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Proofs of Theorems 1–3

Proof of Theorem 1

Because s is interval-free, [s] is either empty or a singleton. Case 1: The set [s] is empty.
Then no set ∆ ⊆ A justifies any of the aggregate atoms E, E≤, E≥. Consequently, each
of the formulas τE, τE≤, τE≥ is the conjunction of implications (22) for all sets ∆ ⊆ A.
Case 2: The set [s] is a singleton set {t}, where t is a precomputed term. Then, we will
show that the set of conjunctive terms of τE is the union of the sets of conjunctive terms
of τE≤ and τE≥. For any subset ∆ of A,
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(22) is a conjunctive term of τE
iff ∆ does not justify E
iff α̂[∆] 6= t

iff α̂[∆] < t or α̂[∆] > t

iff ∆ does not justify E≥ or ∆ does not justify E≤
iff (22) is a conjunctive term of τE≥ or of τE≤
iff (22) is a conjunctive term of τE≤ ∧ τE≥.

Proof of Theorem 2
Since E is monotone, the antecedent of (22) can be dropped (Section 5.1), so that τE is
strongly equivalent to ∧

∆⊆A
|[∆]|<m

∨
(i,r)∈A\∆

τ∨((Li)
xi
r ). (25)

To derive (25) from (22) in HT∞, assume (23). We will reason by cases, with one case
corresponding to each disjunctive term∧

(i,r)∈∆

τ∨((Li)
xi
r ) (26)

of (23). Let ∆′ be a subset of A such that |[∆′]| < m. We will show that the conjunctive
term of (25) corresponding to ∆′ can be derived from (26). Since

|[∆′]| < m = |[∆]|, (27)

there exists a pair (i, r) that is an element of ∆ but not an element of ∆′. Indeed, if
∆ ⊆ ∆′ then [∆] ⊆ [∆′], which contradicts (27). Since (i, r) ∈ ∆, from (26) we can
derive τ∨((Li)

xi
r ). Since (i, r) ∈ A \∆′, we can further derive∨

(i,r)∈A\∆′
τ∨((Li)

xi
r ).

It follows that each conjunctive term of (25) can be derived from (26).
We will prove by induction on m that (23) can be derived from (25) in HT∞. Base case:

when m = 0 the disjunctive term of (23) corresponding to the empty ∆ is >. Inductive
step: assume that (23) can be derived from (25), and assume∧

∆⊆A
|[∆]|<m+1

∨
(i,r)∈A\∆

τ∨((Li)
xi
r ). (28)

From (28) we can derive (25), and consequently (23). Now we reason by cases, with one
case corresponding to each disjunctive term of (23). Assume∧

(i,r)∈Σ

τ∨((Li)
xi
r ) (29)

where Σ is a subset of A such that |[Σ]| = m. Consider the set

Σ′ = {(i, r) : [(ti)
xi
r ] ⊆ [Σ]}.

By the definition of [Σ], for any (i, r) ∈ Σ, [(ti)
xi
r ] ⊆ [Σ]. So Σ ⊆ Σ′. It follows that
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[Σ] ⊆ [Σ′]. On the other hand,

[Σ′] =
⋃

(i,r)∈Σ′

[(ti)
xi
r ] =

⋃
(i,r) : [(ti)

xi
r ]⊆[Σ]

[(ti)
xi
r ] ⊆ [Σ].

Consequently [Σ] = [Σ′], and |[Σ′]| = |[Σ]| = m. From (28),∨
(i,r)∈A\Σ′

τ∨((Li)
xi
r ). (30)

Again, we reason by cases, with one case corresponding to each disjunctive term of (30).
Assume τ∨((Lj)

xj
s ), where (j, s) ∈ A \ Σ′. Combining assumption (29) and τ∨((Lj)

xj
s ),

we derive ∧
(i,r)∈Σ∪{(j,s)}

τ∨((Li)
xi
r ). (31)

Consider the set [Σ ∪ {(j, s)}], that is,

[Σ] ∪ [(tj)
xj
s ]. (32)

Recall that the cardinality of [Σ] is m. Since tj is interval-free, the cardinality of [(tj)
xj
s ]

is at most 1. Furthermore, since (j, s) 6∈ Σ′ it follows that

[(tj)
xj
s ] 6⊆ [Σ],

so that [(tj)
xj
s ] is nonempty. Consequently, the set is a singleton, and therefore [Σ] is dis-

joint from it. It follows that the cardinality of (32) is m+ 1. So from (31) we can derive∨
∆⊆A

|[∆]|=m+1

∧
(i,r)∈∆

τ∨((Li)
xi
r ).

