Online appendix for the paper

GEM: a Distributed Goal Evaluation Algorithm for
Trust Management

published in Theory and Practice of Logic Programming

DANIEL TRIVELLATO *, NICOLA ZANNONE*, SANDRO ETALLE"*

*Eindhoven University of Technology, Eindhoven, The N&thds
+University of Twente, Enschede, The Netherlands
(e-mail: {d. trivel |l ato, n. zannone, s. etal | e}@ue. nl)

submitted 30 May 2011; revised 13 March 2012; 17 July 2012epted 24 September 2012

Appendix A Proofs

As mentioned in Section 3.3 of the paper, we assume that giverguest or response
messagé/ sent by a principad to a principalb, one and only one instance of messade
is received by. In other words, we assume no message duplication, and #ssages are
always received.

We introduce one last definition.

Definition 1

Let S be the set of tables resulting from running GEM on a g@al.r.t. P = P, U
... UP,. Let G; be a goal whose table is ifi. Let § be a solution ofG; using clause
H < By,...,B,. Then, by constructio&fy, . .., 8, s.t.6y = mgu(G1, H) andf; is a
solution of B;f - - - 0,1 (with j € {1,...,n}). Therankingof ¢ is defined inductively as
follows:

e rank(f) = 1if n =0 (i.e., the clause is a fact),
o rank(0) = 1+ max(rank(b,),...,rank(6,)) otherwise, whereank(6,) is the
ranking of solutiord;. O

We can now prove the soundness result of GEM.

Proof of Theorem 1We proceed by contradiction and assume that there exisasta
“wrong” solutiond; ; in Sol;, i.e., a solution s.t. there is no corresponding SLD dedvat
of P U {G;} with c.a.s.o whereG,6; ; is a renaming of+;o (hypothesis).

Let us choosd; ; to be a “wrong” solution with minimal ranking+}. Let G; = «
A;. Sinced, ; is a solution ofG;, there exists an evaluation tree Gf in S created by
CREATE TABLE (lines 2-7) with root(id, A; < A;,new), a subnode with clause =
H «+ By,..., B, and substitutiong, ..., 0, s.t.0y = mgu(A;, H), and for each €
{1,...,n} there exists:

e A node in the evaluation tree @f; with selected atonB3;0, - - - 6,1 (ACTIVATE
NODE, lines 8, 18-19).

e An evaluation tree of— B;f, - --0,_, created by ®EATE TABLE (lines 2-7) at the
location of B;6y - - - 0;_.

e Asolutiond; of «+ Bb, ---0,_1; the answeiB;0, - - - 0, is sent to the requester of
By ---0;,_1 by GENERATE RESPONSE(lines 12-14 or 20-23) it~ By ---0;_1
is involved in a loop, or by ERMINATE (lines 3-5) otherwise.

e Anode with clauséH <« Bjy1,...,B,)0,---0; added to the evaluation tree Gf
by PROCESSRESPONSK(ines 20-23).

Then,8; ; = 60y---0,. If the body ofc is empty, then there is a trivial 1-step SLD
derivation of P U {G;} with c.a.s.0; (namely themguof G; andc), therefore contra-
dicting the hypothesis. So, let us now assume that- 0; by construction, for each

I € {1,...,n}, rank(0,) < rank(6; ;). So, by the minimality argument:), for each

I € {1,...,n} there exists an SLD derivation @& U {+ B;fy---6,_1} with c.a.s.0;

s.t. Biog---01_101 = By ---0;_16;. But then, by standard logic programming results
(given the presence of clausk there exists a successful SLD derivationdf) {G; } with
c.a.so s.t.G,o = G0, ;, contradicting the hypothesis. O

Since GEM employs a “wait” mechanism to determine when thewans of a goal
should be sent to the requester, both the completeness rmithadon properties of the
algorithm depend on the correctness of this mechanism efdrey, before demonstrating
that GEM is complete and always terminates, we prove thdiwha&” mechanism is cor-
rectly implemented, i.e., that the answers of a goal aretaaéiy sent to the requester. This
is particularly challenging in the presence of loops.

In the implementation of GEM proposed in Section 3.3 of thegpathe “wait” mecha-
nism for goals involved in a loop consists of loop counteteach iteration of a loopd,
the answers of a go&l are only sent when the counter of loapin setActiveGoals is 0
(procedure ROCESSRESPONSE line 24). Since the counter is set to the numbef sub-
goals ofG which are involved in loopd (GENERATE RESPONSE lines 7 and 19), at each
iteration of loopid the principal evaluating- should thus receivk response messages. In
order to prove this, we first show that GEM correctly keepskiaf the loops in which the
subgoals of are involved.

Proposition 1

LetGy,...,G,, be the goals involved in a loofd;. LetG;, G; € {G1,...,G,,} be two
goals s.tG; is a subgoal of¥;. Then, the node in the evaluation tree(®f with selected
atomG; has statusoop(/D), whereid, € ID.

Proof of Proposition 1Let G; be the coordinator of loopd;. Let G4, ..., Gy be a sub-
set of Gy,...,G,, s.t. for eachi € {2,...,k} goal G, is a subgoal of7;_;, and G,
is a subgoal ofG;. The node in the evaluation tree 6f;, ..., Gy with selected atom
Go, ..., Gy, Gy respectively has statlgop(/D), whereid; € ID, because of the follow-
ing observations:

e The identifiersids, . .., id; of the requests for goalSy, ..., G\ and the identifier
idi41 Of the request for goal?; are constructed by procedureREATE TABLE
(lines 5-6) and RocEssRESPONSsH(ines 21-22) in such a way thad; C id;, for
eachj € {2,...,k + 1}, and thus the lower requegt;_; for G; can be identified.

