
Under consideration for publication in Theory and Practice of Logic Programming 1

Appendix for the paper of

Incremental Tabling in Support of Knowledge

Representation and Reasoning

Terrance Swift

Coherent Knowledge Systems, Inc. and NOVALincs, Universidade Nova de Lisboa

(e-mail: terranceswift@gmail.com)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Acknowledgements

The research in this paper was partially funded by Vulcan, Inc. and Coherent Knowledge Sys-

tems and FCT Project ERRO PTDC/ EIACCO/121823/2010. The author would like to thank

Paulo Moura for latex-related help, Fabrizio Riguzzi for making the University of Ferrara server

available for benchmarks, and anonymous reviewers for their careful comments. Finally, the au-

thor would like to thank Michael Kifer for finding and reporting many, many bugs in transparent

incremental tabling.

Appendix A View Consistency and Table Updates

As discussed in Section 3.2 the approach to maintaining view consistency for transparent incre-

mental tabling has three main parts. (1) a count of the OCCPs for an incremental table T is always

maintained. (2) when an update affects an incremental table, the view of an OCCP is preserved by

copying its unconsumed answers onto the heap and altering the OCCP to use the copied answers.

(3) a new instruction returns answers from the preserved views upon backtracking.

More than other aspects of transparent incremental tabling, the details of view consistency

support rely on tabling data structures and algorithms used by XSB, some background for which

is presented here.

• Answer Tries Steps 1 and 2 use the sequence of choice points set up when backtracking

through an answer trie, the default data structure used by XSB to represent answers (Ra-

makrishnan et al. 1999) Answer tries are constructed to support substitution factoring, so

that they contain only the information used to bind variables in the associated subgoals, i.e.,

the answer substitution introduced in Section 4. Each trie node contains an SLG-WAM in-

struction, so that returning an answer substitution directly corresponds to traversing a path

from the root of a trie to a leaf, and backtracking through the trie corresponds to travers-

ing the trie in a fixed depth-first order. A choice point is created whenever traversing a

new node that has multiple children and is removed when all children have been traversed

(through a trust-style instruction).

• Freeze Registers Steps 2 and 3 make use of the SLG-WAM’s HF (heap freeze) register,

which is used to protect terms in the heap from being over-written when tabled computa-

tions are repeatedly suspended and resumed.

While these data structures are not unique to XSB, other engines that differ from XSB in their

representation of answers or in their implementation of suspension and resumption may imple-

ment this approach with suitable modifications.

A.1 Maintaining a Count of OCCPs for a Completed Incremental Table

To maintain a count of OCCPs, a field called occp num is added to subgoal frames. In addition,

the first choice point created in backtracking through an answer trie, CPf irst is modified so that

it increases the OCCP number when CPf irst is created, and decreases the number when CPf irst

is removed. Finally, any routines that remove choice points must also be modified to reset the

occp num, including code that removes choice points upon executing a cut, and when executing

a throw operation.

A.2 Preserving Views and Altering OCCPs

In order to preserve the views of the current OCCPs for a table T , incremental reeval() of

Fig. ?? is modified to check whether the occp num in the subgoal frame ST of T is non-zero. If

so, preserve occp views() is called using ST (described at a highly schematic level in Fig. A 1).

This routine traverses the choice point stack from top downwards until all OCCPs for T have been

located1 . When a choice point CP is encountered whose failure continuation points to (the in-

struction field of) a node in the answer trie for T , the process begins of copying the answers that

have not yet been consumed by CP . First, an associated choice point CProot must be found. The

process of backtracking through an answer trie can create a series of trie choice points of which

CP will be the last in the segment due to the order of the choice point stack traversal. However

this series of choice points will always form a connected segment in the choice point stack, so

that finding the first choice point of the series CProot , is relatively simple. Next, using CP and

CProot , the unconsumed portion of the answer trie for T is traversed; each time the traversal

encounters a leaf, a pointer to the leaf is added to a list, Unconsumed 2 . Next, a prservedList

is constructed on the heap, by traversing the elements of Unconsumed. Each element of the

prservedList contains a binary term ret2(Substitution, Condition). Substitution represents

a given answer substitution consisting of AnsSubstSize terms, one for each distinct variable in

the associated subgoal. It is repreented as a term retAnswerSubstS ize (Args) where each argu-

ment corresponds to an element of the answer substitution. Condition is null for unconditional

answers, and points to a special answer undef whose truth value is undefined, and whose use is

explained below.

