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Appendix A Answer Set Programming

ASP (Gelfond and Lifschitz, 1991; Marek and Truszczynski, 1999) is a knowledge representation
language with roots in the research on the semantics of logic programming languages and non-
monotonic reasoning. The syntax of the language is defined as follows.

Let X be a signature containing constant, function and predicate symbols. Terms and atoms
are formed as in first-order logic. iteral is an atonu or its negation-a. A rule is a statement
of the form:

hiV hy...V hyg Hll,...,lm,not l7,,+1,...7n0t ln (Al)

where eaclh; andl; is a literal anchotis calleddefault negatioroperator. The intuitive meaning
of Al is given in terms of a rational agent reasoning about its own beliefs and it is summarized by

the statement “a rational agent that belielMes. . , [,,, and has no reason to belieyg, 1, ..., [,,
must believe one ok, ..., A" If m = n = 0, symbol«— is omitted and the rule is act
Rules of the formL « [4,...,not [,, are abbreviated- [, ..., not [,,, and callecconstraints
intuitively meaning tha{i, . . ., not /,,} must not be satisfied. A rule with variables is interpreted

as a shorthand for the set of rules obtained by replacing the variables with all possible variable-
free terms. Aprogramis a set of rules over.

Next, we define the semantics of ASP. We say that a consistefitcfditerals is closed under
aruleif{hy,...,hx} NS # O whenevekly,..., I} C Sand{lyi1,...,ln}NS = 0. SetS'is
an answer set of mot-free progranil if S is the minimal set closed under its rules. The reduct,
I1°, of a progranil w.r.t. S is obtained fronil by removing every rule containing an expression
“not [” s.t. [ € S and by removing every other occurrence of rioBetS is an answer set dil
if it is the answer set off®.

Appendix B Proofs of Theorems

In this appendix, we provide proofs of the main results of this paper.

B.1 Proof of Theorem 1

Before we proceed to the proof of Theorem 1, we need to introduce the following notions. Let
AD be an action description 0dLz, n be a positive integer, and(AD) be the signature of
AD. ¥"(AD) denotes the signature obtained as follows:

o const(X"(AD)) = const(L(AD))U{0,...,n}
o pred(X"(AD)) = {holds, u, split, occurs}

Let
a"(AD) = (S"(AD),I1*(AD)), (B1)
where
n*(AD) = | J a(r), (B2)
reAD

anda(r) is defined as follows:
e afecauses\ifly,...,l,)Is

XA I+ 1)« occurs(e, I), x(I1,1),...,x(In, I). (B3)
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if A is a fluent literal. IfA is of the formu( f), the translation of the law is
u(f, I+ 1) «— occurs(e,I),x(l1,1),...,x(In, I),not split(f,I). (B4)
X(f; I +1)Vx(=f, I +1) — occurs(e, 1), x(l, 1), .., X(In, I), split(f,I). (BS)

o Oé(l() if ll, .. ,ln) is

X(ZOaT) (_X(llaT)vaX(lmT) (BG)
e afeimpossible ifly,...,1,)is

—x(1,T),...,x(ln,T),occurs(e,T).

Let also
®"(AD) = (£"(AD),II*(AD)), (B7)
where
M*(AD) = I*(AD) UTI (B8)
andII contains the following rules:
X(E, I +1) «— x(F,I),not x(=F,I+1),not u(F,T+1). (B9)
X(—F, I+ 1) « x(=F,I),not x(F,I+1),not u(F,I+1). (B10)
w(Fy, I+ 1) —u(F,I),not x(F,I+ 1),not x(—F,I+1). (B11)

IT also contains the following rules:

— x(E,I),u(F,I). (B12)
— x(=FI),u(F,I). (B13)

When we refer to a single action description, we drop argumdntfrom the above expres-
sions.

For the rest of this section, we will focus on ground programs. In order to keep notation simple,
we will usea™ and®™ to denote the ground versions of the programs previously defined.