3

e Upon receiving the lower requesi 1, the principal evaluatings; returns a re-
spons€idyy1,Ansg+1, Sk+1,{id1 }) to the principal evaluating';, (procedure Ro-
CESSREQUEST, lines 5-7).

e The status of the node in the evaluation treezgfwith selected atond’; is set to
loop({id1}) (PROCESSRESPONSElines 12-13).

e A counter for loopid; is added to sefictiveGoals in the table of goals;, (PROCESS
RESPONSE line 14).

e For eachi € {2,...,k}, the principal evaluating goak; sends to the principal
evaluating goal;_; a response of the fornid;,Ans;, S;,ID), whereID is the
set of all loops inActiveGoals whose identifier is higher thaid; (GENERATE
REsPONSElines 18, 21, and 23), and thug, € ID.

e The status of the node in the evaluation tree of ggal; with selected atond-; is
set toloop(ID), whereid; € ID (PROCESSRESPONSE lines 12-13). O

Corollary 1

Let G be a goal involved in a loopi. Let & be the number of nodes in the evaluation tree
of G with statusioop(ID) s.t.id € ID. When a response is sent to the requester of the
higher request fo& (or lower request, it is the loop coordinator), the counter of loap

in setActiveGoals in the table ofG is set tok.

At each loop iteration, the counters of the loops in which al @bis involved are set to
the number of subgoals 6f involved in those loops by procedureeGERATE RESPONSE
lines 7 and 19. Hence, we now need to show that at each iterafti@ loopid the number
of response messages with stalus (id) received by the principal evaluatirg is equal
to the number of subgoals 6f involved in loopid, i.e., that counters correctly keep track
of the number of response messages received by the priesiglalating’ at each iteration
of loop id.

Informally, the correctness of counters stems from the tfaat at each loop iteration
step for a goal+ there isonly onechoice of loop identifier to include in the response to the
requester of a higher request 16r This is because of the following considerations:

1. LetG be a goal involved in one or more loops. In the loop processiase, the loop
identifier included by the principal evaluatiidgin the response sent to the requester
of a higher request fof is taken from the status of the root node of the evaluation
tree of G (procedure GNERATE RESPONSE lines 20-21).

2. After aresponse faf is sent by GNERATE RESPONSE(lines 20-23), the status of
the root node of the evaluation tree@fis set toactive(line 24).

3. If G is a non-coordinator goal, then there cangtenost ondoop identifier per
time in the status of the root node of its evaluation tree.r&toee, when sending
a response fotz, procedure GNERATE RESPONSEhas only one choice of loop
identifier to include in the response status. The reason wigynacoordinator goal
can have at most one loop identifier in the status of the rodgs@valuation tree is
the following. The only point where the status of the root@odia non-coordinator
goal G is modified to take into account the loop being processed iknenl8 of
procedure ROCESSRESPONSE and the check on line 17 updates the status only in
case itis currently set tactive We point out that when the response for a subgoal of

G is processed by RoCESSRESPONSEe status of the root of the evaluation tree
of G is alwaysactive due to point (2) above and the fact that GEM only processes
one goal at a time (which is due to condition on line 24 @R ESSRESPONSSE,

and thus no response will be received by the principal etialgié: in the context of

a loop unless a response 1Grwas previously sent.

4. if G is the coordinator of a loof;, then there can bat most twdoop identifiers per
time in the status of the root node of its evaluation tree:fonéop id;, andat most
onefor a higher loopd;,. Remember that as loop identifiers we use the identifier of
the higher request for the coordinator; hence, in this ¢dsis the identifier of the
higher request fo;. Given the condition on line 20 of NERATE RESPONSE only
idy can be included in the status of a response&iaent to the requester of a higher
request. In factjd, (denotedd, in the procedure) is the only identifier in the status
of the root node of the evaluation tree @Gfthat is higher tharid; (denotedid; in
the procedure), i.e., higher than the identifier of the highquest foiG. Therefore,
when sending a response 168 GENERATE RESPONSEhas only one choice of loop
identifier to include in the response status, naniély
Technically, a coordinator can have at most two loop idemsfin the status of
the root node of its evaluation tree because of the follow®ignilarly to non-
coordinators, due to condition on line 17 oR®CESSRESPONSEONly one loop
identifier can be added to the root’s status on line 18rRdEESSRESPONSE This
occurs whert receives a response from one of its subgoals in the contextigher
loopidy,. A second loop identifier (the identifier of loag,;) can be added to the root
status on lines 8-9 of ENERATE RESPONSE the response received by the princi-
pal evaluating= in the context of loopd;, leads to new answers ¢f, which need
to be sent to the goals involved in loag,. No more than two loops at a time will
be processed by the principal evaluatifig(i.e., id; and at most one higher loop
1dy,) because of the following reasons. Upon receiving a responthe context of a
higher loopidy,:

e aresponse fofr in the context of loopdy, will not be sent to a higher goal until
a fixpoint for the loopd; of which G is the coordinator is reached, during which
time the status of the root node of the evaluation tre&'a$ loop ({idy,, id;}),
and

e due to the condition on line 24 ofR®CESSRESPONSENO responses for higher
goals can be received by the principal evaluatihgntil a response fof in the
context of loopid), is sent upwards. In fact, the counter of loaf, in the table
of higher goals cannot g because no response f@iin the context of loopd;,
was sent upwards yet. When a response&ias sent upwards, the status of the
root node of its evaluation tree beconaediveagain (see point (2)).

Formally, the correctness of counters is demonstratedéfolfowing Proposition.

Proposition 2

Let G be a goal and+4, ..., G} be the subgoals daff s.t.G, Gy, ...,Gj are involved in
a loop id;. At each iteration of loopd;, the principal evaluating- receivesk response
messages, one for each subgGale {G, ..., Gk}

5

Proof of Proposition 2Let G, G, ..., Gy, ..., G, be all the goals involved in loopi;,
wherem > k. Letid, id4, ..., id,, be the identifiers of the requests for go@ls=, ..., G,
respectively. The proof is by induction on the numberf goalsG; € {G4,...,Gx} s.t.
id; C id, that is, the number of goals whose request identifier is idtwn the identifier
id of the request fo.

