Online appendix for the paper Abstract Gringo

published in Theory and Practice of Logic Programming

MARTIN GEBSER

Aalto University, HIIT, Finland University of Potsdam, Germany gebser@cs.uni-potsdam.de

AMELIA HARRISON

Univeristy of Texas at Austin, USA ameliaj@cs.utexas.edu

ROLAND KAMINSKI

University of Potsdam, Germany kaminski@cs.uni-potsdam.de

VLADIMIR LIFSCHITZ

University of Texas at Austin, USA vl@cs.utexas.edu

TORSTEN SCHAUB

University of Potsdam, Germany INRIA Rennes, France torsten@cs.uni-potsdam.de

Proofs of Theorems 1–3

Proof of Theorem 1

Because s is interval-free, [s] is either empty or a singleton. Case 1: The set [s] is empty. Then no set $\Delta \subseteq A$ justifies any of the aggregate atoms E, E_{\leq}, E_{\geq} . Consequently, each of the formulas $\tau E, \tau E_{\leq}, \tau E_{\geq}$ is the conjunction of implications (22) for all sets $\Delta \subseteq A$. Case 2: The set [s] is a singleton set $\{t\}$, where t is a precomputed term. Then, we will show that the set of conjunctive terms of τE is the union of the sets of conjunctive terms of τE_{\leq} and τE_{\geq} . For any subset Δ of A, (22) is a conjunctive term of τE

- iff Δ does not justify E
- $\text{iff} \quad \widehat{\alpha}[\Delta] \neq t$

 $\text{iff} \quad \widehat{\alpha}[\Delta] < t \text{ or } \widehat{\alpha}[\Delta] > t$

- iff Δ does not justify E_{\geq} or Δ does not justify E_{\leq}
- iff (22) is a conjunctive term of τE_{\geq} or of τE_{\leq}
- iff (22) is a conjunctive term of $\tau E_{\leq} \wedge \tau E_{\geq}$.

Proof of Theorem 2

Since E is monotone, the antecedent of (22) can be dropped (Section 5.1), so that τE is strongly equivalent to

$$\bigwedge_{\substack{\Delta \subseteq A \\ |\Delta|| < m}} \bigvee_{(i,\mathbf{r}) \in A \setminus \Delta} \tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i}).$$
(25)

To derive (25) from (22) in HT^{∞} , assume (23). We will reason by cases, with one case corresponding to each disjunctive term

$$\bigwedge_{(i,\mathbf{r})\in\Delta}\tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i})\tag{26}$$

of (23). Let Δ' be a subset of A such that $|[\Delta']| < m$. We will show that the conjunctive term of (25) corresponding to Δ' can be derived from (26). Since

$$|[\Delta']| < m = |[\Delta]|, \tag{27}$$

there exists a pair (i, \mathbf{r}) that is an element of Δ but not an element of Δ' . Indeed, if $\Delta \subseteq \Delta'$ then $[\Delta] \subseteq [\Delta']$, which contradicts (27). Since $(i, \mathbf{r}) \in \Delta$, from (26) we can derive $\tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i})$. Since $(i, \mathbf{r}) \in A \setminus \Delta'$, we can further derive

$$\bigvee_{(i,\mathbf{r})\in A\setminus\Delta'}\tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i})$$

It follows that each conjunctive term of (25) can be derived from (26).

We will prove by induction on m that (23) can be derived from (25) in HT^{∞}. Base case: when m = 0 the disjunctive term of (23) corresponding to the empty Δ is \top . Inductive step: assume that (23) can be derived from (25), and assume

$$\bigwedge_{\substack{\Delta \subseteq A \\ [\Delta]| \le m+1}} \bigvee_{(i,\mathbf{r}) \in A \setminus \Delta} \tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i}).$$
(28)

From (28) we can derive (25), and consequently (23). Now we reason by cases, with one case corresponding to each disjunctive term of (23). Assume

$$\bigwedge_{i,\mathbf{r})\in\Sigma} \tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i})$$
(29)

where Σ is a subset of A such that $|[\Sigma]| = m$. Consider the set

(

$$\Sigma' = \{ (i, \mathbf{r}) : [(\mathbf{t}_i)_{\mathbf{r}}^{\mathbf{x}_i}] \subseteq [\Sigma] \}.$$