Proof of Theorem 3
Since the consequent of (22) can be replaced in this case by ⊥, τE is strongly equivalent
to ∧

∆⊆A
|[∆]|>m

¬
∧

(i,r)∈∆

τ∨((Li)
xi
r ). (33)

Every conjunctive term of (24) is a conjunctive term of (33). To derive (33) from (24),
consider a set ∆ such that |[∆]| > m. Let f(i, r) stand for the set [(ti)

xi
r ]. Since each ti

is interval-free, this set is either empty or a singleton. Let s1, . . . , sm+1 be m + 1 distinct
elements of [∆]. Choose elements (i1, r1), . . . , (im+1, rm+1) of ∆ such that each sk be-
longs to f(ik, rk), and let ∆′ be {(i1, r1), . . . , (im+1, rm+1)}. The cardinality of [∆′] is
at least m + 1, because this set includes s1, . . . , sm+1. On the other hand, it is at most
m + 1, because this set is the union of m + 1 sets of cardinality at most 1. Consequently,
|[∆′]| = m+ 1. From (24) we can conclude in HT∞ that

¬
∧

(i,r)∈∆′

τ∨((Li)
xi
r ). (34)

Then the conjunctive term

¬
∧

(i,r)∈∆

τ∨((Li)
xi
r )
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of (33) follows, because ∆′ ⊆ ∆.

Correctness of the n-Queens Program

In this section, we prove the correctness of the program K, consisting of rules R1, . . . , R7

(Sections 2.3 and 3).
The n-queens problem involves placing n queens on an n× n chess board such that no

two queens threaten each other. We will represent squares by pairs of integers (i, j) where
1 ≤ i, j ≤ n. Two squares (i1, j1) and (i2, j2) are said to be in the same row if i1 = i2; in
the same column if j1 = j2; and in the same diagonal if |i1 − i2| = |j1 − j2|. A set Q of n
squares is a solution to the n-queens problem if no two elements of Q are in the same row,
in the same column, or in the same diagonal.

For any stable model I ofK, byQI we denote the set of pairs (i, j) such that q(i, j) ∈ I .

Theorem 4
For each stable model I of K, QI is a solution to the n-queens problem. Furthermore, for
each solution Q to the n-queens problem there is exactly one stable model I of K such
that QI = Q.

Review: Supported Models and Constraints

We start by reviewing two familiar facts that will be useful in proving Theorem 4.
An infinitary program is a conjunction of (possibly infinitely many) infinitary formulas

of the form G → A, where A is an atom. We say that an interpretation I is supported
by an infinitary program Π if each atom A from I is the consequent of a conjunctive
term G→ A of Π such that I |= G. Lifschitz and Yang (2013) give a condition, “tightness
on an interpretation,” under which the stable models of an infinitary program are identical
to its supported models. Proposition 1 below gives a simpler condition of this kind that is
sufficient for our purposes.

We say that an atom A occurs nonnegated in a formula F if

• F is A, or
• F is of the form H∧ or H∨ and A occurs nonnegated in at least one element of H,

or
• F is of the form G→ H , where H is different from ⊥, and A occurs nonnegated in
G or in H .

It is clear, for instance, that no atom occurs nonnegated in a formula of the form ¬F .
The positive dependency graph of an infinitary program Π is the directed graph contain-

ing a vertex for each atom occuring in Π, and an edge from A to B for every conjunctive
termG→ A of Π and every atomB that occurs nonnegated inG. We say that an infinitary
program Π is extratight if the positive dependency graph of Π contains no infinite paths.

The following fact is immediate from (Lifschitz and Yang 2013, Lemma 2).

Proposition 1
For any model I of an extratight infinitary program Π, I is stable iff I is supported by Π.
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A constraint is an infinitary formula of the form ¬F (which is shorthand for F → ⊥).
The following theorem is a straightforward generalization of Proposition 4 from (Ferraris
and Lifschitz 2005).

Proposition 2
Let H1 be a set of infinitary formulas and H2 be a set of constraints. A set I of atoms is a
stable model ofH1 ∪H2 iff I is a stable model ofH1 and satisfies all formulas inH2.

Proof
Case 1: Every formula in H1 ∪ H2 is satisfied by I . For each formula ¬F in H2, I does
not satisfy F . So the reduct of each formula in H2 w.r.t. I is ¬⊥. It follows that the set
of reducts of all formulas in H1 ∪ H2 is satisfied by the same interpretations as the set of
reducts of all formulas in H1. Consequently, I is minimal among the sets satisfying the
reducts of all formulas fromH1∪H2 iff it is minimal among the sets satisfying the reducts
of all formulas fromH1. Case 2: Some formula F inH1∪H2 is not satisfied by I . Then I
is not a stable model ofH1∪H2. If F ∈ H1 then I is not a stable model ofH1. Otherwise,
it is not true that I satisfies all formulas inH2.

Proof of Theorem 4

To simplify notation, we will identify each set Q of squares with the set of atoms q(i, j)
where (i, j) ∈ Q. By Dn we denote the set of atoms of the forms d1(i, j, i− j + n) and
d2(i, j, i+ j − 1) for all i, j from {1, . . . , n}. Recall that the rules of the program K are
denoted by R1, . . . , R7.

Lemma 1
A set of atoms is a stable model of

τR1 ∪ τR4 ∪ τR5 (35)

iff it is of the form Q ∪Dn where Q is a set of squares.