Once the preservedList is constructed, the choice points between CP and CProot inclusive

are coalesced via coalesce choice points() into a new choice point, CPcoalesced . This routine

is easiest to illustrate by its results (Fig. A 2). The address of CPcoalesced is that of CP , but

when CPcoalesced is backtracked into, it will restore the engine environment as it would be if

1 Unlike some other Prologs, XSB has a choice point stack separate from the local stack. The traversal of the choice
point stack uses the previous top field of choice points; this field was not part of the SLG-WAM design presented in
(Sagonas and Swift 1998), but was added to support various forms of garbage collection.

2 As mentioned previously, (e.g., Section ??) an answer list is preserved for incremental tables. While this answer list
contains a pointer to each leaf of an answer trie, its ordering does not correspond to the traversal needed to obtain the
unconsumed answers of an OCCP.

2

preserve occp views(subgoal frame ST)

Traverse the choice point stack from top until ST .occp num OCCPs have been located

For each choice point CP in the choice point stack

If CP.failure continuation points into the answer trie for ST

Determine the root choice point, CPr oo t , for CP
Construct a list of pointers, Unconsumed, to leaves of unconsumed answers

preservedList = copy answer substitutions to heap(Unconsumed,CPr oo t .AnsSubstSize)

coalesce choice points(CP ,CPr oo t,preservedList)
If (HF reg 6= bottom of heap) HFreg = Hreg
ST .occp num = 0

copy answer substitutions to heap(List of trie leaves Unconsumed,int AnsSubstSize)

For each leaf ptr in Unconsumed
Create a list element with the following information

Let Ansheap be a skeleton with argument retA nsS u bstsiz e and AnsSubstsize free variables

Instantiate each argument of Ansheap with an element of the answer substitution

If leaf ptr corresponds to a conditional answer

Create a non-trailed term on the heap ret2 (Ansheap , undefined ptr)
Else create a non-trailed term on the heap ret2 (Ansheap , null)

Return the head of the List

Fig. A 1. Schematic pseudo-code for preserving views and altering OCCPs

backtracking into CProot , and when its choices are exhausted, it will backtrack into the choice

point prior to CProot . Of course, CPcoalesced also contains a preservedList field.

In Fig. A 2 the values of CPcoalesced come from CProot rather than from CP , with the ex-

ception of fields representing heap values. In the stack-oriented backtracking used by Prolog,

the preservedList can be protected by setting CPcoalesced to the value of the H register after

the construction of preservedList. If there is a possibility that tabling will suspend and resume

computations, preserve occp views() needs to freeze the heap space containing these answers

so that the heap cells containing them will not be overwritten. If (HF reg 6= bottom of heap),

then there is an active tabled computation, and the heap freeze register is set to the value of the

H register after construction of preservedList. The previous value of the HF will be reset using

CPcoalesced .previous hfreg once backtracking through preservedList is done.

CPcoa lesced preservedViewMember /* Failure Continuation */

eregr oo t /* Top environment in stack (E reg)*/

ebregr oo t /* Environment of top choice point (EB reg) */

hreg /* Top of heap (H reg) */

trregr oo t /* Top of trail (TR reg)*/

dregr oo t /* SLG-WAM delay register */

rsregr oo t /* SLG-WAM root subgoal register */

previous cpr oo t /* Pointer to previous choice point */

previous topr oo t /* Pointer to the previous top of CP stack */

answerSubstSize Mr oo t +1 /* Number of Variables in Answer Substitution */

answerSubst [Mr oo t]

:

answerSubst [0]r oo t

preservedList
previous hfreg /* Previous SLG-WAM heap freeze register */

Fig. A 2. Choice point stack after coalescing

3

A.3 Backtracking through Preserved Views

Fig. A 3 shows the new SLG-WAM instruction that returns an answer through a preserved OCCP

view when a coalesced choice point is backtracked into. The instruction reconstructs the SLG-

WAM state at the time of its call (except for the heap register which was adjusted to protect the

preservedList). Each answer substitution cell of the coalesced choice point is dereferenced to a

heap or local stack cell, the dereferenced cell is bound to an element of the answer substitution,

and the binding trailed. Afterwards, the preservedList field is reset to point to the next list

element if one is present; otherwise the HF register is set to its before the view was preserved,

and the B register is set to the previous choice point.