By the definition of $[\Sigma]$, for any $(i, \mathbf{r}) \in \Sigma$, $[(\mathbf{t}_i)_{\mathbf{r}}^{\mathbf{x}_i}] \subseteq [\Sigma]$. So $\Sigma \subseteq \Sigma'$. It follows that

 $[\Sigma] \subseteq [\Sigma']$. On the other hand,

$$[\Sigma'] = \bigcup_{(i,\mathbf{r})\in\Sigma'} [(\mathbf{t}_i)_{\mathbf{r}}^{\mathbf{x}_i}] = \bigcup_{(i,\mathbf{r})\,:\, [(\mathbf{t}_i)_{\mathbf{r}}^{\mathbf{x}_i}]\subseteq[\Sigma]} [(\mathbf{t}_i)_{\mathbf{r}}^{\mathbf{x}_i}]\subseteq[\Sigma].$$

Consequently $[\Sigma] = [\Sigma']$, and $|[\Sigma']| = |[\Sigma]| = m$. From (28),

$$\bigvee_{(i,\mathbf{r})\in A\setminus\Sigma'}\tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i}).$$
(30)

Again, we reason by cases, with one case corresponding to each disjunctive term of (30). Assume $\tau_{\vee}((\mathbf{L}_j)_{\mathbf{s}}^{\mathbf{x}_j})$, where $(j, \mathbf{s}) \in A \setminus \Sigma'$. Combining assumption (29) and $\tau_{\vee}((\mathbf{L}_j)_{\mathbf{s}}^{\mathbf{x}_j})$, we derive

$$\bigwedge_{(i,\mathbf{r})\in\Sigma\cup\{(j,\mathbf{s})\}}\tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i}).$$
(31)

Consider the set $[\Sigma \cup \{(j, \mathbf{s})\}]$, that is,

$$[\Sigma] \cup [(\mathbf{t}_j)_{\mathbf{s}}^{\mathbf{x}_j}]. \tag{32}$$

Recall that the cardinality of $[\Sigma]$ is m. Since \mathbf{t}_j is interval-free, the cardinality of $[(\mathbf{t}_j)_{\mathbf{s}}^{\mathbf{x}_j}]$ is at most 1. Furthermore, since $(j, \mathbf{s}) \notin \Sigma'$ it follows that

$$[(\mathbf{t}_j)^{\mathbf{x}_j}_{\mathbf{s}}] \not\subseteq [\Sigma],$$

so that $[(\mathbf{t}_j)_{\mathbf{s}}^{\mathbf{x}_j}]$ is nonempty. Consequently, the set is a singleton, and therefore $[\Sigma]$ is disjoint from it. It follows that the cardinality of (32) is m + 1. So from (31) we can derive

$$\bigvee_{\substack{\Delta \subseteq A \\ |[\Delta]|=m+1}} \bigwedge_{(i,\mathbf{r})\in\Delta} \tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i}).$$

Proof of Theorem 3

Since the consequent of (22) can be replaced in this case by \perp , τE is strongly equivalent to

$$\bigwedge_{\substack{\Delta \subseteq A \\ ||\Delta|| > m}} \neg \bigwedge_{(i,\mathbf{r}) \in \Delta} \tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i}).$$
(33)

Every conjunctive term of (24) is a conjunctive term of (33). To derive (33) from (24), consider a set Δ such that $|[\Delta]| > m$. Let $f(i, \mathbf{r})$ stand for the set $[(\mathbf{t}_i)_{\mathbf{r}}^{\mathbf{x}_i}]$. Since each \mathbf{t}_i is interval-free, this set is either empty or a singleton. Let $\mathbf{s}_1, \ldots, \mathbf{s}_{m+1}$ be m + 1 distinct elements of $[\Delta]$. Choose elements $(i_1, \mathbf{r}_1), \ldots, (i_{m+1}, \mathbf{r}_{m+1})$ of Δ such that each s_k belongs to $f(i_k, \mathbf{r}_k)$, and let Δ' be $\{(i_1, \mathbf{r}_1), \ldots, (i_{m+1}, \mathbf{r}_{m+1})\}$. The cardinality of $[\Delta']$ is at least m + 1, because this set includes $\mathbf{s}_1, \ldots, \mathbf{s}_{m+1}$. On the other hand, it is at most m + 1, because this set is the union of m + 1 sets of cardinality at most 1. Consequently, $|[\Delta']| = m + 1$. From (24) we can conclude in HT^{∞} that

$$\neg \bigwedge_{(i,\mathbf{r})\in\Delta'} \tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i}).$$
(34)

Then the conjunctive term

$$\neg \bigwedge_{(i,\mathbf{r})\in\Delta} \tau_{\vee}((\mathbf{L}_i)_{\mathbf{r}}^{\mathbf{x}_i})$$

of (33) follows, because $\Delta' \subseteq \Delta$.