Proof
We can turn (35) into a strongly equivalent infinitary program as follows. The result of
applying τ to R1 is (21). Each conjunctive term in this formula is strongly equivalent to

¬¬q(i, j)→ q(i, j). (36)

The set τR4 is strongly equivalent to the set of formulas

> → d1(i, j, i− j + n) (37)

(1 ≤ i, j ≤ n). (We take into account that τ(i = 1..n) is equivalent to > if 1 ≤ i ≤ n

and to ⊥ otherwise, and similarly for j.) Similarly, τR5 is strongly equivalent to the set of
formulas

> → d2(i, j, i+ j − 1) (38)

(1 ≤ i, j ≤ n). Consequently, (35) is strongly equivalent to the conjunction H of formulas
(36)–(38). It is easy to check that H is an extratight infinitary program, so that by Propo-
sition 1 its stable models are identical to its supported models. A set I of atoms is a model
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of H iff Dn ⊆ I . Furthermore, I is supported iff every element of I has the form q(i, j)

or is an element of Dn. Consequently, supported models of H are sets of the form Q∪Dn

where Q is a set of squares.

Lemma 2
A set I of atoms is a stable model of τK iff it has the form Q ∪Dn, where Q is a solution
to the n-queens problem.

Proof
LetH1 be (35) andH2 be

τR2 ∪ τR3 ∪ τR6 ∪ τR7.

All formulas in H2 are constraints. Consequently, by Proposition 2, I is a stable model
of τK iff it is a stable model of H1 and satisfies all formulas in H2. By Lemma 1, I is a
stable model of H1 iff it is of the form Q ∪Dn, where Q is a set of squares. It remains to
show that a set I of the form Q ∪Dn satisfies all formulas in H2 iff Q is a solution to the
n-queens problem. Specifically, we will show that for any set I of the form Q ∪Dn

(i) I satisfies τR2 iff for all i ∈ {1, . . . , n}, I contains exactly one atom of the form
q(i, j);

(ii) I satisfies τR3 iff for all j ∈ {1, . . . , n}, I contains exactly one atom of the form
q(i, j);

(iii) I satisfies τR6 ∪ τR7 iff no two squares in I are in the same diagonal.

To prove (i), note first that τR2 is equivalent to the set of formulas

¬¬
(
τ(count{Y : q(i, Y )} = 1)

)
(1 ≤ i ≤ n). By Theorem 1, this set is strongly equivalent to the set of formulas

¬¬
(
τ(count{Y : q(i, Y )} ≤ 1) ∧ τ(count{Y : q(i, Y )} ≥ 1)

)
. (39)

By Theorem 3 and the comment at the end of Section 5.3, the result of applying τ to the
first aggregate atom in (39) is strongly equivalent to∧

∆⊆A
|∆|=2

¬
∧

(1,r)∈∆

q(i, r).

This formula can be written as ∧
Σ⊆P
|Σ|=2

¬
∧
r∈Σ

q(i, r),

where P is the set of precomputed terms. It is easy to see that I satisfies this formula iff it
contains at most one atom of the form q(i, r). On the other hand, by Theorem 2, the result
of applying τ to the second aggregate atom in (39) is strongly equivalent to∨

∆⊆A
|∆|=1

∧
(1,r)∈∆

q(i, r).

Similar reasoning shows that I satisfies this formula iff it contains at least one atom of the
form q(i, r). Since I = Q ∪Dn, r in this atom is one of 1, . . . , n.
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Claim (ii) is proved in a similar way.
To prove (iii), note first that two squares (i1, j1), (i2, j2) are in the same diagonal iff

there exists a k ∈ {1, . . . , 2n− 1} such that

d1(i1, j1, k), d1(i2, j2, k) ∈ Dn (40)

or

d2(i1, j1, k), d2(i2, j2, k) ∈ Dn. (41)

We will show that a set I of the form Q∪Dn does not satisfy τR6 iff there exists a k such
that (40) holds for two distinct elements q(i1, j1), q(i2, j2) ∈ Q, and that it does not satisfy
τR7 iff there exists a k such that (41) holds for such two elements. The result of applying
τ to R6 is strongly equivalent to the set of formulas

¬τ(2 ≤ count{0, q(X,Y ) : q(X,Y ), d1(X,Y, k)}) (42)

(1 ≤ k ≤ 2n− 1). Formula (42) is identical to

¬τ(count{X,Y : q(X,Y ), d1(X,Y, k)} ≥ 2).

In view of Theorem 2, it follows that it is strongly equivalent to

¬
∨

∆⊆A
|∆|=2

∧
(1,(r,s))∈∆

(q(r, s) ∧ d1(r, s, k))

(1 ≤ k ≤ 2n− 1). This formula can be written as

¬
∨

Σ⊆P×P
|Σ|=2

∧
(r,s)∈Σ

(q(r, s) ∧ d1(r, s, k)). (43)

For any set Q of squares,

Q ∪Dn does not satisfy (43)
iff there exist two distinct pairs (r1, s1), (r2, s2) from P × P such that

q(r1, s1), q(r2, s2) ∈ Q and d1(r1, s1, k), d1(r2, s2, k) ∈ Dn

iff there exist two distinct squares (i1, j1), (i2, j2) ∈ Q such that (40) holds.

The claim about (41) is proved in a similar way.

Theorem 4 is immediate from the lemma.
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