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Appendix – Proofs

Theorem 1
Let T = ⟨P,A ,C ⟩ be an abductive theory and (E,F) a constrained explanation of an observa-
tion O. Then every constant symbol occurring in (E,F) occurs in T or in O.

Proof
Since F ⊆P (as required by the definition of an explanation), every constant occurring in F
occurs in P . If α is a constant appearing in E but not in T nor in O, then changing α to a fresh
constant ξ results in an explanation1 and so, contradicts the constrainedness of (E,F).

Theorem 2
For every abductive theory T = ⟨P,A ,C ⟩, where P is stratified and interpreted under the
stable-model semantics, and for every observation O,

ΨA(O,T ) = ΨB(O,T ) = ΨC(O,T ) = ΨD(O,T ).

Proof
The assertion follows by the fact that a stratified program admits exactly one stable model.

Theorem 3
Let A be a set of abducible predicates, R a (fixed) stratified program with no abducible predicates
in the heads of its rules, and C a (fixed) set of integrity constraints.

1. The following problem is in coNP: given a set B of abducibles, an observation O, and a
pair ∆ = (E,F) of sets of abducibles, decide whether ∆ is a constrained explanation for O
wrt ⟨R∪B,A ,C ⟩.

2. The following problem is in ΣP
2 : given a set B of abducibles and an observation O, decide

whether a constrained explanation for O wrt ⟨R∪B,A ,C ⟩ exists.

Proof
(1) The complementary problem consists of deciding that (E,F) is not an explanation or that is an
arbitrary explanation. The following non-deterministic polynomial-time algorithm decides this
problem. Since R is stratified, one can compute the only stable model, say M, of R∪((B∪E)\F)

in time linear in the size of B and (E,F). If E and F are not disjoint (which can be checked
efficiently), or if M ̸|= O, or if M ̸|= C , the (E,F) is not an explanation. Otherwise, (E,F) is an
explanation and we proceed as follows. We non-deterministically guess the set C of occurrences
of some constant c occurring in E. We then compute (E ′,F) by replacing all occurrences of c
mentioned in C with a fresh constant ξ and, in the same way as before, determine whether (E ′,F)

is an explanation of O.

(2) If (E,F) is a constrained explanation, then E and F consist of abducibles involving only
constants appearing in T and O (cf. Theorem ??). It follows, that if (E,F) is a constrained
explanation, the size of E ∪F is polynomial in the size of the input. Thus, the problem can be
decided by the following non-deterministic polynomial time algorithm with an oracle: guess sets
E and F of abducibles and check that (E,F) is a constrained explanation. By (1), that task can
be decided by a call to a coNP oracle.

1 We tacitly assume here that the semantics of logic programs we consider here are insensitive to the renaming of
constants. All standard semantics of programs have this property.
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Theorem 4
Let A be a set of abducible predicates and R a (fixed) non-recursive program with no abducible
predicates in the heads of its rules.

1. The following problem is coNP-complete: given a set B of abducibles, an observation O,
and a pair (E,F) of sets of abducibles, decide whether (E,F) is a constrained explanation
for O wrt ⟨R∪B,A , /0⟩.

2. The following problem is ΣP
2 -complete: given a set B of abducibles and an observation O,

decide whether a constrained explanation for O wrt ⟨R∪B,A , /0⟩ exists.

Proof
(1) The membership part was established in Theorem ??. Thus, it suffices to show the hardness
part.

We note that the following version of the SAT problem is NP-complete (membership is evi-
dent, hardness follows by a straightforward reduction from SAT):

Input: A set of atoms Y and a CNF formula F over Y that is not satisfied by the all-false assign-
ment

Question: Is F satisfiable (is the QBF formula ∃Y F true)?

We will reduce that problem to the problem whether (under the notation in the statement of the
theorem) an explanation (E,F) is arbitrary.