Basecase: ¢ = 1. Then, alsok = 1. LetG; € {Gi,...,G,,} be the only goal s.t.
id; C 4d. Itis straightforward to see that ga@l; is (a variant of) the coordinator of loop
id;, andid ; denotes the lower request f6f;. When there are no more nodes with status
new in the evaluation tree af/;, i.e., when all the branches of the evaluation tre&' pf
have been evaluated, procedureNERATE RESPONSEHS invoked by ACTIVATE NODE
(lines 2-3). By procedure BNERATE RESPONSE(lines 12-14), at each loop iteration
one and only one response to the request for the coorditgta sent by GEM to the
principal evaluating. Thus, at each iteration of loofi; the principal evaluating=
receivesk = 1 response messages. Q.e.d.

Inductive case: Now, assume thaf’ has? such goalsz,; € {Gi,...,G,,} S.t.id; C
id, where? > 1. In this case, each subgo@} € {Gi,...,Gy} of G is either the
coordinator of loopid; or a goal with at most — k subgoals, € {G1,...,G,} s.t.
id, C id;. If G; is the coordinator of loopd;, by the same reasoning done in the base
case, one and only one response to the request fas sent by GEM to the principal
evaluatingG at each loop iteration.

On the other hand, i&7; is not the loop coordinator, there exist at mést k goals
Gp € {G1,...,Gp} s.tuid, T id;. Lett be the number of subgoals 6f; involved in
loopid;. Sincel — k < ¢—1, by the inductive hypothesig) the principal evaluatingr;
receives response messages at each iteration of ldppBy Corollary 1, at each loop
iteration the counter of loogd; in the table of goal7; is set tot, and is decreased by
1 every time a response to the requests for its subgoals iestaivthe loop is received
(procedure ROCESSRESPONSE lines 15-16). Therefore, aftérresponse messages,
the counter of loopid; in the table ofG; is 0, and procedure ROCESSRESPONSE
(lines 24-25) resumes the evaluation of géal When there are no more nodes with
statusnew in the evaluation tree af’;, procedure ATIVATE NODE (lines 2-3) invokes
GENERATE RESPONSE By procedure GNERATE RESPONSE(lines 20-21), one and
only one response to the request oris sent by GEM to the principal evaluatirdg at
each iteration of loopd;. Therefore, at each iteration of loa¢, the principal evaluating
goal G receivesk response messages. |

Finally, we show that procedureERMINATE is eventually invoked for any goal in a
computation.

Proposition 3
Let G be a goal. ProcedureERMINATE is eventually called fo€;.

Proof of Proposition 3The proof is divided into two parts. First, we show th&RMINATE

is eventually called for a godk; that is not involved in a loop. Then, we show that it is
always invoked also i+, is involved in one or more loops.

The first part of the proof is straightforward, and is giventbg fact that the number of
answers of goalr; is finite. This is because of the following observations:

1. The global policyP is finite, and the terms i# that are not variables are constants
defined inP; thus, the Herbrand model &f is finite.

2. Let P;, € P be the policy where godk; is defined. The answers 6f; are com-
puted by GEM through the clausesia;, applicable ta7; (procedure ®EATE TA-
BLE, lines 3-7). Each clause can be either a fact or have the form By, ..., B,,,
such thatBy, ..., B, are defined in a policy i. By (1), both the number of facts
in P, and the number of answers of subgo&ls . . ., B, are finite.

Thus, the number of answers of ga@a| is finite. When all the answers @f; have been
computed and all the nodes in the partial tre€gthave been evaluated, procedure -
VATE NODE (lines 2-3) invokes GNERATE RESPONSE which in turn (lines 2-3) invokes
TERMINATE.

Consider now the case in which, is part of an SCC consisting of loopé, . . ., idg, S.t.
idp C ... C idy. LetGy, ..., G, be all the goals involved in loop&ly, . .., id; (where
m > k), and goalG,, € {G4,...,G,,} be the coordinator of loopd; € {idy,...,idx}.
Because the number of answers of each ghal . . , G,, is finite, we have that:

e Ateach iteration of loopd;, if new answers of the loop coordinatGy., are derived,
they are sent to the requesters of the lower requests fgrstarting a new iteration
of loop id; (procedure GNERATE RESPONSE lines 6-14). On the contrary, if no
answer ofG., is computed, the answers@f, are sent to the requester of the higher
request foiG., (GENERATE RESPONSE lines 20-23). The loops higher thas; in
the SCC are then processed.

e At each iteration of loofd, if new answers of the leadé#., are derived, they are
sent to the requesters of the lower requestsHgr, starting a new iteration of loop
idy (procedure GNERATE RESPONSE lines 6-14). Notice that this might cause a
fixpoint for the loops lower thaid; in the SCC to be recomputed. On the contrary,
if no answer ofGG., is computed, the answers @f., are sent to the requester of the
higher request fof7., , and a response with statd&posed is sent to the requesters
of the lower requests fak., (GENERATE RESPONSEIlines 15-16 and ERMINATE,
lines 3-5).

e For each goali; € {Gi,...,Gy}, all the nodes in the evaluation tree @f are
disposed (ROCESSRESPONSE lines 5-8); then, proceduredXIvVATE NODE is in-
voked, which immediately invokesEBNERATE RESPONSK(Iines 2-3).

e The principal evaluating goal; sends a response with staiisposed to the re-
quester of the higher request fGr. If G, is a loop coordinator, the principal eval-
uatingG; also sends a response with stadiigposed to the requesters of the lower
requests fotz; (GENERATE RESPONSE lines 2-3 and ERMINATE, lines 3-5).