Instruction preservedViewMember

undo bindings(B register) /* does not affect answers that were copied to heap */

Restore SLG-WAM program registers

Set up pointers to access ret2 (Substitution, Condition)
If (Condition 6= null) delay negatively(Condition)

For each cell, answerSubst[i], of B.answerSubst
Bind argument i of Substitution to the dereferenced value of answerSubst[i]

and trail the binding

If B.preservedList has been consumed

B = B.previous cp
HF reg = B.previous hfreg

Else make B.preservedList point to the next list element

Fig. A 3. Schematic pseudo-code for backtracking through preserved views

A.4 Discussion of View Consistency in Transparent incremental tabling

Of course, other approaches to view consistency are possible besides the one just presented.

Before the above was implemented, answer tries were extended to include timestamps indicating

when a given answer was valid (analogous to that of (Lindholm and O’Keefe 1987) for dynamic

Prolog code). However, the time and space overhead of this approach was deemed to be too high.

The actual implementation of the heap copying approach presented here uses XSB’s general

tabling code as much as possible, so that the cost to traverse tries and copy answers is generally

very low.

It should be noted that the approach to view consistency is more closely linked to the data

structures of the XSB engine than are other features of transparent incremental tabling, as view

consistency interfaces with XSB’s heap and stack freezing mechanisms.

4

Appendix B Performance Results

In the benchmarks that follow, all times are measured in seconds, and all space is measured in

bytes unless otherwise specified 3 .

B.1 Transparent Incremental Tabling and Linear Left Recursion

Recursion is heavily used in KRR-style programs that make use of features such as Hilog or de-

feasibility. As a first test, queries of the form reach(〈free〉.〈free〉) were made to a left recursive

predicate (Fig. B 3) with and without IDG abstraction on the edge/2 predicate. As discussed in

Section 5 and shown in Fig. 6, the IDG created for such a query may differ greatly depending

on whether abstraction is used. In the benchmarks, edge/2 consists of ground facts representing

a randomly generated graph G(N/M) where N is the number of possible nodes in the graph,

while M is the number of directed edges. Because of the left recursive form of reach/2 together

with its query form, the IDG nodes for edge/2 are associated with subgoals edge(〈free〉, 〈free〉)

from clause 1 of reach/2, and edge(〈ground〉, 〈free〉) where argument 1 is instantiated by dif-

ferent values of Z in clause 2 of reach/2. Using the re-evaluation strategies described in previous

sections, any update to edge/2 will cause a re-evaluation of the subgoal reach(〈free〉, 〈free〉) so

that (in this program fragment) maintaining nodes of the form edge(〈ground〉, 〈free〉) provides

no benefit, as their dependencies will be captured by edge(〈free〉, 〈free〉).

Nodes No incr. tabling Incr. tabling Incr. tabling + abstraction

CPU time Table space CPU time Table space CPU time. Table space

100,000 0.12 7,663,728 0.21 21,671,136 0.13 10,273,672

1,000,000 2.19 72,121,240 3.43 211,184,888 2.34 92,746,112

10,000,000 40.9 701,364,952 59.7 2,070,845,368 41.2 902,048,352

Fig. B 1. Overhead for transparent incremental tabling on query evaluation of reach(〈free〉,〈free〉) over

randomly generated graphs G(Nodes/ N odes
2

)

Nbr of asserts Incr. tabling Incr. tabling + abstraction

Time to read/assert/inval. Query time Time to read/assert/inval. Re-query time

100 0.004 3.53 0.003 2.29

1,000 0.023 3.67 0.022 2.29

10,000 0.19 4.20 0.17 2.38

Fig. B 2. Updates of edge/2 for the query reach(〈free〉,〈free〉) over a randomly generated graph

G(1, 000, 000/500, 000)

As shown in Fig. B 1 if IDG abstraction is not used, creating the IDG adds a CPU time over-

head of roughly 50% and a table space overhead of about 300%. By using IDG abstractionat

depth 0, the table space overhead becomes approximately 30%, and the time overhead 5-10%.