Let then Y be a set of atoms and F a CNF theory that is not satisfied by the all-false assignment
on Y . We denote by Cl(F) the set of clauses in F . Let us consider the vocabulary σ consisting
of predicate symbols bad/0, inY/1, clause/1, pos/2, ngtd/2, choose/2, gate/1, true/1, holds/1,
sometrue/0, allfalse/0, sat/0, clfalse/0 and goal/0, and an abductive theory

T (F) = ⟨T (F),{choose}, /0⟩,

where T (F) = R∪B, B consists of the atoms

1. inY (a), for every a ∈ Y
2. gate(0), where 0 /∈ Y
3. pos(a,c), for every atom a ∈ Y and clause c ∈ Cl(F) such that a occurs non-negated in c
4. ngtd(a,c), for every atom a ∈ At(F) and clause c ∈ Cl(F) such that a occurs negated in c

and R consists of the rules

1. clause(C)← pos(A,C)

2. clause(C)← ngtd(A,C)

3. true(A)← inY (A),gate(W ), not choose(A,W )

4. holds(C)← pos(A,C), true(A)
5. holds(C)← ngtd(A,C), not true(A)
6. clfalse← clause(C), not holds(C)

7. sat← not clfalse
8. sometrue← inY (A), true(A)
9. allfalse← not sometrue

10. bad← choose(A,W ), not inY (A)
11. goal← allfalse, not bad
12. goal← sat, not bad.
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Let {goal} be the set of observed atoms. It is clear that U = ({choose(a,0) : a ∈ Y}, /0) is an
explanation (goal is derived through the first of its two rules). If F is satisfiable, then let Y ′ ⊆ Y
be (the representation of) an assignment that satisfies F . One can check that ({choose(a,0) : a ∈
(Y \Y ′)}∪{choose(a,ξ ) : a ∈ Y ′}, /0) is an explanation (now, goal can be derived via its second
rule). Moreover, Y ′ ̸= /0 (by our restriction on the class of formulas). Thus, ({choose(a,0) : a ∈
Y}, /0) is arbitrary.

Conversely, let us assume that U = ({choose(a,0) : a ∈ Y}, /0) is arbitrary. Then replacing
some occurrences of one of the constants must yield an explanation. Replacing a constant a ∈ Y
with fresh constant symbol ξ does not yield an explanation. Indeed, we would have choose(ξ ,0)
and no inY (ξ ) in the “add” part of the explanation. Thus, bad would hold and would block any
possibility of deriving goal. It follows that one or more occurrences of 0 can be replaced by ξ
so that the result, ({choose(a,0) : a ∈ (Y \Y ′)}∪{choose(a,ξ ) : a ∈Y ′}, /0), is an explanation of
goal. Here Y ′ ⊆Y is the non-empty set of elements in Y identifying the occurrences of 0 replaced
by ξ . Since Y ′ ̸= /0, goal is derived via the second rule. It follows that sat is derivable and so,
every clause in F holds in the interpretation that assigns true to all elements of Y ′ and false to all
other elements of Y . Thus, F is satisfiable.

It follows that deciding whether an explanation (E,F) is arbitrary is NP-hard. Since every
explanation is either arbitrary or constrained, the problem to decide whether (E,F) is constrained
is coNP-hard.

(2) As before, the membership part of the assertion follows from Theorem ??. To prove the
hardness part, we note that the following problem is ΣP

2 -complete:

Input: Two disjoint sets X and Y of atoms, and a DNF formula G over X ∪Y such that for every
truth assignment vX to atoms in X , the all-false assignment to atoms in Y is a model of formula
G|vX

Question: Is the quantified boolean formula Φ = ∃X∀Y G true.

We will reduce it to our problem.
Let F be the CNF obtained from ¬G by applying the De Morgan’s and the double negation

laws. Clearly, F ≡ ¬G. Let Cl(F) be the set of clauses of F . Let us consider the vocabulary σ
consisting of predicate symbols inX , inY , clause/1, pos/2, ngtd/2, choose/2, gate/1, trueX/1,
trueY/1, true/1, holds/1, sometrue/0, allfalse/0, sat/0, clfalse/0, bad/0, good/1, and goal/0,
and an abductive theory

T (F) = ⟨T (F),{trueX ,choose}, /0⟩,
where T (F) = R∪B, B consists of the atoms:

1. inX (a), for every a ∈ X
2. inY (a), for every a ∈ Y
3. gate(0), where 0 /∈ Y
4. pos(a,c), for every atom a ∈ X ∪Y and clause c ∈ Cl(F) such that a occurs non-negated

in c
5. ngtd(a,c), for every atom a ∈ X ∪Y and clause c ∈ Cl(F) such that a occurs negated in c

and R consists of the rules

1. clause(C)← pos(A,C)

