of group (b) encoding dynamic laws of the forme causesλ if l1, . . . , ln whenλ is of the
form u(f):

χ(f, 1) ∨ χ(¬f, 1)← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0), split(f, 0).

Let us suppose thatsplit(f, 0) ∈ A. In fact, if that is not the case, thenA is trivially closed under
the rule. Similarly, assume{occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0)} ⊆ A. Then, by construction of
Yσ0,a0,q0 , split(f, 0) ∈ split(q0, 0). In turn, by construction ofsplit(q0, 0) and from (B17) we
conclude thatf ∈ q0 and thatu(f) 6∈ σ1. Becauseσ1 is complete from (5), we conclude that
eitherf or¬f is in σ1. By (B18), eitherχ(f, 1) ∈ A or χ(¬f, 1) ∈ A.

4. Rules of group (b) encoding state constraints of the forml0 if l1, . . . , ln:

χ(l0, t) ← χ(l1, t), . . . , χ(ln, t).

If {χ(l1, t), . . . , χ(ln, t)} ⊆ A, then, by (B18),{l1, . . . , ln} ⊆ σt, i.e. the preconditions of the
state constraint are satisfied byσt. If t = 1, then (5) impliesl0 ∈ σ1. By (B18),χ(l0, t) ∈ A. If
t = 0, since states are closed under the state constraints ofAD, we have thatl ∈ σ0. Again by
(B18),χ(l0, t) ∈ A.

5. Rules of group (b) encoding executability conditions of the forme impossible if
l1, . . . , ln:

← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0).

Since〈σ0, a0, σ1〉 ∈ T (AD) by hypothesis,〈σ0, a0〉 does not satisfy the preconditions of any
executability condition. Then, eithere 6∈ a0 or li 6∈ σ0 for somei. By (B18), the body of this rule
is not satisfied.

6. Rules of group (c) encoding dynamic laws whenλ is of the formu(f):

u(f, 1)← occurs(e, 0), χ(l1, 0), . . . , χ(ln, 0).

If the rule is inPA, thensplit(f, 0) 6∈ A. By construction ofYσ0,a0,q0 , split(f, 0) 6∈ split(q0, 0)
By construction ofsplit(q0, 0), f 6∈ q0 and from (B17) it follows thatu(f) ∈ σ1. By (B18),
u(f, 1) ∈ A.
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A is the minimal set closed under the rules ofPA. We will prove this by assuming that there
exists a setB ⊆ A such thatB is closed under the rules ofPA, and by showing thatB = A.

First of all,

Yσ0,a0,q0 ⊆ B, (B19)

since these are facts inPA.
Let

δ = {l | χ(l, 1) ∈ B}. (B20)

SinceB ⊆ A,

δ ⊆ σ1 (B21)

Let W be the element ofE(a0, σ0) satisfying (4). We will show thatδ = σ1 by proving that

δ = CNZ(W ∪ (σ1 ∩ σ0)). (B22)

Dynamic laws. Letd be a dynamic law ofAD of the forme causesλ if l1, . . . , ln, such that
e ∈ a0 and{l1, . . . , ln} ⊆ σ0. Because of (B19),χ({l1, . . . , ln}, 0) ⊆ B ando(e, 0) ∈ B. If λ

is a fluent literal, then sinceB is closed underα(d), χ(λ, 1) ∈ B, andλ ∈ δ. Therefore,W ⊆ δ.
It can be similarly shown ifλ is a properly extended literal.

Inertia.PA contains a (reduced) inertia rule of the form

χ(f, 1)← χ(f, 0). (B23)

for every fluentf ∈ σ1. Supposel ∈ σ1 ∩ σ0. Then,χ(l, 0) ∈ Yσ0,a0,q0 , and, sinceB is closed
under (B23),χ(f, 1) ∈ B. Therefore,σ1 ∩ σ0 ⊆ δ. The same argument applies to the other
reduced inertia rules.