Therefore, procedureERMINATE is always invoked for goalr; . O

Proposition 3 implies that the table of a goal involved in anpatation is always dis-
posed. In fact, the disposal of the table of a goal is carrigdby procedure ERMI-
NATE (lines 2, 6, and 7). Consider, for instance, the followingatéon of the global pol-
icy introduced in Section 3.1 of the paper, where the resemmsitute r; refers to goal
memberOfAlpha(cl,X) instead ofmemberOfAlpha(c2,X):

memberOfAlpha(cl,X) < memberOfAlpha(c2,X).
memberOfAlpha(c2,X) <— memberOfAlpha(ri,X).
memberOfAlpha(ri,X) <— memberOfAlpha(cl,X).

First of all, let us recall that the termination of the evaioa of the goals involved in a
loop is commanded by the leader of the SCC (geatnberOfAipha(cl,X) in the exam-
ple policy). When no new answer of the leader is computediguring a loop iteration,
procedure ERMINATE is invoked (lines 15-16 of GBNERATE RESPONSH, which disposes
the table of the goal and sends a response with stigpssedoth to the requesters of the
higher and lower requests fotemberOfAlpha(cl,X) (lines 3-5). Whenri receives the re-
sponse, it disposes all the nodes in the evaluation treecofber OfAlpha(ri,X) involved
in a loop (lines 5-8 of ROCESSRESPONSH, which in this case corresponds to disposing
all the non-root nodes. At this point, the status of the ramenof the evaluation tree of
memberOfAlpha(ri, X) is active (see point 2 of the discussion preceding Proposition 2).
Therefore, the condition on line 24 oRPCESSRESPONSHS satisfied, and procedurecA
TIVATE NODE is invoked formemberOfAlpha(c1,X). Since all the non-root nodes in the
evaluation tree ofnemberOfAlpha(cl,X) have statuslisposed GENERATE RESPONSE
is invoked (lines 2-3 of ATIVATE NODE), which in turn (lines 2-3) invokes procedure
TERMINATE. TERMINATE disposes the table of goalemberOfAlpha(ri,X) and sends a
response with statuwisposedo c2. Similarly to memberOfAlpha(ri,X), PROCESSRE-
spoNsEedisposes all the nodes in the evaluation tree of goahberOfAipha(c2,X), and
a response with statuisposeds sent byc2 to ¢! by procedure ERMINATE. Since the
root of the evaluation tree afiemberOfAlpha(cl,X) had already been disposed, in this
case the response message is ignoredrbffine 4 of PROCESSRESPONSH.

Next, we prove the completeness and termination results.

Proof of Theorem 2We proceed by contradiction, and assume thet missing a solution
of G1. That s, there exists a successful SLD derivatioiof { G; } with c.a.sf and there
is no solutiono of G; generated by the algorithm s, 6 = G0 (hypothesis).

This implies that there exist a (maximal) set of go@ls ..., Gy in S s.t. for eachi €
{1,...,k} there is a non-empty maximal set of substitutifis; , . . ., 0; ,, } S.t.:

(@) G;isagoalinS.

(b) 0;1,...,0;m, are correct solutions af; according to SLD resolution: for each
there exists a successful SLD derivationfot) { G, } with c.a.s 6, ; (up to renaming).

(c) The algorithm does not generate the answges 1, . .., Gi0; »,, (Up to renaming).

The set7, . .., Gy is not empty as it contains at le&st (the finiteness of the construction
is demonstrated in the proof of Proposition 3).

For eachi, j, let der; ; be the SLD derivation of U {G,} with c.a.s.0; ; of minimal
length. Let us choose integersy in such a way thater, , has minimal length among the
derivations in the sefider; ; }. The fact thatler, , has minimal length implies that for any
goal G’ in S, the following holds: if there exists an SLD derivation®fJU {G’} of length
smaller tharlen(der,, ,) with c.a.s#’, then the algorithm generates a solutirfor which
G'0" is a renaming of7’v’ ().

Let ¢ be the clause used in the first step of the derivatien, ,. If c is a fact, we im-

8

mediately have a contradiction: sin€g, is a goal inS, this means that there exists an
evaluation tree of7, =« A, created by ®EATE TABLE (lines 2-7) with root node
(id, A, + A,,new) and a node with clauseas subnode of the root node. Therefore,
the algorithm will compute a c.a.s. equivalenttq, (ACTIVATE NODE), contradicting the
hypothesis.

If cisarueH « Bi,...,B,, andoy = mgu(G,, H), then by hypothesis there
exist SLD derivationslerg, , ..., derp, , and substitutions,...,o, s.t. Hog-- -0, =
Gpb,.4, and foreach € {1,...,n}:

e derp, is an SLD derivation ofP U {+ B;og---0;_1}.
e The c.a.s. oflerp, iso;, andlen(derp,) < len(dery). (%)

SinceG,, is a goal inS, there exists an evaluation tree@j, created by ®EATE TABLE
(lines 2-7) with root nodéid, A, < A,, new) and a node with clauseas subnode of the
root node. Then, it is easy to see that for eaeh{1,...,n}:

e There exists a node in the evaluation treeCpf with selected atonB;o¢ - - - 01
(ACTIVATE NODE, lines 8, 18-19).

e There exists an evaluation tree of B;oy---0;_1 created by ®EATE TABLE
(lines 2-7) at the location aB;0¢ - - - 0;_1.

o Sincelen(derp,) < len(der,), by () and =) the algorithm computes a solution
equivalent tas; of the goak— B,oq---0;_1.

e By Propositions 2 and 3, the answejoy, - - - 0; is sent to the requesteref B;og - 0;_1
by GENERATE RESPONSE(lines 12-14 or 20-23) it~ B;og - - 0;_1 IS involved in
a loop, or by TERMINATE (lines 3-5) otherwise.

e There exists a node with clauéf + B;.1,...,By)o - -o; added to the evalua-
tion tree ofG), by PROCESSRESPONSH(ines 20-23).