2. clause(C)← ngtd(A,C)

3. trueY (A)← inY (A),gate(W ), not choose(A,W )
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4. true(A)← trueX (A)
5. true(A)← trueY (A)
6. holds(C)← pos(A,C), true(A)
7. holds(C)← ngtd(A,C), not true(A)
8. clfalse← clause(C), not holds(C)

9. sat← not clfalse
10. sometrue← inY (A), trueY (A)
11. allfalse← not sometrue
12. bad← choose(A,W ), not inY (A)
13. bad← trueX (A), not inX (A)
14. good(A)← inY (A),choose(A,W )

15. bad← inY (A), not good(A)
16. goal← allfalse, not bad
17. goal← sat, not bad.

Let O = {goal} be an observation. We will prove that Φ is true if and only if goal has a con-
strained explanation from T (F).
(⇒) Let vX be an assignment of truth values to variables in X such that the formula ∀Y G|vX is
true. Here by G|vX we denote the formula obtained from G by substituting the truth values given
by vX for the corresponding variables from X , and then by simplifying these values away. We
understand the formula F |vX in the same way. Clearly, F |vX ≡ ¬G|vX . Thus, ∃Y F |vX is false.
Let us define

E = {trueX (a) : a ∈ X and vX (a) = true}∪

{choose(a,0) : a ∈ Y}.
We will show that (E, /0) is a constrained explanation of goal. First, it is evident that (E, /0) is an
explanation as goal can be derived through the first of its two rules. Next, we note that we cannot
replace any constant a appearing in atoms trueX (a) with a new constant ξ . Indeed, if trueX (ξ )
were to be a part of a the “add” part of an explanation, bad would hold (via the rule (13)) and
goal would not! Similarly, we cannot replace a ∈ Y in any atom choose(a,0), as only elements
of Y must show on these positions, the property forced by rule (12). Finally, we cannot replace
any non-empty set of 0’s with ξ . If any such replacement resulted in an explanation, goal could
only be derived through its second clause (allfalse cannot be derived now). However, that would
imply that ∃Y F |vX is true, with the “witness” assignment assigning true to every y ∈ Y such that
choose(y,ξ ) is a part of the modified explanation, and false to all other elements of Y .

(⇐) Let us assume that goal has a constrained explanation. It must have a form (E, /0), where

E = {trueX (a) : a ∈U}∪{choose(a,b) : a ∈ Y,b ∈Ua},

where U is some subset of X and where for every a ∈Y , Ua, is some nonempty set. Indeed, if for
some a ∈Y , there is no b such that choose(a,b) ∈ E, good(a) cannot be derived from the revised
program and, consequently, bad would follow (by the rule (15)). That would make it impossible
to derive goal.

Now, if for some a ∈ Y there is b ∈Ua such that b ̸= 0, then (E, /0) is not constrained (indeed,
that constant b could be replaced by a new constant ξ without any effect on the derivability of
goal). Thus, for every a ∈ Y , Ua = {0} and so,

E = {trueX (a) : a ∈U}∪{choose(a,0) : a ∈ Y}.
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Since this explanation is constrained, there is no subset of positions where 0 occurs that can
be substituted with ξ . Therefore, ∃Y F |vX , where vX is the truth assignment determined by U ,
is false. One can show that by following the argument used in part (1) of the theorem (due to
our assumption on G, the all-false assignment to atoms in Y is not a model of F |vX ). Thus, Φ is
true.

Theorem 5
Let A be a set of abducible predicates and R a (fixed) Horn program with no abducible predicates
in the heads of its rules.

1. The following problem is coNP-complete: given a set B of abducibles, an observation O,
and a pair (E,F) of sets of abducibles, decide whether (E,F) is a constrained explanation
for O wrt ⟨R∪B,A , /0⟩.

2. The following problem is ΣP
2 -complete: given a set B of abducibles and an observation O,

decide whether a constrained explanation for O wrt ⟨R∪B,A , /0⟩ exists.