Regardless of whether abstraction is used, Fig. B 1 demonstrates scalability for 2 orders of mag-

nitude; the time scales log-linearly due to the need to maintain indices. Fig. B 2 shows that for

3 Except for those reported in Section B.2.1, the benchmarks below were performed on a MacBook Pro, with a dual core
2.53 Ghz Intel i5 chip and 4 Gbytes of RAM. The benchmarks for Section B.2.1 were performed on a server at the
University of Ferrara with 3 Intel dual-core 3.47 GHz CPUs and 188 megabytes of RAM running under Fedora Linux.
The default 64-bit, single-threaded SVN repository version of XSB was used for all tests. Benchmark programs can
be obtained at www.cs.sunysb.edu/˜tswift/interpreters.html.

5

a batch updates (0.02%-2% of EDB), the overhead of re-evaluation is negligible, particularly if

abstraction is used.

B.1.1 Non-Stratified Linear Left Recursion

Similar tests were made using the predicate ureach/2 (Fig. B 3). The query ureach(〈free〉,〈free〉)

was evaluated on the G(1000000, 500000) graph of edge/2 facts, so that all answers to the query

had the truth value undefined. Overhead results for the initial query (Fig. B 4) are similar to those

for reach(〈free〉,〈free〉) in terms of time; however the space overhead for incremental tabling

is proportionally less as storing conditional answers requires its own space overhead (Sagonas

et al . 2000). Fig. B 5 shows the time to add various numbers of edge 1 facts, which causes new

answers to be added to the table for ureach(〈free〉,〈free〉), and also changes the truth value of

some known answers from undefined to true as discussed in Section 4. From Fig. B 5 it can be

seen that updating conditional answers imposes essentially no overhead compared to updating

unconditional answers.

:- table ureach/2 as incremental.

:- dynamic edge/2, edge 1/2 as incremental.
ureach(X,Y):- reach(X,Z),edge(Z,Y).

ureach(X,Y):- edge(X,Y),undefined.

ureach(X,Y):- edge 1(X,Y).

Fig. B 3. Benchmark program for non-stratified left linear recursion

Nodes No incr. tabling Incr. tabling Incr. tabling + abstraction

CPU time Table space CPU time Table space CPU time. Table space

100,000 0.14 21,333,304 0.24 35,540,760 0.15 24,143,168

1,000,000 2.30 208,352,144 3.61 347,416,664 2.42 228,977,672

Fig. B 4. Overhead for transparent incremental tabling on query evaluation of the non-stratified program

ureach(〈free〉,〈free〉) over randomly generated graphs G(Nodes/ N odes
2

)

Nbr of asserts Incr. tabling Incr. tabling + abstr.

Time to read/assert/inval. Query time Time to read/assert/inval. Re-query time

100 0.005 3.78 0.004 2.591

1,000 0.025 3.83 0.25 2.57

10,000 0.21 3.86 0.22 2.58

Fig. B 5. Updates of edge 1/2 for the query ureach(〈free〉,〈free〉) over a randomly generated graph

G(1000000, 500000)

B.2 Analysis of Transparent Incremental Tabling on a Program with KRR-style Features

The program in Fig. B 6 represents a social network in which certain members of a population are

at risk, and other members of the population may influence the behavior of the at-risk members.