Thereforep - - - 0y, is (equivalent to) a solution of the evaluation treesgf, contradicting
(), (b), and (c). U

Proof of Theorem 3We assume that nodes (i.e., goals) in the call graph afherit the
identifier (and the associated ordering) of the request foclwthey are created. Termina-
tion follows from two observations: (i) the call graph Bfis finite, and (ii) the number of
response messages exchanged by the principals involvad evaluation ot is finite.

The call graph ofP is finite (i) for the following reasons:

1. The set of goals over predicategir{up to renaming) is finite. This is because terms
that are not variables are constant$’in

2. There is no infinite path in the call graph Bfcomposed of nodea&l, .. ., id, S.t.
id, C ... C id;y. This is because of (1) and because the algorithm neveresraat
new node with identifieid; for a goal if a node with identifieid ; already exists for
a variant of that goal andll; C id ;.

3. The outdegree of each node in the call graphPois finite. This is because the
number of atoms in the body of each clauséirs finite.

The number of response messages is finite (ii) because:

1. The number of answers of each goal define iis finite (see the proof of Proposi-
tion 3).

i

memberOfAlpha(cl,X)

()

projectPartner(me,Y) memberOfAlpha(c2,X) memberOfAlpha(c3,X)

Fig. B1. Call Graph of the Evaluation aiemberOfAlpha(c X) with Respect to the Example
Global Policy

2. The (possibly empty) set of answers of a goal are transthitbly when a table for
the goal is first created (and a node representing the godtisdato the call graph
of P) or new answers of its subgoals are received.

3. For any nodegl; andid,, a set of answers that flows frod, to id; in response to a
requestid, never contains answers previously communicated in regpongquest
ido (SEND RESPONSE lines 3-4).

4. An empty set of answers may flow frofd, to id; only if idy T id; (GENER-
ATE RESPONSE lines 20-23, and ERMINATE, lines 3-5), orid; identifies a lower
request and a loofl, has just been identified @ CESSREQUEST, lines 5-7).

5. There is no infinite path composed of nodes, ..., id; in the call graph ofP
through which the answers flow sitl,, C ... C id;.

6. By Proposition 3, procedureERMINATE is eventually invoked for any goal. O

Appendix B Example

In this section we show how GEM computes the answers of a giag uhe procedures
presented in Section 3.3 of the paper. As an example glolieypee use a fragment of the
policy introduced in Section 1. In particular, we consider following policy statements:

. memberOfAlpha(cl,X) « projectPartner(mec,Y’), memberOfAlpha(Y,X).
. projectPartner(mc,c2).

. projectPartner(mc,c3).

. memberOfAlpha(c2,X) < memberOfAlpha(cl,X).

. memberOfAlpha(c2,alice).

. memberOfAlpha(c3,bob).

o 0 WN B

The call graph of the global policy is shown in Figure B 1. Wastrate the compu-
tation for an initial requesth; ,h,memberOfAlpha(cX)) from hospitalk to companycl.
Table B 1 shows the list of all procedure calls made by GEM talpce the response to the
initial request. The first column of the table indicates theen in which the calls are made;
the second column denotes the principal and location whek procedure is evaluated.
GEM computes the answers of gmaémberOfAlpha(icX) by making 53 procedure calls;
the number of messages exchanged between different piacipwever, is only 14, con-
sisting of 5 request messages and 9 response messagediigahe initial request and
its response). Next, we present and discuss some “scrashishowing the status of the
computation at various stages.

10

Call | Principal | Procedure

1 cl PROCESSREQUEST((h;,h,memberOfAlpha(cl,X)))

2 cl AcTIvaTE NoDE(memberOfAlpha(c1,X))

3 mc PROCESSREQUEST((h; cly,cl,projectPartner(mc,Y)))

4 mc AcTIVATE NODE(projectPartner(mc,Y))

5 mc AcTIVATE NODE(projectPartner(mc,Y))

6 mc AcTIVATE NODE(projectPartner(mc,Y))

7 mc GENERATE RESPONSEprojectPartner(mc,Y))

8 mc TERMINATE(projectPartner(mc,Y))

9 mc SEND REsPoONsE(h; cl1,cl,projectPartner(mc,Y)),disposég)

10 cl PrRoCESsSREsPONSEh; c1;,{projectPartner(mc,c2),projectPartner(mcjc8isposed; })
11 cl AcTIVATE NoDE(memberOfAlpha(cl,X))

12 c2 PROCESSREQUEST((h; cl2,c1,memberOfAlpha(c2,X)))

13 c2 AcTIvaTE NoDE(memberOfAlpha(c2,X))

14 cl PROCESSREQUEST((h; c12¢21,c2,memberOfAlpha(cl,X)))

15 cl SEND REsPONSH(h; cl2c21,c2,memberOfAlpha(cl,X)),activih; })
16 c2 PROCESSRESPONSEh;cl2¢21,{},active{h; })

17 c2 AcTIVATE NoDE(memberOfAlpha(c2,X))

18 c2 AcTIVATE NoDE(memberOfAlpha(c2,X))

19 c2 GENERATE REspPoNSEmemberOfAlpha(c2, X))

20 c2 SEND REsPONSE(h; cl2,c1,memberOfAlpha(c2,X)),activih; })

21 cl PROCESSRESPONSEh; cl2,{memberOfAlpha(c2,alicé)active{h; })
22 cl AcCTIVATE NoDE(memberOfAlpha(cl,X))

23 c3 PROCESSREQUEST((h; cl3,c1,memberOfAlpha(c3,X)))

24 c3 AcTIvAaTE NoDE(memberOfAlpha(c3,X))

25 c3 AcTIVATE NoDE(memberOfAlpha(c3,X))

26 c3 GENERATE REsPONSEmemberOfAlpha(c3,X))

27 c3 TERMINATE(memberOfAlpha(c3,X))

28 c3 SEND REsPoNs#(h; cl3,c1,memberOfAlpha(c3,X)),disposgd))