Proof
(1) The membership part follows by Theorem ??. To prove hardness, we show that the problem
to decide whether (E,F) is arbitrary is NP-hard. That is sufficient, as every explanation is either
arbitrary or constrained. To show NP-hardness of the problem to decide whether an explanation
is arbitrary, we reduce the SAT problem to it.

Thus, let Y be a (finite) set of atoms, say Y = {y1, . . . ,yn}, and F a CNF consisting of clauses
c1, . . . ,cm. We denote by Cl(F) the set of clauses in F , that is, Cl(F) = {c1, . . . ,cm}. Let us also
consider three additional distinct symbols t, f and 0. We define the vocabulary σ to consist of
predicate symbols inY/1, clause/1, pos/2, ngtd/2, p/2 true/1, false/0, ok/1, next/2, nextC/2,
clsat/0, sat/1, and goal/0, and an abductive theory

T (F) = ⟨T (F),{p}, /0⟩,

where T (F) consists of the following atoms:

1. inY (a), for every a ∈ Y ∪{t, f}
2. pos(a,c), for every atom a ∈ Y and clause c ∈ Cl(F) such that a occurs non-negated in c
3. ngtd(a,c), for every atom a ∈ Y and clause c ∈ Cl(F) such that a occurs negated in c
4. next(yi,yi+1), for i = 1, . . . ,n−1, next(t,y1), and next(yn, f )
5. nextC(ci,ci+1), for i = 1, . . . ,m−1
6. p(t,0)

and of the following rules

1. clause(C)← pos(A,C)

2. clause(C)← ngtd(A,C)

3. true(A)← inY (A), p(A,Z), p(t,Z)
4. false(A)← inY (A), p(A,Z), p( f ,Z)
5. clsat(C)← pos(A,C), true(A)
6. clsat(C)← ngtd(A,C), false(A)
7. ok(t)
8. ok(A)← ok(A′),next(A′,A), true(A)
9. ok(A)← ok(A′),next(A′,A), false(A)

10. ok( f )← ok(A′),next(A′, f )
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11. sat(c1)← clsat(c1)

12. sat(C)← sat(C′),nextC(C′,C),clsat(C)

13. goal← ok( f ),sat(cm), p( f ,Z).

Clearly, the pair (E, /0), where E = {p(x,0) : x ∈ Y ∪{ f}}, is an explanation of goal. Indeed,
for every x ∈ Y , both true(x) and false(x) can be derived from T (F)∪E (because p(t,0) and
p( f ,0) both hold in T (F)∪E). Thus, for every clause c, clsat(C) can be derived, too. These two
observations imply that ok( f ) and sat(cm) can both be derived from T (F)∪E. Consequently,
goal is explained by (E, /0).

Let us assume that E is arbitrary. We will prove that F is satisfiable. By the definition, one
of the constants appearing in E can be replaced by a fresh constant ξ so that the resulting pair
(E ′, /0) is an explanation of goal wrt T (F). It follows that ok( f ) can be derived from T (F)∪E ′,
that is, that for every x ∈ Y , at least one of true(x) and false(x) can be derived. This, implies that
for every x ∈ Y , p(x,0) ∈ T (F)∪E ′, that is, ξ is substituted for f or 0 in E.

Since, by (13), every explanation of goal contains at least one atom of the form p( f ,z), ξ is
not substituted for f in E to produce E ′. Thus, E ′ is obtained from E by substituting ξ for some
occurrences of 0. Let U = {u∈Y ∪{ f} : p(u,ξ )∈ E ′}. If f /∈U , then let y denote any element in
U ∩Y (such an element exists as U ̸= /0). Since p(t,ξ ) and p( f ,ξ ) are not in T (F)∪E ′, neither
true(y) nor false(y) can be derived from T (F)∪E ′. Thus, neither ok( f ) nor goal can be derived
from T (F)∪E ′. It follows that f ∈U . Consequently, for every x ∈U , false(x) can be derived
from T (F)∪E ′, and true(x) cannot be. Similarly, for every x∈Y \U , true(x) can be derived from
T (F)∪E ′, and false(x) cannot be. Thus, the atoms true(x) and false(x) in T (F)∪E ′ determine
a truth assignment on atoms of Y . Since sat(cm) can be derived from T (F)∪E ′, clsat(c) can be
derived form T (F)∪E ′, for every clause c in F . It follows that the truth assignment determined
by the atoms true(x) and false(x) in T (F)∪E ′ satisfies F .