The following notation will be useful in our further discussion. Given a time phiatstater,
and a compound actian let

x(o,t) = {x(,t)|l€onLit}U
{u(f;t) | u(f) € o} (B14)
occurs(a,t) = {occurs(e,t) | e € a}

These sets can be viewed as the representatioraofla in ASP. Let also

split(qe, t) = {split(f,t) | f € qi}
which represents a set of fluents to which reasoning by cases should be applied according to a
qualifier g;.
For any action descriptioAD, states,, and qualified action sequenge= (ag/qo, - .., an-1/
Gn—-1), let®"(op, s) denote
O™ U{occurs(a;, i) | a; isins} U {split(q;,4) | ¢;isins} (B15)

Where possible, we drop the first argument, and denote the prograbt oy, s). Also, for
convenience, we writé! (oq, ag, qo) whenn = 1.
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An important property o€nz that we will use later is:

Lemma 3
For every fluentf, u(f) € Cnz iff u(f) € S.

Proof
The thesis follows trivially from the observation that proper extended literals do not occur in
stateconstraints. []

The following lemma will be helpful in proving the main result of this section. It states the
correspondence between (single) transitions of the transition diagram and answer sets of the
corresponding ASP program.

Lemma 4
Let AD be an action description arffi(AD) be the transition diagram it describes. Then,
(00,a0,01) € T(AD) iff oy = {l | x(1,1) € A} U{u(f) | u(f,1) € A} for some qualifier
and some answer sgtof ®! (o, ag, qo).
Proof
Let us define

Yoo .a0.00 = X(00,0) U occurs(ap,0) U split(go,0) (B16)
and

(I)l(007 ap, q0) = (I)l U Yno,ag,qo

Left-to-right Let us construct the qualifiey as:

qo = {f | ecauses(f)if I € AD, (B17)
e € ap,I' Cop, and
u(f) ¢ o1}

The setfy, is an ASP representation of a qualifigrin a qualified action sequence.
Let us show that, ifog, ag, 01) € T(AD), then

A =Yg 00,90 UX(01,1) (B18)

is an answer set 6b! (o9, ag, qo). Notice that{o, ag, 1) € T(AD) implies thato, is a state.
Herein, we refer ta! (0, ag, qo) asP.

Let us prove that is the minimal set of literals closed under the rules of the redttLet
N« (4D) pe the set of rules af' (AD) of form (B4). P4 contains:

a) setY, a0,q0- )
b) all rules ina'(AD) \ N« (AD),
c) arule
u(fv 1) — OCC’I,L?“S(@, 0)7 X(lla 0)7 RN X(lnv 0)

for every fluentf such thatsplit(f,0) & A.

d) arule
x(1,1) — x(,0)
for every fluent literal such thaty(,1) € A and arule

X(ﬁlv 1) — X(ﬁla O)
for every fluent literakl such thaty(—l, 1) € A.
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e) arule

u(f,1) < u(f,0)
for every fluentf such that(f,1) € A.

Note that becausd is an answer sef(f,1) € A < x(—f,1) € Aandu(f,1) ¢ A. The
conditions fory(—f) € A andu(f) € A can be similarly described.

Ais closed undeP*. We will prove it for every rule of the program.

1. Rules of groups (a), (d), and (e): obvious.
2. Rules of group (b) encoding dynamic laws of the fereauses\ if [y, ..., 1, whenXis a fluent
literal:

X(\, 1) — occurs(e,0), x(11,0), ..., x(1n,0).
If {o(e,0),x(l1,0),...,x(1n,0)} C A, then, by (B18){l4,...,l,} C oo ande € ag. There-
fore, the preconditions of the dynamic law are satisfiedrbyHence (4) implies\ € o;. By
(B18),x(\, 1) € A.
3. Rules of group (b) encoding dynamic laws of the farmauses\ if {1, ..., [, when\ is of the
formu(f):

X(f, 1)V x(=f,1) < occurs(e,0), x(11,0), ..., x(ln, 0), split(f,0).
Let us suppose thaplit(f,0) € A. Infact, if thatis not the case, thehis trivially closed under
the rule. Similarly, assumgoccurs(e, 0), x(11,0), ..., x(l,,0)} C A. Then, by construction of
Yoro.a0.q00 SPLit(f,0) € split(go,0). In turn, by construction ofplit(qo,0) and from (B17) we
conclude thatf € ¢y and thatu(f) ¢ o,. Becauser; is complete from (5), we conclude that
either f or = f isin o,. By (B18), eithery(f,1) € Aor x(—f,1) € A.
4. Rules of group (b) encoding state constraints of the figrifhly, ..., [,:

X(l()?t) — X(l17t)a-..7X(l7L7t)'

If {x(11,t),...,x(ln,t)} C A, then, by (B18){l4,...,l,} C o, i.e. the preconditions of the
state constraint are satisfied by. If ¢ = 1, then (5) impliedy € 1. By (B18), x(lo,t) € A. If
t = 0, since states are closed under the state constraim®ofwve have that € o4. Again by
(B18), x(lo, t) € A.