Although the program is simplified and idealized in its content, computationally it requires the

use of some sophisticated reasoning features. While the program contains stratified negation, its

main computational challenge arises from its use of equality, which provides a reasoning capab-

ility similar in flavor to some description logics. The predicate equals/2 allows terms using the

6

function symbol parent of/1 (formed from the EDB predicate parent of edb/2) to be considered

as equal to constants representing individuals.

good influence(P1,P2):- influences(P1,P2),

sk not(high risk(P1)),sk not(possible risk(P1)),
(high risk(P2) ; possible risk(P2)).

:- table high risk association/2 as incremental.

high risk association(Per1,Per2):- high risk contact(Per1,Per2),has disease(Per2).
high risk association(Per1,Per2):- high risk association(Per1,Per3),high risk contact(Per3,Per2).

high risk contact(Per1,Per2):- may share needle(Per1,Per2).
high risk contact(Per1,Per2):- may have unprotected sex(Per1,Per2).

:- table high risk/1 as incremental.

high risk(Per):- high risk association(Per,),!.

:- table possible risk association/2 as incremental, answer abstract(3).

possible risk association(Per1,Per2):- might be sexual partner(Per1,Per2),

high risk contact(Per2,).
possible risk association(Per1,Per2):- possible risk association(Per1,Per3),

might be sexual partner(Per3,Per2).

:- table possible risk/1 as incremental.

possible risk(Per):- possible risk association(Per,),!.

influences(Per1,Per2):- loves(Per2,Per1).
influences(Per1,Per2):- works for(Per2,Per1).

influences(Per1,Per2):- attends church(Per2,Church),pastor(Church,Per1).

influences(Per1,Per2):- lives at(Per1,Loc),lives at(Per2,Loc).

may share needle(Per1,Per2):- obtained needle(Per1,Needle, Loc1), returned needle(Per2,Needle, Loc2),Per1 Per2.

may share needle(Per1,Per2):- share needle report(Per1,Per2, Per3).

might be sexual partner(Per1,Per2):- loves(Per1,Per2),sk not(related(Per1,Per2)).

might be sexual partner(Per1,Per2):- sexual partner report(Per1,Per2, Per3).

:- table related/2 as incremental.

related(Per1,Per2):- equals(Per1,parent of(Per2)).

related(Per1,Per2):- equals(Per1,parent of(parent of(Per2))).

:- table loves/2 as incremental.

loves(X,Y):- loves(Y,X).

loves(X,Y):- friend(X,Y).

loves(X,Y):- equals(parent of(X),Y).
loves(X,Y):- grandparent of(X,Y).

:- table equals/2 as incremental, subgoal abstract(3).
equals(X,Y):- equals(Y,X).

equals(parent of(X),parent of(X)).

equals(parent of(X),Y):- parent of edb(X,Y).

equals(parent of(parent of(X)),Y):- parent of(X,Z),equals(parent of(Z),Y).

father of(X,Y):- equals(parent of(X),Y),male(Y).

mother of(X,Y):- equals(parent of(X),Y),female(Y).
grandparent of(X,Y):- equals(parent of(parent of(X)),Y).

:- dynamic friend/2, returned needle/3, obtained needle/3, share needle report/3, sexual partner report/3 as incremental.

:- dynamic has disease/1, works for/2, may have unprotected sex/2, pastor/2, parent of edb/2, lives at/2,attends church/2
as incremental,abstract(0).

Fig. B 6. A social network example showing KRR features

7

The EDB for this program consists of 12 different dynamic predicates as seen at the bottom

of the program 4 . The use of the parent of/1 function within equals/2 quickly leads to non-

termination and unsafe negative subgoals during query evaluation. Unsafe negative subgoals are

soundly addressed by XSB’s sk not/1 which skolemizes non-ground variables in an atomic sub-

goal for the purpose of calling a negative subgoal. Non-termination is addressed in two ways. The

use of subgoal abstraction in equals/2 ensures that there will be only a finite number of tabled

queries to this predicate, and in general ensures termination for programs with finite models

(Riguzzi and Swift 2013). However, the predicate possible risk association/2, produces an infin-

ite number of answers for the benchmark data set. The use of answer abstraction (or restraint)

for this predicate, ensures sound (but not complete) terminating query evaluation (Riguzzi and

Swift 2013) 5 .