Conversely, let us assume that F is satisfiable. Let us consider any satisfying assignment for
F and let U comprises f and those atoms in Y that are false under this assignment. Let E ′

be obtained from E by substituting ξ for the occurrences of 0 in atoms p(y,0), y ∈ U . It is
easy to verify that for every y ∈U , false(y) can be derived from T (F)∪E ′, and true(y) cannot
be. Similarly, for every y ∈ Y \U , true(y) can be derived from T (F)∪E ′, and false(y) cannot
be. Moreover, clsat(c) can be derived from T (F)∪E ′, for every clause c of F . Consequently,
ok( f ) and sat(cm) can be derived from T (F)∪E ′. Since p( f ,ξ ) ∈ E ′, goal can be derived from
T (F)∪E ′, that is, (E ′, /0) is an explanation of goal wrt T . Thus, (E, /0) is arbitrary.

(2) The argument for the membership part follows by Theorem ??.
We prove hardness. The problem to decide whether a QBF Φ = ∃X∀Y G, where G is a DNF

formula over variables in X ∪Y , is true, is ΣP
2 -complete. We will reduce it to the problem in

question.
Below, we understand vX , F , Cl(F) and G|vX as in the proof of Theorem ??. We assume that

X = {x1, . . . ,xk}, Y = {y1, . . . ,yn} and C = {c1, . . . ,cm}.
We define σ to consist of predicate symbols inX/1, inY/1, clause/1, pos/2, ngtd/2, nextX/2,

nextY/2, nextC/2, trueX/1, falseX/1, true/1, false/1, okX/1, okY/1, sat/1, fX/1, lX/1, fY/1,
lY/1, fC/1, lC/1, tr/1, fa/1, assign/2, goodX/0, goodY/0, goodC/0, good f /0, goal/0. We as-
sume three new distinct constants 0, t and f and consider an abductive theory

T (F) = ⟨T (F),{trueX , falseX , assign, fa}, /0⟩,

where T (F) consists of the following atoms (part B):
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1. inX (a), for every a ∈ X
2. inY (a), for every a ∈ Y ∪{t, f}
3. pos(a,c), for every atom a ∈ X ∪Y and clause c ∈ Cl(F) such that a occurs non-negated

in c
4. ngtd(a,c), for every atom a ∈ X ∪Y and clause c ∈ Cl(F) such that a occurs negated in c
5. fX (x1), lX (xk)
6. fY (y1), lY (yn)

7. fC(c1), lC(cm)

8. nextX (xi,xi+1), for i = 1, . . . ,k−1
9. nextY (yi,yi+1), for i = 1, . . . ,n−1

10. nextC(ci,ci+1), for i = 1, . . . ,m−1
11. tr(0)

and of the following rules (part R)

1. clause(C)← pos(A,C)

2. clause(C)← ngtd(A,C)
3. true(A)← trueX (A)
4. false(A)← falseX (A)
5. true(B)← inX (B), trueX (A), falseX (A)
6. false(B)← inX (B), trueX (A), falseX (A)
7. true(B)← inY (B), trueX (A), falseX (A)
8. false(B)← inY (B), trueX (A), falseX (A)
9. true(A)← inY (A),assign(A,Z), tr(Z)

10. false(A)← inY (A),assign(A,Z), fa(Z)
11. clsat(C)← pos(A,C), true(A)
12. clsat(C)← ngtd(A,C), false(A)
13. okX (A)← fX (A), true(A)
14. okX (A)← fX (A), false(A)
15. okX (A)← okX (A′),nextX (A′,A), true(A)
16. okX (A)← okX (A′),nextX (A′,A), false(A)
17. goodX ← okX (A), lX (A)
18. okY (A)← fY (A), true(A)
19. okY (A)← fY (A), false(A)
20. okY (A)← okY (A′),nextY (A′,A), true(A)
21. okY (A)← okY (A′),nextY (A′,A), false(A)
22. goodY ← okY (A), lY (A)
23. sat(C)← clsat(C), fC(C)

24. sat(C)← sat(C′),nextC(C′,C),clsat(C)
25. goodC← sat(C), lC(C)

26. goal← goodX ,goodY ,goodC, fa(Z)
27. goal← goodX ,goodY , inY (A), false(A), true(A), fa(Z).