29 cl PROCESSRESPONSEh; c13,{memberOfAlpha(c3,boB)disposed,})
30 cl AcTIvaTE NoDE(memberOfAlpha(c1,X))

31 cl AcTIVATE NoDE(memberOfAlpha(cl,X))

32 cl AcTIvVATE NoDE(memberOfAlpha(c1,X))

33 cl GENERATE REsPONsEmemberOfAlpha(cl,X))

34 cl SEND REsPONSH(h; cl12¢21,c2,memberOfAlpha(cl,X)),loop{i.{})
35 c2 PROCESSRESPONSEh; cl12¢21,{memberOfAlpha(cl,alice),memberOfAlpha(cl,bpmop(h;),{})
36 c2 AcTIVATE NoDE(memberOfAlpha(c2,X))

37 c2 AcTIVATE NoDE(memberOfAlpha(c2,X))

38 c2 AcTIvaTE NoDE(memberOfAlpha(c2,X))

39 c2 GENERATE REspPoNsEmemberOfAlpha(c2,X))

40 c2 SEND REsPONSE(h; cl2,c1,memberOfAlpha(c2,X)),loop(h{h1 })
41 cl PROCESSRESPONSEh; c12,{memberOfAlpha(c2,bob)loop(hy),{h: })
42 cl AcTIVATE NoDE(memberOfAlpha(cl,X))

43 cl AcTIvATE NoDE(memberOfAlpha(c1,X))

44 cl GENERATE REsPoNSEmemberOfAlpha(cl, X))

45 cl TERMINATE(memberOfAlpha(cl,X))

46 cl SEND ReEsPoNs#(hy,h,memberOfAlpha(cl,X)),dispos€d)

47 cl SEND REsPONSsE(hic12¢21,c2,memberOfAlpha(cl,X)),disposéd)
48 c2 PROCESSRESPONSEh;Cl2¢21,{} disposed,})

49 c2 AcTIvaTE NOoDE(memberOfAlpha(c2,X))

50 c2 GENERATE REsPoNSEmemberOfAlpha(c2, X))

51 c2 TERMINATE(memberOfAlpha(c2,X))

52 c2 SEND REsPONSsE(h; cl2,c1,memberOfAlpha(c2,X)),dispos€d)

53 cl PROCESSRESPONSEh; Cl2,{},disposed;})

Table B 1. Procedure Call Stack For the Example Global Policy

When principalcl receives the request for goalemberOfAlpha(cX) from h, it calls
procedure ROCESSREQUEST (Algorithm 1 in Section 3.3 of the paper) that initializes

11

Principal c1

HR (h1,h—memberOfAlpha(cl,X))

LR {}

ActiveGoals {}

AnsSet {}

Tree (h:,memberOfAlpha(cl,%)- memberOfAlpha(cl,X),new)

(hicl1,memberOfAlpha(cl,X)- projectPartner(mc,Y), memberOfAlpha(Y,X),new)

Table B 2. Status of the Computation After Procedure Call 1 in Table B 1

Principal c1

HR (h1,h—memberOfAlpha(cl,X))

LR O

ActiveGoals {}

AnsSet {}

Tree (h:,memberOfAlpha(cl,%)- memberOfAlpha(cl,X),active)

(h:cl1,memberOfAlpha(cl,X%)- projectPartner(mc,Y), memberOfAlpha(Y,X),active)

Principal mc
HR (hicly,cl4—projectPartner(mc,Y))
LR {}

ActiveGoals {}

AnsSet {(projectPartner(mc,c2)}),(projectPartner(mc,c3)}) }
Tree (hiclq,projectPartner(mc,¥)- projectPartner(mc,Y),new)
(hiclimc, ,projectPartner(mc,c2),answer)
(hiclimc;,projectPartner(mc,c3),answer)

Table B 3. Status of the Computation After Procedure Call 7 in Table B 1

the table of the goal. Table B 2 shows the tableneimberOfAlpha(cX) resulting from the
execution of ROCESSREQUESTON the initial request. The table fieldR (higher request)
is set to the initial request, and the evaluation tree of tad,d"ree, is initialized by adding
to the root node a subnode representing the only claus€srocal policy applicable to
the goal, i.e., clause 1. The node status is seteto, and the node identifier is obtained
by concatenating the request identitigrwith stringcl;. To keep the representation more
compact, in Table B 2 and in the other tables presented isétison the evaluation tree of
a goal is represented as a list of nodes rather than as tletustraefined in Section 3.3 of
the paper.

In order to compute the list of project members,needs to first retrieve frormcthe
list of partner companies in the project, and then for eacthe$e companies the list of
its project members. Table B 3 shows the status of the coriputafter goalproject-
Partner(mc,Yhas been completely evaluated g (procedure calls 2 to 7 in Table B1),
i.e., after the set of project partners has been computeslrdduest for gogbrojectPart-

12

Principal c1

HR (h1,h—memberOfAlpha(cl,X))

LR {(h:cl2c21,c24—memberOfAlpha(cl,X))

ActiveGoals {}

AnsSet {}

Tree (h:,memberOfAlpha(cl,%)}- memberOfAlpha(cl,X),active)
(hicl1,memberOfAlpha(cl,X)- projectPartner(mc,Y), memberOfAlpha(Y,X),disposed)
(h:cl2,memberOfAlpha(cl,%)- memberOfAlpha(c2,X),active)
(hicl3,memberOfAlpha(cl,%)- memberOfAlpha(c3,X),new)

Principal mc

HR null

LR {}

ActiveGoals {}

AnsSet {(projectPartner(mc,c2)h: cl, }),(projectPartner(mc,c3hicli })}

Tree (hiclq,projectPartner(mc,¥)- projectPartner(mc,Y),disposed)
(hiclymcy ,projectPartner(mc,c2),answer)
(hiclimc;,projectPartner(mc,c3),answer)

Principal c2

HR (hiclz,c1x—memberOfAlpha(c2,X))