5. Rules of group (b) encoding executability conditions of the feimpossible if
l1, C 7ln:

— occurs(e,0),x(11,0),...,x(ln,0).

Since {0y, ag,01) € T(AD) by hypothesis{oy, ag) does not satisfy the preconditions of any
executability condition. Then, eitherg aq orl; & o, for somei. By (B18), the body of this rule
is not satisfied.

6. Rules of group (c) encoding dynamic laws wheis of the formu( f):

u(f, 1) < occurs(e,0),x(11,0), ..., x(In,0).

If the rule is in P4, thensplit(f,0) € A. By construction o, ., 4, split(f,0) & split(qo,0)
By construction ofsplit(qo,0), f € qgo and from (B17) it follows that.(f) € o. By (B18),
u(f,1) € A.
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A is the minimal set closed under the rulesiot. We will prove this by assuming that there
exists a seB3 C A such thatB is closed under the rules &, and by showing thaB = A.
First of all,

Yoo,a0.00 € B, (B19)
since these are facts i".
Let
6={l]x(l,1) € B}. (B20)
SinceB C A,
(S Q g1 (821)
Let W be the element dE(ao, o) satisfying (4). We will show thai = o by proving that
(5=CN2(WU(O'1 mO'o)). (822)
Dynamic lavs. Letd be a dynamic law ofAD of the forme causes\if [y, ...,1,, such that

e € ap and{ly,...,l,} C oo. Because of (B19)({l1,...,In},0) € B ando(e,0) € B. If A
is a fluent literal, then sincB is closed undetv(d), x(A, 1) € B, andX € §. ThereforeW C §.
It can be similarly shown i is a properly extended literal.

Inertia. P# contains a (reduced) inertia rule of the form

X(f,1) = x(£,0). (B23)

for every fluentf € o1. Supposé € o1 N og. Then,x(1,0) € Yy, 4,.40» @nd, sinceB is closed
under (B23),x(f,1) € B. Therefore,c; N oy C 4. The same argument applies to the other
reduced inertia rules.

Stateconstraints. Let be a state constraints dfD of the forml, if {4, ...,1[,, such that

x({l1,...,1,},0) C B. (B24)

Since B is closed underx(r), x(lo,1) € B, andl, € 6. Then,o is closed under the state
constraints ofAD.

Summing up, (B22) holds. From (4) and (B21), we obtain= 6. Thereforey(o1,1) C B.

At this point we have shown thaf, ., ¢, U x(01,1) € B C A.

Right-to-left Let A be an answer set d? and letoy = {l | x(I,1) € A} U {u(f) | u(f,1) €
A}. We have to show that

o1 = CNz(W @] (0'1 N 0'0)) for somelV e E(ao,Uo) (825)

as well as thatoy, ag) respects all executability conditions and thatis consistent and com-
plete.

o1 consistent. Obvious, sincéis a (consistent) answer set by hypothesis.

o1 complete. By contradiction, and without loss of generality,fidie a fluent s.tf ¢ o4,
-f & o1, u(f) € o1, andf € o (sinceo, is complete by hypothesis, jf ¢ oo, we can still
select—f or u(f)). Then, the reducP* contains a rule

x(f,1) < x(f,0). (B26)
SinceA is closed undeP4, x(f,1) € Aandf € ;. Contradiction.

Executability conditionsespected. By contradiction, assume thatitafform e impossible if
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l1,...,1l, is not respected. Note tha{{l1,...,l,},0) C A andoccurs(e,0) € A. Therefore,
the body ofa(r) is satisfied byA, and A is not a answer set.
(B25) holds. Let us construdl” so that:

w 2 E(ao, 0'0) N Lit
o foreveryu(f) € E(ag,09):

— if f & qo, thenu(f) e W
— otherwise,f € Wif x(f,1) € Aand—f € W if x(=f,1) € A.