Let vX be an assignment of truth values to variables in X such that the formula ∀Y G|vX is true,
and let

E ={trueX (a) : a ∈ X and vX (a) = true}∪
{falseX (a) : a ∈ X and vX (a) = false}∪
{assign(y,0) : y ∈ Y}∪{fa(0)}.
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It is clear that (E, /0) is an explanation for goal wrt T (F). Indeed, since for every y ∈ Y we
have true(y) and false(y), goal can be derived by means of the rule (27). Let us assume that E is
arbitrary. Then, there is a constant, say a, appearing in E such that replacing some occurrences of
a with a fresh constant ξ results in another explanation of goal. However, if a ∈ X , then neither
true(a) nor false(a) can be derived after the replacement. Consequently, we cannot derive goodX
and so, we cannot derive goal either. If a ∈ Y , then again neither true(a) nor false(a) can be
derived. Now, goodY cannot be derived and so, neither can goal. Thus, a= 0. If we do not replace
the occurrence of 0 in fa(0) with ξ , then there is y ∈ Y such that we replace the occurrence of 0
in assign(y,0) with ξ . For that y, after the replacement we cannot derive true(y) nor false(y) and
so, goodY and goal cannot be derived. It follows that there is a set Y ′ ⊆ Y such that

E ′ ={trueX (a) : a ∈ X and vX (a) = true}∪
{falseX (a) : a ∈ X and vX (a) = false}∪
{assign(y,0) : y ∈ Y \Y ′}∪{assign(y,ξ ) : y ∈ Y ′}∪{fa(ξ )}

gives rise to an explanation (E ′, /0) of goal. Clearly, after applying (E ′, /0), for no y ∈ Y , both
true(y) and false(y) can be derived. Thus, goal must be derivable by means of the rule (26).
Moreover, for every y ∈ Y , we have exactly one of true(y) and false(y) hold: true(y) holds in
y ∈ Y \Y ′, and false(y) holds if y ∈ Y ′. Since goal can be derived, it follows that goodC can
be derived. Consequently, the truth assignment on Y defined by the atoms true(y) and false(y),
where y ∈ Y , satisfies the set of clauses of F |vX , that is ∃Y F |vX is true. This is a contradiction
since ∃Y F |vX ≡ ¬∀Y G|vX . Hence, (E, /0) is constrained.

Conversely, let (E, /0) be a constrained explanation of the goal. Clearly, E consists of facts of
the form trueX (a), falseX (b), assign(y,z) and fa(w). For every element x ∈ X , at least one of
trueX (x) and falseX (x) must be present in E (otherwise, we cannot derive goodX ). Moreover, if
for at least one element a ∈ X we have trueX (a) and falseX (a) in E, then changing these two
occurrences of a to ξ does not affect derivability of goal (indeed, by the rules (5)-(8) both before
and after the change we have true(x) and false(x) hold for all x ∈ X ∪Y ). Thus, (E, /0) would not
be constrained. Finally if trueX (a) or falseX (a) is in E, a∈X . Otherwise, that a could be replaced
by ξ without affecting the derivability of goal, contradicting again the assumption that (E, /0) is
constraied. It follows that if trueX (x) or falseX (x) is in E, x ∈ X and that the atoms trueX (x) and
falseX (x) that belong to E determine a truth assignment on X , say vX .

Next, let us assume that for some α ̸= 0 we have assign(y,α) ∈ E. Then replacing all occur-
rences of α by ξ (including possibly an occurrence if α in fa(α)) has no effect on the derivability
of goal. As before, we get a contradiction. Thus, if E contains facts assign(y,z), they are of the
form assign(y,0). If any of these y’s is not in Y , it can be changed to ξ without affecting the
derivability of goal.

Next, we note that if E contains fa(α), where α ̸= 0, that α can be changed to ξ without
affecting the derivability of goal.