LR O

ActiveGoals {}

AnsSet {}

Tree (h1cl2,memberOfAlpha(c2,%)- memberOfAlpha(c2,X),active)
(h:cl2c21,memberOfAlpha(c2,%)- memberOfAlpha(cl,X),active)
(hicl2c22,memberOfAlpha(c2,alice),new)

Table B 4. Status of the Computation After Procedure Call 15 in Table B 1

ner(mc,Y)from cl to mcis generated by the activation of nollgcl; in cl’s table (pro-
cedure call 2, ETIVATE NODE), which results in a change of status frermw to active

of both the

root node and the node itself. Similarlycig whenmc receives the request

it creates the table of the goal (call 3 in Table B 1), settihg to the higher request and
initializing T'ree with clauses 2 and 3 of the global policy presented above. dalis
to procedure ATIVATE NODE (calls 4 and 5) lead to the identification of two answers

of the goal,

namelyrojectPartner(mc,2) andprojectPartner(mc,8), which are added to

AnsSet with an empty list of request identifiers. At the next call tc AVATE NODE

(call 6), the
(i.e., all the

evaluation tree of goakojectPartner(mc,Yhas no more nodes to activate
branches of the evaluation tree have beereated) and procedureEBER-

ATE REsPONSsHS invoked (call 7). Since the goal is not involved in any lpidpevaluation

is complete

d and procedureERMINATE is executed next (line 3 of Algorithm 6 in Sec-

tion 3.3 of the paper).
As a result of the execution of procedur&RMINATE, the root node of the evalua-

13

tion tree of goalprojectPartner(mc,Y)s disposed and the answers identified are sent to
cl through procedure B\D REsPONSE(procedure call 9, results shown in Table B 4).
The response message receiveabis processed by procedur@ ®BCESSRESPONSE the
message contains the two answen®jectPartner(mc,2) andprojectPartner(mc,8)) and

an empty set of loop identifiers, and has stalisposed, indicating that no more answers of
goalprojectPartner(mc, Yyvill be received. The evaluation tree of gmaé¢mberOfAlpha(cX)

is updated by adding two subnodes to ndglel,, one for each project partner (seks
table in Table B 4).

The activation of nodé; cls by cl leads to the request for goedemberOfAlpha: X)
to c2. Accordingly,c2 creates a table for the goal; the evaluation tree of the goaists of
three nodes: the root node and two subnodes, represerdimggesl 4 and 5 of the global pol-
icy, with identifiersh; cl1,¢2; andh;cl,c2, respectively. The activation of nodecl,c2,
by c2, in turn, leads to a request for ggaemberOfAlpha(cX) to c1, forming a loop. The
loop is identified bycl in procedure ROCESSREQUEST(call 14 in Table B 1): in fact, the
identifier of the higher request fenemberOfAlpha(cX) (h,) is a prefix of the identifier
of c2's request If; c1,¢2,). Therefore, the lower request is addeddiyto setLR, and a
response is sent froel to c2 with a notification of looph; (call 15).

The loop notification sent fronel to c2 starts the loop processing phase, which in-
volves procedure calls from 16 to 34 in Table B 1. The resuftthe loop processing
phase are shown in Table B5. Upon receiving the loop notificat2 sets the status of
the node whose evaluation formed the loopdop({h;}) and “freezes” its evaluation;
then, it proceeds with the evaluation of the other nodes efealuation tree. The ac-
tivation of nodeh;cl,c2, (procedure call 17), in particular, leads to the first ansafer
the goal, i.e. memberOfAlpha;alice). Since at this point there are no more nodes to
be activated, the computed answer can be sent twith a notification about the loop.
Before sending the answex? sets the counter idlctiveGoals to 1 (procedure GNER-
ATE RESPONSE call 19) and adds the identifier éfR to the set of recipients of answer
memberOfAlphaalice)in AnsSet (procedure 8ND RESPONSE call 20).

The loop is now processed at. After adding a subnode to the evaluation tree of
goal memberOfAlpha(icX) for the answer received frore, cl freezes nodd;cl, and
starts the evaluation of nod®gcls (procedure call 22). This results in a request from
cl to c3 for the evaluation of goamemberOfAlpha@;X). The only clause applicable
to memberOfAlpha@; X) (clause 6 of the global policy) is a fact; therefore, the geal
completely evaluated after one call to procedureTA/ATE NODE (call 24). The an-
swer of the goalmemberOfAlphabob) is returned tocl (procedure call 28). Since
the status of the response messagéiiposed, cl disposes nodé;cl; and adds subn-
odeh;cl; to it reflecting the answer received frotd (procedure ROCESSRESPONSE
call 29). The next two executions of procedure AVATE NODE atcl lead to the identi-
fication of two answers of goahemberOfAlpha(cX), namelymemberOfAlpha(calice)
andmemberOfAlpha(cbob) Before returning these answers to the requestéfiofi.e.,

h), however, all the loops need to be fully processed. Forrgasoncl sends the two an-
swers toc2 in response td R first; the status of the response messadedp(h;), and the
status of the root node of the evaluation treeliis table is changed accordingly (procedure
calls 33 and 34 in Table B1).