Stateconstraints. Letr be a state constraints ofAD of the forml0 if l1, . . . , ln, such that

χ({l1, . . . , ln}, 0) ⊆ B. (B24)

SinceB is closed underα(r), χ(l0, 1) ∈ B, and l0 ∈ δ. Then,δ is closed under the state
constraints ofAD.

Summing up, (B22) holds. From (4) and (B21), we obtainσ1 = δ. Thereforeχ(σ1, 1) ⊆ B.
At this point we have shown thatYσ0,a0,q0 ∪ χ(σ1, 1) ⊆ B ⊆ A.
Right-to-left. Let A be an answer set ofP and letσ1 = {l | χ(l, 1) ∈ A} ∪ {u(f) | u(f, 1) ∈

A}. We have to show that

σ1 = CNZ(W ∪ (σ1 ∩ σ0)) for someW ∈ E(a0, σ0) (B25)

as well as that〈σ0, a0〉 respects all executability conditions and thatσ1 is consistent and com-
plete.

σ1 consistent. Obvious, sinceA is a (consistent) answer set by hypothesis.
σ1 complete. By contradiction, and without loss of generality, letf be a fluent s.t.f 6∈ σ1,

¬f 6∈ σ1, u(f) 6∈ σ1, andf ∈ σ0 (sinceσ0 is complete by hypothesis, iff 6∈ σ0, we can still
select¬f or u(f)). Then, the reductPA contains a rule

χ(f, 1)← χ(f, 0). (B26)

SinceA is closed underPA, χ(f, 1) ∈ A andf ∈ σ1. Contradiction.

Executability conditionsrespected. By contradiction, assume that lawr of forme impossible if
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l1, . . . , ln is not respected. Note thatχ({l1, . . . , ln}, 0) ⊆ A andoccurs(e, 0) ∈ A. Therefore,
the body ofα(r) is satisfied byA, andA is not a answer set.

(B25)holds. Let us constructW so that:

• W ⊇ E(a0, σ0) ∩ Lit

• for everyu(f) ∈ E(a0, σ0):

— if f 6∈ q0, thenu(f) ∈W

— otherwise,f ∈W if χ(f, 1) ∈ A and¬f ∈W if χ(¬f, 1) ∈ A.

One can check thatW ∈ E(a0, σ0).
Next, let us prove thatσ1 ⊇ W , i.e. that for everyλ ∈ W,λ ∈ σ1. Supposeλ ∈ E(a0, σ0) ∩

Lit. There must exist a dynamic lawd of the form (1) such that{l1, . . . , ln} ⊆ σ0 ande ∈ a0.
SinceA is closed under (B3) ofα(d), it follows thatχ(λ, 1) ∈ A. By construction ofσ1, λ ∈ σ1.

Let us now consider the case in whichλ 6∈ E(a0, σ0)∩Lit. There must be a dynamic lawd of
the forme causesu(f) if l1, . . . , ln such thatf is the fluent that occurs inλ. It must be the case
that{l1, . . . , ln} ⊆ σ0, ande ∈ a0. Note that eitherf ∈ q0 or f 6∈ q0.

If f 6∈ q0, then by construction ofW it must be the case thatλ is u(f). Let us consider (B4)
from α(d). BecauseA is closed under it, it follows thatu(f, 1) ∈ A. By construction ofσ1, we
conclude thatu(f) ∈ σ1.

Next, consider the case in whichf ∈ q0. If λ is f , then by construction ofW , one can conclude
thatχ(f, 1) ∈ A. It follows, then, thatf ∈ σ1. If λ is ¬f , with similar reasoning we derive that
¬f ∈ σ1. This concludes the proof thatσ1 ⊇W .

Additionally, σ1 ⊇ σ1 ∩ σ0 is trivially true.
Let us prove thatσ1 is closed under the state constraints ofAD. Consider a state constraints, of

the forml0 if l1, . . . , ln, such that{l1, . . . , ln} ⊆ σ0. SinceA is closed underα(s), χ(l0, 1) ∈ A.
By construction ofσ1, l0 ∈ σ1.