If for some y ∈ Y , assign(y,0) is not in E, then for that y we can derive neither true(y) nor
false(y). Thus, we cannot derive goodY and, consequently, we cannot derive goal either. It follows
that E contains all facts assign(y,0), y∈Y , and no other facts based on the relation symbol assign.

If fa(0) is not in E, goal cannot be derived. Thus, E is of the form we considered above. Let
Y ′ ⊆ Y and let E ′ be as above. Since (E, /0) is constrained, (E ′, /0) is not an explanation of goal.
That is a truth assignment on Y such that elements in Y \Y ′ are assigned true and those in Y ′
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are assigned false is not a satisfying assingment for F |vX . Consequently, it follows that ∃Y F |vX

is false and so, ∀Y G|vX is true. This last property implies that ∃X∀Y G is true.

Theorem 6
Let A be a set of abducible predicates, R a (fixed) non-recursive Horn program with no abducible
predicates in the heads of its rules, and C a (fixed) set of integrity constraints.

1. The following problem is coNP-complete: given a set B of abducibles, an observation O,
and a pair (E,F) of sets of abducibles, decide whether (E,F) is a constrained explanation
for O wrt ⟨R∪B,A ,C ⟩.

2. The following problem is ΣP
2 -complete: given a set B of abducibles and an observation O,

decide whether a constrained explanation for O wrt ⟨R∪B,A ,C ⟩ exists.

Proof
(1) The membership part follows by Theorem ??. To prove hardness, we show that the problem
to decide whether (E,F) is arbitrary is NP-hard. That is sufficient, as every explanation is either
arbitrary or constrained. To show NP-hardness of the problem to decide whether an explanation
is arbitrary, we reduce the SAT problem to it. Thus, let Y be a (finite) set of atoms and F a CNF
theory over Y . As before, we denote by Cl(F) the set of clauses in F . Let us also consider three
additional distinct symbols t, f and 0. We define the vocabulary σ to consist of predicate symbols
inY/1, clause/1, pos/2, ngtd/2, p/2 true/1, false/0, ok/1, next/2, nextC/2, clsat/0, sat/1, and
goal/0, and an abductive theory

T (F) = ⟨T (F),{p},C ⟩,

where T (F) consists of the following atoms:

1. inY (a), for every a ∈ Y ∪{t, f}
2. pos(a,c), for every atom a ∈ Y and clause c ∈ Cl(F) such that a occurs non-negated in c
3. ngtd(a,c), for every atom a ∈ Y and clause c ∈ Cl(F) such that a occurs negated in c
4. p(t,0)

and of the rules

1. clause(C)← pos(A,C)

2. clause(C)← ngtd(A,C)

3. true(A)← inY (A), p(A,Z), p(t,Z)
4. false(A)← inY (A), p(A,Z), p( f ,Z)
5. clsat(C)← pos(A,C), true(A)
6. clsat(C)← ngtd(A,C), false(A)
7. goal← p( f ,X)

and where C consists of

1. ∀C clause(C)⊃ clsat(C)

2. ∀A inY (A)⊃ false(A)∨ true(A).

Clearly, the pair (E, /0), where E = {p(x,0) : x ∈ Y ∪{ f}}, is an explanation of goal. Indeed,
for every x ∈ Y , both true(x) and false(x) can be derived from T (F)∪E (because p(t,0) and
p( f ,0) both hold in T (F)∪ E). Thus, for every clause c, clsat(C) can be derived, too. Con-
sequently, the two integrity constraints in the theory hold for the least model of the program
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T (F)∪ E. Moreover, goal belongs to this unique model and so, it is entailed by the revised
theory.

Let us assume that E is arbitrary. We will prove that F is satisfiable. By the definition of
arbitrariness, one of the constants appearing in E can be replaced by a fresh constant ξ so that
the resulting pair (E ′, /0) is an explanation of goal wrt T (F), that is, the least model of T (F)∪E ′

satisfies both integrity constraints of the abductive theory and contains an atom of the form p( f ,z)
(in order for goal to hold.

If f is replaced with ξ in E, then the least model of T (F)∪E ′ does not contain any fact of the
form p( f ,X), and (E ′, /0) is not an explanation. If some atom x ∈Y is replaced by ξ , then for that
atom neither true(x) nor false(x) belongs to the least model of T (F)∪E ′, which means that this
model violates the second integrity constraint, contrary to the fact that (E ′, /0) is an explanation.