Correctness of the *n***-Queens Program**

In this section, we prove the correctness of the program K, consisting of rules R_1, \ldots, R_7 (Sections 2.3 and 3).

The *n*-queens problem involves placing *n* queens on an $n \times n$ chess board such that no two queens threaten each other. We will represent squares by pairs of integers (i, j) where $1 \le i, j \le n$. Two squares (i_1, j_1) and (i_2, j_2) are said to be in the same row if $i_1 = i_2$; in the same column if $j_1 = j_2$; and in the same diagonal if $|i_1 - i_2| = |j_1 - j_2|$. A set Q of n squares is a *solution* to the *n*-queens problem if no two elements of Q are in the same row, in the same column, or in the same diagonal.

For any stable model I of K, by Q_I we denote the set of pairs (i, j) such that $q(\overline{i}, \overline{j}) \in I$.

Theorem 4

For each stable model I of K, Q_I is a solution to the *n*-queens problem. Furthermore, for each solution Q to the *n*-queens problem there is exactly one stable model I of K such that $Q_I = Q$.

Review: Supported Models and Constraints

We start by reviewing two familiar facts that will be useful in proving Theorem 4.

An infinitary program is a conjunction of (possibly infinitely many) infinitary formulas of the form $G \to A$, where A is an atom. We say that an interpretation I is supported by an infinitary program II if each atom A from I is the consequent of a conjunctive term $G \to A$ of II such that $I \models G$. Lifschitz and Yang (2013) give a condition, "tightness on an interpretation," under which the stable models of an infinitary program are identical to its supported models. Proposition 1 below gives a simpler condition of this kind that is sufficient for our purposes.

We say that an atom A occurs nonnegated in a formula F if

- F is A, or
- F is of the form H[∧] or H[∨] and A occurs nonnegated in at least one element of H, or
- F is of the form $G \to H$, where H is different from \bot , and A occurs nonnegated in G or in H.

It is clear, for instance, that no atom occurs nonnegated in a formula of the form $\neg F$.

The positive dependency graph of an infinitary program Π is the directed graph containing a vertex for each atom occuring in Π , and an edge from A to B for every conjunctive term $G \to A$ of Π and every atom B that occurs nonnegated in G. We say that an infinitary program Π is extratight if the positive dependency graph of Π contains no infinite paths.

The following fact is immediate from (Lifschitz and Yang 2013, Lemma 2).

Proposition 1

For any model I of an extratight infinitary program Π , I is stable iff I is supported by Π .

Online appendix

A constraint is an infinitary formula of the form $\neg F$ (which is shorthand for $F \rightarrow \bot$). The following theorem is a straightforward generalization of Proposition 4 from (Ferraris and Lifschitz 2005).

Proposition 2

Let \mathcal{H}_1 be a set of infinitary formulas and \mathcal{H}_2 be a set of constraints. A set I of atoms is a stable model of $\mathcal{H}_1 \cup \mathcal{H}_2$ iff I is a stable model of \mathcal{H}_1 and satisfies all formulas in \mathcal{H}_2 .

Proof

Case 1: Every formula in $\mathcal{H}_1 \cup \mathcal{H}_2$ is satisfied by *I*. For each formula $\neg F$ in \mathcal{H}_2 , *I* does not satisfy *F*. So the reduct of each formula in \mathcal{H}_2 w.r.t. *I* is $\neg \bot$. It follows that the set of reducts of all formulas in $\mathcal{H}_1 \cup \mathcal{H}_2$ is satisfied by the same interpretations as the set of reducts of all formulas in $\mathcal{H}_1 \cup \mathcal{H}_2$ iff it is minimal among the sets satisfying the reducts of all formulas from $\mathcal{H}_1 \cup \mathcal{H}_2$ iff it is minimal among the sets satisfying the reducts of all formulas from $\mathcal{H}_1 \cup \mathcal{H}_2$ iff it is minimal among the sets satisfying the reducts of all formulas from $\mathcal{H}_1 \cup \mathcal{H}_2$. If $F \in \mathcal{H}_1$ then I is not a stable model of \mathcal{H}_1 . Otherwise, it is not true that I satisfies all formulas in \mathcal{H}_2 .