Let us prove thatσ1 is the minimal set satisfying all conditions. By contradiction, assume that
there exists a setδ ⊂ σ1 such thatδ ⊇ W ∪ (σ1 ∩ σ0) and thatδ is closed under the state
constraints ofAD. We will prove that this implies thatA is not an answer set ofP .

Let A′ be the set obtained by removing fromA all literalsχ(l, 1) such thatl ∈ σ1 \ δ and all
atoms of formu(f, 1) such thatu(f) ∈ σ1 \ δ. Sinceδ ⊂ σ1, A′ ⊂ A.

Sinceδ ⊇ W ∪ (σ1 ∩ σ0), for every extended fluent literalλ ∈ σ1 \ δ it must be true that
λ 6∈ σ0 andλ 6∈ W . From Lemma 3, we conclude thatλ must be a fluent literal. Therefore
there must exist (at least) one state constraintλ if l1, . . . , ln such that{l1, . . . , ln} ⊆ σ1 and
{l1, . . . , lm} 6⊆ δ. Hence,A′ is closed under the rules ofPA. This proves thatA is not an answer
set ofP . Contradiction.

Corollary 2
Let AD be an action description andT (AD) be the transition diagram it describes. Then,
〈σ0, a0, σ1, . . . , an−1, σn〉 is a path ofT (AD) iff there exist qualifiersq0, q1, . . . , qn−1 and an
answer setA of Φn(σ0, 〈a0/q0, a1/q1, . . . , an−1/qn−1〉) such that, for every1 ≤ i ≤ n,
σi = {l | χ(l, i) ∈ A} ∪ {u(f) | u(f, i) ∈ A}.

Proof
The thesis can be easily proven by induction from Lemma4.

Theorem 1
Let I be a consistent set of fluent literals,F be a set of fluents, ands be a qualified action
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sequence. A pathπ is a model of[γ(I, F ), s] iff there exists an answer set ofΠAD(I, F, s) that
encodesπ.

Proof
The proof leverages Corollary 2 and the Splitting Set Lemma (Lifschitz and Turner, 1994). First
of all, note that it is possible to splitΠAD(I, F, s) in such a way that the bottom corresponds
to rules[g1], [g2], [g3] (see Section 5.1) together with facts encodingI andF , as well as rules
encoding the state constraints for time step0. One can check that the answer sets of the bottom
encode the completionγ(I, F ), and that every element ofγ(I, F ) is a state ofτ(AD).

The thesis follows from the application of Corollary 2 to eachσ0 ∈ γ(I, F ), after noticing the
correspondence between the top ofΠAD(I, F, s) and programΦn(σ0, s).

B.2 Proof of Theorem 2

Theorem 2
A sourceS is a match for a queryq iff FindMatch (I,ℵ,q)6= ⊥. The semantic score ofS is
||FindMatch (I,ℵ,q)||.

Proof
We begin by showing that the algorithm terminates. This follows simply from the consideration
that, in the worst case, the algorithm proceeds to a systematic enumeration of the subsets ofF
and of the extensions ofℵ (refer to steps (3), (5), and (7)), which are clearly finite, and terminates
when all have been enumerated (step (6)).

Next, we demonstrate that ifΠAD(I,F \ D,ℵ×) has at least one answer set, then step (1) of
the algorithm findsε(I,ℵ), i.e. thatI ′ = ε(I,ℵ) . Note that the existence of an answer set is
verified at step (2).