One can check thal” € E(ao, 09).

Next, let us prove that; D W, i.e. that for every\ € W, A € ;. Suppose\ € E(ag,00) N
Lit. There must exist a dynamic laivof the form (1) such thafly,...,l,} C oo ande € ay.
SinceA is closed under (B3) ak(d), it follows thaty (A, 1) € A. By construction ob, A € 0.

Let us now consider the case in whighZ E(ag, 0¢) N Lit. There must be a dynamic lasof
the forme causes.(f) if {1, ..., 1, such thatf is the fluent that occurs ik. It must be the case
that{l,...,l,} C oo, ande € aq. Note that eithelf € gy or f & qo.

If f ¢ qo, then by construction dff’ it must be the case thatis u(f). Let us consider (B4)
from o(d). Because is closed under it, it follows that(f,1) € A. By construction oy, we
conclude thati(f) € o;.

Next, consider the case in whighe qq. If A is f, then by construction dfi’, one can conclude
thaty(f,1) € A. It follows, then, thatf € o;. If A is —f, with similar reasoning we derive that
—f € o1. This concludes the proof that O W.

Additionally, o1 2 o1 N oy is trivially true.

Let us prove that is closed under the state constraintsidd. Consider a state constraintof
the formiy if I1,...,1,, suchthafly,...,l,} C 0g. SinceA is closed undet(s), x(lp, 1) € A.
By construction ob, [y € 0.

Let us prove thatr, is the minimal set satisfying all conditions. By contradiction, assume that
there exists a set C o7 such thaty O W U (o1 N 0p) and thatd is closed under the state
constraints ofAD. We will prove that this implies thad is not an answer set d?.

Let A’ be the set obtained by removing franall literals x (I, 1) such that € o, \ § and all
atoms of formu(f, 1) such thatu(f) € o1 \ ¢. Sinced C 01, A’ C A.

Sinced O W U (01 N ay), for every extended fluent literal € o7 \ J it must be true that
A & op and X € W. From Lemma 3, we conclude thatmust be a fluent literal. Therefore
there must exist (at least) one state constraiiftly, ..., such that{ly,...,l,} € oy and
{ly,...,lm} 6. Hence,A’ is closed under the rules &f4. This proves thatl is not an answer
set of P. Contradiction. [

Corollary 2

Let AD be an action description arffi(AD) be the transition diagram it describes. Then,
(00,a0,01,...,an—1,0,) iS & path of7 (AD) iff there exist qualifiersyo, g1, .. .,¢,—1 and an
answer setd of ®" (o, (ao/q0, a1/q1, ---, an—1/gn—-1)) such that, for everyy < i < n,

o ={l| x(l,i) € A} U{u(f) | u(f,i) € A}.

Proof

The thesis can be easily proven by induction from Lerdma [

Theorem 1
Let I be a consistent set of fluent literalB, be a set of fluents, anel be a qualified action



30 M. Balduccini and E. LeBlanc

sequence. A path is a model offy(I, F'), s] iff there exists an answer set B4 (7, F, s) that
encodesr.

Proof
The proof leverages Corollary 2 and the Splitting Set Lemma (Lifschitz and Turner, 1994). First
of all, note that it is possible to splii4p (I, F, s) in such a way that the bottom corresponds
to rules|gi], [g=], [gs] (see Section 5.1) together with facts encodirand F', as well as rules
encoding the state constraints for time sie®ne can check that the answer sets of the bottom
encode the completion(, F'), and that every element of I, F') is a state of-(AD).

The thesis follows from the application of Corollary 2 to eaghe (I, F), after noticing the
correspondence between the todbfp (1, F, s) and program®™ (g, s). [

B.2 Proof of Theorem 2

Theorem 2
A sourceS is a match for a query iff FindMatch (I,X,q)# L. The semantic score & is
||FindMatch (I,8,q)]|.