Thus, the ability to incrementally maintain tables for queries to this program requires the

ability to update three-valued models that arise from answer abstraction, and to combine with

tabled negation and subgoal abstraction. As a first benchmark test, a small EDB of about 10,000

facts about a population of 10,000 persons was generated, and good infuence(〈bound〉, 〈free〉)

was queried for 200 randomly chosen values for its first argument. If no incremental tabling

was used, the combined CPU time for these queries averaged 1.14 seconds and table space was

about 233 megabytes — as discussed further below the relatively large cost for this query was

almost entirely due to the use of equality. When transparent incremental tabling was used with

no abstraction, the cost rose to 3.02 seconds, and 865 megabytes. By applying IDG abstraction

the initial query time dropped to 2.73 seconds and 655 megabytes. The purpose of this sets of

declarations was only to test the overhead of transparent incremental tabling for queries and

updates: they should not necessarily be considered to be “optimal” for these tests

Fig. B 7 shows times to re-evaluate the queries to good influence/2 mentioned above after

inserting N randomly generated facts for a given predicate (the “Asserts” column); and then after

retracting these inserted facts (the “Retracts” column). Most of the times in Fig. B 7 are near the

level of noise, however recomputation of several of the predicates timed out 6 . Analysis of these

timeouts showed that they arose because the additional facts caused a large number of new (sub-

)tables to be created for the 200 queries. Usually, this only occurred after 12,500 facts were added,

but for parent of edb/2 which strongly affects goals to equals/2, the addition of 500 facts led to

a timeout, while the addition of 100 facts led to a 5.57 second recomputation time. Although

the program is not wholly monotonic, it is largely so, and computations after retractions were

always fast. Fig. B 8 shows the times to assert or retract plus the time taken to invalidate affected

subgoals via traverse affected nodes(). Except for updates to parent of edb/2 invalidation did

not take a significant amount of time

4 The social network programs and supporting data can be found at http://www.cs.sunysb.edu/˜tswift.
5 Briefly, if an answer has an argument A with depth greater than a given bound, A is rewritten so that terms with depth

equal to the bound are replaced by new variables; then the answer A is assigned the truth value undefined
6 Timeouts, denoted Tout in Fig. B 7, were triggered after one minute. The short timeout period was to avoid excessive

memory consumption on the laptop benchmarking machine. Retracts of bulk inserts could not be measured, and are
designated as n/a. As the population size was 10,000, 12,500 distinct facts could not be generated for the unary EDB
predicate has disease/1.

8

Predicate Asserts Retracts

100 500 2500 12500 2500 12500

friend/2 0.08 0.37 2.36 Tout 0.02 n/a

returned needle/3 0.01 0.01 0.01 0.01 0.01 0.01

obtained needle/3 0.01 0.01 0.01 0.02 0.01 0.01

share needle report/3 0.03 0.03 0.13 0.55 0.01 0.01

sexual partner report/3 0.01 0.02 0.12 Tout 0.01 n/a

has disease/1 0.01 0.01 0.01 n/a 0.01 n/a

works for/2 0.01 0.04 0.42 1.76 0.01 0.01

may have unprotected sex/2 0.03 0.08 0.12 0.56 0.02 0.02

pastor/2 0.01 0.01 0.01 0.01 0.01 0.01

parent of edb/2 5.57 Tout Tout Tout n/q n/a

lives at/2 0.01 0.01 0.07 2.11 0.01 0.01

attends church/2 0.01 0.01 0.01 0.01 0.01 0.01

Fig. B 7. CPU times to re-evaluate good influence/2 for 200 first-argument bindings after batch updates.

The program uses non-specialized equality, and the EDB size is O(104). The top group of predicates use

depth-0 IDG abstraction; the bottom group has no IDG abstraction.