Left-to-right.Let A be an answer set ofΠAD(I,F \ D,ℵ×). From Theorem 1, it follows that
A encodes a modelπA of [γ(I,F \ D),ℵ×]. By construction ofγ(I,F \ D),

there existsI ′ ∈ I[F \ D] such thatπA is a model of[γ(I ′),ℵ×]. (B27)

Note thatl ∈ I ′ iff l ∈ I or I ∈ {l′ | {χ(l′, 0), forced(l′f )} ⊆ R, wherel′f is the fluent from
which l′ is formed. Ifl ∈ I, then from Proposition 2,l ∈ ε(I,ℵ) and the thesis is proven from the
observation that the hypothesis of existence of an answer set guarantees the existence ofε(I,ℵ).
In the other case, it follows thatχ(l, 0) ∈ R and thatforced(lf ) ∈ R. From the former and
(B27), it follows thatl ∈

⋂
Y ∈I[F\D] γ(Y ). Hence,

l ∈ γ(Y ) for everyY ∈ I[F \ D]. (B28)

By construction ofΠAD(I,F \ D,ℵ×), forced(lf ) ∈ R iff lf ∈ F \ D. By definition of
forcing of a fluent, every element ofI[F \ D] contains eitherl or l. From Proposition 1,γ(Y ) is
consistent and includesY . From (B28) and the fact thatl ∈ γ(Y ), it follows thatl ∈ Y . Hence,
l ∈
⋂

Y ∈I[F\D] Y and thusl ∈ ε(I,ℵ). From the generality ofl, it follows thatI ′ = ε(I,ℵ).
Right-to-left.The conclusion follows from Definition 5 and Theorem 1 in a straightforward

way.
Next, we prove that the algorithm terminates at step (4c) iffS is a match forq. From Theorem

1, Corollary 1, and from our observations about step (1), it follows that for every answer setA

found at step (4), there exists a modelπA of [γ(ε(I,ℵ), F ), s] that encodesA and satisfies con-
dition (c1) of Definition 6. With similar considerations, one can conclude that for every answer
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setB of ΠAD(X, ∅, 〈 〉) there exists a modelπB of [γ(πσ0 \ε(I,ℵ), ∅), 〈 〉], whereπσ0 is defined
in Definition 6. Using Corollary 1, one can check that the three tests at step (4b) ensure that
condition (c2) from Definition 6 is satisfied byπA andπB . Thus, if the algorithm terminates at
step (4c), thenS is a match forq.

The right-to-left direction is proven by contradiction. We assume that the algorithm never
reaches step (4c), and yetS is a match forq. From Definition 6, it follows that there existπ
andπ′ satisfying conditions (c1) and (c2). From Theorem 1 and earlier considerations, it follows
that there exist answer setsA andB satisfying the conditions from step (4) of the algorithm.
This means that the condition of theif statement at step (4c) is true, and thus the algorithm must
terminate, which yields contradiction. This concludes the proof that a sourceS is a match for a
queryq iff FindMatch (I,ℵ,q)6= ⊥.

Next, we demonstrate that the semantic score ofS is v = ||FindMatch (I,ℵ,q)||. If the algo-
rithm returns⊥, thenv =∞ by definition, and thus the thesis is proven. Otherwise, according to
Definition 7, we need to prove that there existF ands such thatv = Δ(γ(ε(I,ℵ), F )) + Δ(s)
and thatv is minimal among all possible choices ofF ands satisfying conditions (c1) and (c2)
from Definition 6. By construction ofΠAD(I,F \D,ℵ×), Definition 4, and the earlier part of the
present theorem, it follows thatΔ(γ(ε(I,ℵ), F )) is equal to the number of atoms ofA formed by
relationforced. Similarly, Δ(s) is equal to the number of atoms ofA formed bysplit. Hence,
v = Δ(γ(ε(I,ℵ), F )) + Δ(s). The minimality ofv is demonstrated by contradiction. Let us
proceed by cases. Suppose that, when the algorithm terminates at step (4c),F = ∅ ands = ℵ?.
By Definition 4 and Definition 6,v is minimal, which yields contradiction. Suppose, then, that
F 6= ∅ or s 6= ℵ?. Because the values of the two variables are changed only by step 7, it follows
that they were set at that step from the values ofF ′ ands′ determined by step 5. However, the
values of those variables are selected so that|F ′| + Δ(s′) is minimal (step 5b).Contradiction.