Proof of Theorem 4

To simplify notation, we will identify each set Q of squares with the set of atoms $q(\overline{i}, \overline{j})$ where $(i, j) \in Q$. By D_n we denote the set of atoms of the forms $dI(\overline{i}, \overline{j}, \overline{i-j+n})$ and $d2(\overline{i}, \overline{j}, \overline{i+j-1})$ for all i, j from $\{1, \ldots, n\}$. Recall that the rules of the program K are denoted by R_1, \ldots, R_7 .

Lemma 1

A set of atoms is a stable model of

$$\tau R_1 \cup \tau R_4 \cup \tau R_5 \tag{35}$$

iff it is of the form $Q \cup D_n$ where Q is a set of squares.

Proof

We can turn (35) into a strongly equivalent infinitary program as follows. The result of applying τ to R_1 is (21). Each conjunctive term in this formula is strongly equivalent to

$$\neg \neg q(\bar{i}, \bar{j}) \to q(\bar{i}, \bar{j}). \tag{36}$$

The set τR_4 is strongly equivalent to the set of formulas

$$\top \to d1(\overline{i}, \overline{j}, \overline{i-j+n}) \tag{37}$$

 $(1 \le i, j \le n)$. (We take into account that $\tau(\overline{i} = \overline{1}.\overline{n})$ is equivalent to \top if $1 \le i \le n$ and to \bot otherwise, and similarly for j.) Similarly, τR_5 is strongly equivalent to the set of formulas

$$\top \to d2(\bar{i}, \bar{j}, \overline{i+j-1}) \tag{38}$$

 $(1 \le i, j \le n)$. Consequently, (35) is strongly equivalent to the conjunction *H* of formulas (36)–(38). It is easy to check that *H* is an extratight infinitary program, so that by Proposition 1 its stable models are identical to its supported models. A set *I* of atoms is a model

of *H* iff $D_n \subseteq I$. Furthermore, *I* is supported iff every element of *I* has the form $q(\overline{i}, \overline{j})$ or is an element of D_n . Consequently, supported models of *H* are sets of the form $Q \cup D_n$ where *Q* is a set of squares.

Lemma 2

A set I of atoms is a stable model of τK iff it has the form $Q \cup D_n$, where Q is a solution to the n-queens problem.

Proof

Let \mathcal{H}_1 be (35) and \mathcal{H}_2 be

$$\tau R_2 \cup \tau R_3 \cup \tau R_6 \cup \tau R_7.$$

All formulas in \mathcal{H}_2 are constraints. Consequently, by Proposition 2, I is a stable model of τK iff it is a stable model of \mathcal{H}_1 and satisfies all formulas in \mathcal{H}_2 . By Lemma 1, I is a stable model of \mathcal{H}_1 iff it is of the form $Q \cup D_n$, where Q is a set of squares. It remains to show that a set I of the form $Q \cup D_n$ satisfies all formulas in \mathcal{H}_2 iff Q is a solution to the n-queens problem. Specifically, we will show that for any set I of the form $Q \cup D_n$

- (i) I satisfies τR_2 iff for all $i \in \{1, ..., n\}$, I contains exactly one atom of the form $q(\overline{i}, \overline{j})$;
- (ii) I satisfies τR_3 iff for all $j \in \{1, ..., n\}$, I contains exactly one atom of the form $q(\overline{i}, \overline{j})$;
- (iii) I satisfies $\tau R_6 \cup \tau R_7$ iff no two squares in I are in the same diagonal.