Predicate Asserts Retracts

100 500 2500 12500 2500 12500

friend/2 0.01 0.01 0.02 0.03

returned needle/3 0.01 0.01 0.03 0.14 0.03 0.14

obtained needle/3 0.01 0.01 0.03 0.15 0.03 0.20

share needle report/3 0.01 0.01 0.02 0.14 0.03 0.17

sexual partner report/3 0.01 0.01 0.03 0.03

has disease/1 0.01 0.01 0.02 n/a 0.02 n/a

works for/2 0.01 0.01 0.02 0.10 0.04 0.16

may have unprotected sex/2 0.03 0.08 0.11 0.52 0.04 0.16

pastor/2 0.01 0.01 0.02 0.11 0.03 0.15

parent of edb/2 27.8 Tout Tout Tout 37.2 Tout

lives at/2 0.01 0.01 0.02 0.11 0.03 0.17

attends church/2 0.01 0.01 0.02 0.11 0.03 0.16

Fig. B 8. CPU times to apply updates and to invalidate subgoals created by queries to good influence/2 for

200 first-argument bindings. The program uses non-specialized equality, and the EDB size is O(104). The

top group of predicates use depth-0 IDG abstraction; the bottom group has no IDG abstraction.

B.2.1 Scalability Analysis on a Program with KRR Features

As a next step, the equality relation in the previously mentioned program of Fig. B 6 was spe-

cialized so that it had the form:

:- table equals/2 as incremental, subgoal abstract(3).

equals(X,Y):- atomic(X),Y = parent of(),equals(Y,X).

equals(parent of(X),parent of(X)).

equals(parent of(X),Y):- parent of edb(X,Y).

equals(parent of(parent of(X)),Y):- parent of edb(X,Z),equals(parent of (Z),Y1),Y1 = Y.

9

In this form, the first clause of equals/2 is changed so that symmetry is applied only if the first ar-

gument corresponds to a nominal individual (constant), and the second argument has a functional

form. The fourth clause is changed so that subgoals of the form equals(〈bound〉, 〈bound〉) are

not called by this clause, but instead subgoals of the form equals(〈bound〉, 〈free〉) are called.

These changes, which do not affect the semantics of the program, significantly reduce the time

and space required for query evaluation, although goals to equals/2 are still computationally

expensive to update.

With this change, a series of 200 queries as described above were tested on EDBs ranging

from around 100,000–10,000,000 facts. As shown in Fig. B 9, the space and time for these

computations scales roughly linearly. For the EDB of about 10,000,000 facts, various batch

updates were timed along with time to re-evaluate queries (Figs. B 10 and B 11). Specifically

for N = 2500, 12500, 62500 and 312500, N asserts of each EDB predicate were performed

and timed; and then the N asserted facts were retracted and timed. Except for updates to par-

ent of edb/2, re-evaluation time was low compared to initial query time (even compared to the

initial query time for non-incremental tabling). These benchmarks illustrate the scalability of

this implementation of transparent incremental tabling even for very large IDGs. In Figs. B 10

and B 11, the IDG contained over 750 million edges; after the update sequences mentioned above

were applied, it contained more than 1 billion edges.

EDB Size Query Time Table Space IDG Nodes IDG Edges Non-incr Query Time

O(105) 3.9 0.51 Gbytes 22,374 7,362,284 1.7

O(106) 62.1 5.33 Gbytes 67,106 78,612,966 24.5

O(107) 679.8 51.56 Gbytes 505,972 753,798,584 391.9

Fig. B 9. CPU times to initially evaluate good influence/2 for 200 first-argument bindings for EDBs of

various sizes. The program uses specialized equality.

Predicate Asserts Retracts
2500 12500 62500 312500 2500 12500 62500 312500

friend/2 3.11 3.16 2.63 3.51 3.11 3.16 2.58 2.91
returned needle/3 3.11 6.59 2.57 2.96 3.11 3.21 2.57 2.87
obtained needle/3 3.11 3.16 2.59 2.65 3.11 3.16 2.52 2.52
share needle report/3 3.12 3.16 2.52 2.54 3.11 3.16 2.52 2.54
sexual partner report/3 3.12 3.16 2.52 2.54 3.11 3.16 2.52 2.55

has disease/1 3.46 3.51 2.81 2.80 3.46 3.50 2.80 2.81
works for/2 3.14 3.25 3.34 4.81 3.11 3.16 2.52 2.52
may have unprotected sex/2 4.34 4.37 3.51 3.51 4.33 4.37 3.51 3.51
pastor/2 3.12 3.16 3.34 2.51 3.11 3.16 2.51 2.52
lives at/2 3.12 3.16 2.52 2.58 3.11 3.16 2.52 2.52
attends church/2 3.12 3.16 2.52 2.52 3.16 3.16 2.52 2.52

Fig. B 10. CPU times to re-evaluate good influence/2 for 200 first-argument bindings after batch updates.