Proof

We begin by showing that the algorithm terminates. This follows simply from the consideration
that, in the worst case, the algorithm proceeds to a systematic enumeration of the sulf5ets of
and of the extensions of (refer to steps (3), (5), and (7)), which are clearly finite, and terminates

when all have been enumerated (step (6)).

Next, we demonstrate thatlf,p (I, F \ D,N*) has at least one answer set, then step (1) of
the algorithm finds (1, X), i.e. thatl” = ¢(I,R) . Note that the existence of an answer set is
verified at step (2).

Left-to-right.Let A be an answer set & 4p (7, F \ D,R*). From Theorem 1, it follows that
A encodes a model, of [y(I,F \ D), X*]. By construction ofy({, F \ D),

there existd’ € I[F \ D] such thatr 4 is a model ofy(I’), XN*]. (B27)

Note thatl € I"iff [ € T orl € {I'|{x(I',0), forced(l})} C R, wherel’, is the fluent from
which{’ is formed. Ifi € I, then from Proposition 2, (I, X) and the thesis is proven from the
observation that the hypothesis of existence of an answer set guarantees the existehed of
In the other case, it follows that(l,0) € R and thatforced(ly) € R. From the former and
(B27), it follows thatl € Ny ;7 p; 7(Y). Hence,

1 e ~(Y) foreveryY € I[F\ D]. (B28)

By construction ofllap(I,F \ D,X*), forced(ly) € Riff Iy € F\ D. By definition of
forcing of a fluent, every element &fF \ D] contains eithet or I. From Proposition 1y(Y) is
consistent and includés. From (B28) and the fact thate +(Y"), it follows that! € Y. Hence,
L€ Nyerrp Y and thug € (1, R). From the generality of, it follows that!” = (1, X).
Right-to-left. The conclusion follows from Definition 5 and Theorem 1 in a straightforward
way.
Next, we prove that the algorithm terminates at step (4¢j if a match folg. From Theorem
1, Corollary 1, and from our observations about step (1), it follows that for every answér set
found at step (4), there exists a model of [y(e(1,R), F'), s] that encodes! and satisfies con-
dition (c1) of Definition 6. With similar considerations, one can conclude that for every answer
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setBof ll4p (X, 0, ()) there exists a modelz of [y(,, \e(I,R), D), ()], wherer,, is defined

in Definition 6. Using Corollary 1, one can check that the three tests at step (4b) ensure that
condition €2) from Definition 6 is satisfied by 4 andn . Thus, if the algorithm terminates at
step (4c¢), thers is a match forg.

The right-to-left direction is proven by contradiction. We assume that the algorithm never
reaches step (4c), and y&tis a match forg. From Definition 6, it follows that there exist
andr’ satisfying conditionsql) and €2). From Theorem 1 and earlier considerations, it follows
that there exist answer setsand B satisfying the conditions from step (4) of the algorithm.
This means that the condition of tifestatement at step (4c) is true, and thus the algorithm must
terminate, which yields contradiction. This concludes the proof that a ssuiz@ match for a
queryq iff FindMatch (I,X,q)# L.

Next, we demonstrate that the semantic scoi8 ixfv = ||[FindMatch (7,R,q)||. If the algo-
rithm returnsl, thenv = oo by definition, and thus the thesis is proven. Otherwise, according to
Definition 7, we need to prove that there extstinds such that = A(~(e(I,N), F)) + A(s)
and thatv is minimal among all possible choices Bfands satisfying conditionsdl) and €2)
from Definition 6. By construction dil 4 p (I, F\ D, X*), Definition 4, and the earlier part of the
present theorem, it follows thadt(y(¢(I,R), F')) is equal to the number of atoms dfformed by
relation forced. Similarly, A(s) is equal to the number of atoms dfformed bysplit. Hence,

v = A(y(e(I,R), F)) + A(s). The minimality ofv is demonstrated by contradiction. Let us
proceed by cases. Suppose that, when the algorithm terminates at stép &4¢)ands = X”.

By Definition 4 and Definition 6¢ is minimal, which yields contradiction. Suppose, then, that
F # () or s # X’. Because the values of the two variables are changed only by step 7, it follows
that they were set at that step from the value$'bfinds’ determined by step 5. However, the
values of those variables are selected so [tHgt+ A(s’) is minimal (step 5b)Contradiction.

(I