To prove (i), note first that τR_2 is equivalent to the set of formulas

$$\neg\neg\left(\tau(count\{Y:q(\overline{i},Y)\}=\overline{1})\right)$$

 $(1 \le i \le n)$. By Theorem 1, this set is strongly equivalent to the set of formulas

$$\neg \left(\tau(count\{Y:q(\bar{i},Y)\} \le \bar{1}) \land \tau(count\{Y:q(\bar{i},Y)\} \ge \bar{1})\right).$$
(39)

By Theorem 3 and the comment at the end of Section 5.3, the result of applying τ to the first aggregate atom in (39) is strongly equivalent to

$$\bigwedge_{\substack{\Delta \subseteq A \\ |\Delta|=2}} \neg \bigwedge_{(1,r) \in \Delta} q(\bar{i},r)$$

This formula can be written as

$$\bigwedge_{\substack{\Sigma \subseteq P\\ \Sigma \mid = 2}} \neg \bigwedge_{r \in \Sigma} q(\bar{i}, r),$$

where P is the set of precomputed terms. It is easy to see that I satisfies this formula iff it contains at most one atom of the form $q(\bar{i}, r)$. On the other hand, by Theorem 2, the result of applying τ to the second aggregate atom in (39) is strongly equivalent to

$$\bigvee_{\substack{\Delta \subseteq A \\ |\Delta|=1}} \bigwedge_{(1,r) \in \Delta} q(\bar{i},r)$$

Similar reasoning shows that I satisfies this formula iff it contains at least one atom of the form $q(\overline{i}, r)$. Since $I = Q \cup D_n$, r in this atom is one of $\overline{1}, \ldots, \overline{n}$.

Claim (ii) is proved in a similar way.

To prove (iii), note first that two squares $(\overline{i_1}, \overline{j_1}), (\overline{i_2}, \overline{j_2})$ are in the same diagonal iff there exists a $k \in \{1, \ldots, 2n-1\}$ such that

$$d1(\overline{i}_1, \overline{j}_1, \overline{k}), d1(\overline{i}_2, \overline{j}_2, \overline{k}) \in D_n$$

$$\tag{40}$$

or

$$d2(\overline{i}_1, \overline{j}_1, \overline{k}), d2(\overline{i}_2, \overline{j}_2, \overline{k}) \in D_n.$$

$$\tag{41}$$

We will show that a set I of the form $Q \cup D_n$ does not satisfy τR_6 iff there exists a k such that (40) holds for two distinct elements $q(\overline{i_1}, \overline{j_1}), q(\overline{i_2}, \overline{j_2}) \in Q$, and that it does not satisfy τR_7 iff there exists a k such that (41) holds for such two elements. The result of applying τ to R_6 is strongly equivalent to the set of formulas

$$\neg \tau (2 \le count\{\overline{0}, q(X, Y) : q(X, Y), d1(X, Y, \overline{k})\})$$

$$(42)$$

 $(1 \le k \le 2n - 1)$. Formula (42) is identical to

$$\neg \tau(count\{X, Y : q(X, Y), d1(X, Y, k)\} \ge 2).$$

In view of Theorem 2, it follows that it is strongly equivalent to

$$\neg \bigvee_{\substack{\Delta \subseteq A \\ |\Delta|=2}} \bigwedge_{(1,(r,s)) \in \Delta} (q(r,s) \wedge d1(r,s,\overline{k}))$$

 $(1 \le k \le 2n - 1)$. This formula can be written as

$$\neg \bigvee_{\substack{\Sigma \subseteq P \times P \\ |\Sigma|=2}} \bigwedge_{(r,s) \in \Sigma} (q(r,s) \wedge d1(r,s,\overline{k})).$$
(43)

For any set Q of squares,

 $Q \cup D_n$ does not satisfy (43)

iff there exist two distinct pairs $(r_1, s_1), (r_2, s_2)$ from $P \times P$ such that $q(r_1, s_1), q(r_2, s_2) \in Q$ and $d1(r_1, s_1, \overline{k}), d1(r_2, s_2, \overline{k}) \in D_n$

iff there exist two distinct squares $(\overline{i}_1, \overline{j}_1), (\overline{i}_2, \overline{j}_2) \in Q$ such that (40) holds.

The claim about (41) is proved in a similar way.

Theorem 4 is immediate from the lemma.

References

FERRARIS, P. AND LIFSCHITZ, V. 2005. Mathematical foundations of answer set programming. In *We Will Show Them! Essays in Honour of Dov Gabbay*. King's College Publications, 615–664.

LIFSCHITZ, V. AND YANG, F. 2013. Lloyd-Topor completion and general stable models. *Theory* and Practice of Logic Programming 13, 4–5.