Thus, there is a non-empty set U ⊆ Y ∪{ f}, such that when each occurrence of 0 in p(x,0),
where u ∈U , is replaced by ξ , the resulting set E ′ = {p(x,ξ ) : x ∈U}∪{p(x,0) : x ∈ (Y \U)}
gives rise to an explanation (E ′, /0). Let us assume that f /∈ U . Since U ̸= /0, U ∩Y ̸= /0. Let
x ∈U ∩Y . For this x, the least model of T (F)∪E ′ contains neither false(x) nor true(x), violating
the second integrity constraint. Thus, f ∈ U and, consequently, the least model of T (F)∪E ′,
contains atoms false(x), where x ∈ U \ { f}, and true(x), where x ∈ Y \U . It follows that this
set of atoms defines a valuation on Y . Moreover, since the first integrity constraint holds, this
valuation satisfies all clauses of F .

Conversely, let us assume that F is satisfiable. Let us consider any satisfying assignment for
F and let U comprises f and those atoms in Y that are false under this assignment. Let E ′ be
obtained from E by substituting ξ for the occurrences of 0 in atoms p(y,0), y ∈ U . It is easy
to verify that for every y ∈U , false(y) can be derived from T (F)∪E ′, and true(y) cannot be.
Similarly, for every y ∈ Y \U , true(y) can be derived from T (F)∪E ′, and false(y) cannot be.
Moreover, clsat(c) can be derived from T (F)∪E ′, for every clause c of F . Thus, both integrity
constraints are satisfied by the least model of T (F)∪E ′, and that model also contains p( f ,ξ )
and so, also goal. Thus, (E, /0) is an arbitrary explanation of goal.

(2) The membership part follows by Theorem ??. To prove hardness we proceed similarly as in
the proofs of Theorems 4 and 5.

Theorem 7
Let A be a set of abducible predicates and R a (fixed) non-recursive Horn program with no
abducible predicates in the heads of its rules. The following problems are in P.

1. Given a set B of abducibles, an observation O, and a pair (E,F) of sets of abducibles,
decide whether (E,F) is a constrained explanation for O wrt ⟨R∪B,A , /0⟩.

2. Given a set B of abducibles and an observation O, decide whether a constrained explanation
for O wrt ⟨R∪B,A , /0⟩ exists.

Proof
(1) Let us consider an explanation (E,F). Since R is non-recursive, there is a constant, say k, such
that any proof of o based on the rules in R and facts in B revised by (E,F) has length bounded
from above by k. Thus, the total number of facts used in any such proof is bounded by k, too.

Since at most k atoms in E are relevant to any proof, if E contains more than k abducibles with
predicate symbols of positive arity, it is not constrained. Indeed, at least one of these abducibles
does not play any role in the proof. For for this abducible, say a = p(c1, . . . ,cm), we have that
replacing c1 with ξ in a results in an explanation.
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If on the other hand, the number of abducibles with predicate symbols of positive arity in E
is less than or equal to k, then the total number of constants occurring in all abducibles in E is
bounded by a constant k′ dependent on R only (independent of the size of input, that is, of the
size of B). Thus, there is only a fixed number of possible selections of occurrences of a constant
for replacement by a new symbol ξ . For each of them, we can test in polynomial time whether it
leads to an explanation. Thus, we can decide whether (E,F) is constrained in polynomial time.

(2) If (E,F) is a constrained explanation, then (E, /0) is a constrained explanation. Moreover, we
can assume that E contains all zero arity abducibles in B. Thus, each such constrained explana-
tion is determined by its non-zero arity abducibles. Non-zero arity abducibles in a constrained
explanation use only constants appearing in O and P (Theorem ??). It follows, the set of all pos-
sible non-zero arity abducibles that might be chosen to form E has size that is polynomial in the
size of B (the input size). Since by an argument from the previous proof, we can assume that E
contains no more than k non-zero arity abducibles (where k is a constant depending only on R),
the set of all candidate explanations that need to be tested to decide the problem is polynomial
in the size of input. Since each such candidate explanation can be tested for constrainedness in
polynomial time (by the previous result), the assertion follows.