The program uses specialized equality, and the EDB size is O(107). The top group of predicates use depth-0

IDG abstraction; the bottom group has no IDG abstraction.

10

Predicate Asserts Retracts
2500 12500 62500 312500 2500 12500 62500 312500

friend/2 0.12 0.60 3.01 15.9 0.13 0.67 3.43 18.1
returned needle/3 0.12 0.60 3.01 16.0 0.13 0.69 3.51 18.4
obtained needle/3 0.15 0.74 3.74 19.5 0.17 0.83 4.21 22.0
share needle report/3 0.12 0.61 2.99 15.9 0.11 0.01 2.98 15.8
sexual partner report/3 0.12 0.61 2.99 16.0 0.11 0.59 2.98 15.9

has disease/1 0.07 0.33 1.67 8.6 0.08 0.39 1.87 10.5
works for/2 0.12 0.57 0.42 16.1 0.0 0.65 3.34 18.2
may have unprotected sex/2 0.34 1.68 8.45 43.3 0.13 1.75 8.87 45.3
pastor/2 0.07 0.33 1.71 19.5 0.08 0.39 2.04 10.9
parent of edb/2 380.9 Tout Tout Tout 222.6 Tout Tout Tout
lives at/2 0.11 0.56 2.82 14.7 0.14 0.68 3.45 18.0
attends church/2 0.07 0.34 1.71 8.9 0.08 0.43 2.15 11.3

Fig. B 11. CPU times to apply updates and to invalidate subgoals created by queries to good influence/2

for 200 first-argument bindings. The program uses specialized equality, and the EDB size is O(107). The

top group of predicates use depth-0 IDG abstraction; the bottom group has no IDG abstraction.

Appendix C A Note on Usability

The XSB manual contains information on how transparent incremental tabling may be used in

practice; however to make this paper self-contained, we provide an outline of some usability and

system aspects.

XSB has a variety of tabling mechanisms that are used for different purposes. As seen from

Fig. B 6, transparent incremental tabling works properly with subgoal abstraction and with an-

swer abstraction; as discussed in Section 4, transparent incremental tabling works properly with

well-founded negation regardless of the tabled negation operator: for instance with sk not/1 in

Fig. B 6, or with other XSB operators such as tnot/1. It also works properly with tabled attrib-

uted variables (supporting tabled constraints). A variety of dynamic code may be used as a basis

for transparent incremental tabling including not only regular facts and rules, but also facts that

are interned as XSB tries. Incremental tables, of whatever form, may be used alongside non-

incremental tables, although special declarations must be made if an incremental table depends

on a non-incremental table.

Within the current version of XSB, transparent incremental tabling does not yet work properly

with call subsumption, answer subsumption, hash-consed tables, or multi-threaded tables; also,

predicates that are tabled as incremental must use static code rather than dynamic code. Attempts

to declare a predicate using an unsupported mixture of tabling features causes a compile-time

permission error.

There are situations where it is convenient or necessary to abolish an incremental table rather

than updating it. An example of this occurs when an exception is thrown. If an exception is

thrown over a choice point to a completed table no action need be taken; however if an excep-

tion is thrown over a choice point to an incomplete tabled subgoal (including one that is being

recomputed), XSB abolishes the table as its computation has become compromised. In transpar-

ent incremental tabling, abolishing an incremental table is not problematic. If a table T is to be

abolished, tables that depend on T must be invalidated before actually abolishing T itself. When

a call is made to a subgoal with an invalidated affected node, portions of the IDG that were re-

moved through abolishing will be reconstructed during the calls made by incremental reeval(),

due to the actions of lazy recomputation.

11