Now, the second iteration of the loop processing phasesgjamdcedure calls 35-44). In

14

Principal c1
HR (h1,h—memberOfAlpha(cl,X))
LR {(h:cl2c21,c24—memberOfAlpha(cl,X))

ActiveGoalg {(h,1)}

AnsSet {(memberOfAlpha(cl,alice)h; c12¢24 }),(memberOfAlpha(cl,bob)hicl2c2: })}

Tree (h;,memberOfAlpha(c1,%)- memberOfAlpha(cl,X),lood: }))
(hicl1,memberOfAlpha(cl,X)- projectPartner(mc,Y), memberOfAlpha(Y,X),disposed)
(h;cl2,memberOfAlpha(c1,%)- memberOfAlpha(c2,X),loodh: }))
(hicl3,memberOfAlpha(cl,%)- memberOfAlpha(c3,X),disposed)
(hicl4,memberOfAlpha(cl,alice),answer)

(h:cl5,memberOfAlpha(cl,bob),answer)

Principal mc
HR null
LR {}

ActiveGoals {}

AnsSet {(projectPartner(mc,c2)h; cl, }),(projectPartner(mc,c3hicli })}
Tree (hicly,projectPartner(mc,¥)- projectPartner(mc,Y),disposed)
(hiclimcy ,projectPartner(mc,c2),answer)
(hiclimc;,projectPartner(mc,c3),answer)

Principal c2
HR (h:clz,c1—memberOfAlpha(c2,X))
LR {}

ActiveGoalg {(h,1)}

AnsSet {(memberOfAlpha(c2,alice)h;cl2})}

Tree (h:cl2,memberOfAlpha(c2,%)- memberOfAlpha(c2,X),active)
(h;c12¢2:,memberOfAlpha(c2,- memberOfAlpha(c1,X),loodf: }))
(hicl2c22,memberOfAlpha(c2,alice),answer)

Principal c3
HR null
LR {}

ActiveGoals {}

AnsSet {(memberOfAlpha(c3,bobjh; cls})}

Tree (h:cl3,memberOfAlpha(c3,%)- memberOfAlpha(c3,X),disposed)
(hicl15¢31,memberOfAlpha(c3,bob),answer)

Table B 5. Status of the Computation After Procedure Call 34 in Table B 1

this second iteratiorg2 identifies a new answer of its goal, i.eaemberOfAlpha;bob)
which is sent back tal. This answer, however, does not lead to new answerk. &ince

h; is the only loop in the SCC (and heneemberOfAlpha(cX) is the leader of the SCC),
and no new answers ofiemberOfAlpha(cX) have been computed, the loop termination
phase can start (line 15 of Algorithm 6 in Section 3.3 of thegwa In this phasecl

15

Principal c1
HR null
LR {}

ActiveGoals {}

AnsSet {(memberOfAlpha(cl,alice)hi; c12c24,h }),(memberOfAlpha(cl,bob)hi cl2¢21,hi })}
Tree (h:,memberOfAlpha(cl,%)- memberOfAlpha(cl,X),disposed)
(hicl1,memberOfAlpha(cl,X)- projectPartner(mc,Y), memberOfAlpha(Y,X),disposed)
(h:cl2,memberOfAlpha(cl,%)} memberOfAlpha(c2,X),disposed)
(hicl3,memberOfAlpha(cl,%)- memberOfAlpha(c3,X),disposed)
(hicl4,memberOfAlpha(cl,alice),answer)

(h:cl5,memberOfAlpha(cl,bob),answer)

(hiclg,memberOfAlpha(cl,bob),answer)

Principal mc
HR null
LR {}

ActiveGoals {}

AnsSet {(projectPartner(mc,c2)h. cl, }),(projectPartner(mc,c3hicli })}
Tree (hiclq,projectPartner(mc,¥)- projectPartner(mc,Y),disposed)
(hiclimcy ,projectPartner(mc,c2),answer)
(hiclimc;,projectPartner(mc,c3),answer)

Principal c2
HR null
LR {}

ActiveGoals {}

AnsSet {(memberOfAlpha(c2,alice)h: 12 }),(memberOfAlpha(c2,bob)hiclz }) }
Tree (hicl2,memberOfAlpha(c2,%)- memberOfAlpha(c2,X),disposed)
(h:cl2c21,memberOfAlpha(c2,X)- memberOfAlpha(cl,X),disposed)
(hicl2c22,memberOfAlpha(c2,alice),answer)
(hicl2c25,memberOfAlpha(c2,alice),answer)
(h:cl2c24,memberOfAlpha(c2,bob),answer)

Principal c3
HR null
LR {}

ActiveGoals {}

AnsSet {(memberOfAlpha(c3,bobjh;cl3})}

Tree (h:cl3,memberOfAlpha(c3,%)- memberOfAlpha(c3,X),disposed)
(hicl5¢31,memberOfAlpha(c3,bob),answer)

Table B 6. Final Status of the Computation for the Example Global Rolic

sends a response message with stétssosed to bothc2 (the other principal in the loop)
andh (to which also the answers are sent). Upon receiving thisagesc2 disposes all

16

@_______________ang{gz__c@_ ® ¥
(a) Call Graph of the Global Policies T.0to .5 @ (}/O/
c
v (DY
cl cll 12

63{ ————————— (¢ /
. _d9 _
cd (b) Call Graph of the
Global Policies 3.0 to
(c) Call Graph of the Global Policies 2.0to 2.5 35

Fig. C1. Call Graph of the Global Policies Used in the Experiments Set 1

the nodes in the evaluation tree memberOfAlphar; X) that are involved in some loop
(procedure ROCESSRESPONSE, and forwards the message baclkctqcalls 51 and 52).

cl simply ignores the message, as the status of the root node afvialuation tree of
memberOfAlpha(cX) is alreadydisposed (line 4 of Algorithm 5 in Section 3.3 of the
paper), and the computation terminates. Table B 6 showgahessof the tables of all the
goals at the end of the computation.

Appendix C Practical Evaluation

Figure C1 shows how the global policies defined in AppendixnB & Section 3.1 of
the paper have been modified to evaluate the performance bf iBEesponse to an in-
crease in: (1) the number of principals and clauses (Fig(ap,1(2) the number of loops
(Figure 1(c)), and (3) both the number of principals, claused loops (Figure 1(b)) in a
global policy. For each global policy, six variants haverbereated; in the figures, we use
identifiers from x.0 to x.5 (where x is either 1, 2, or 3) to denihe variants, where variant

17

25000,00

20000,00
15000,00 /
10000,00 /
5000,00 /
0,00 / mpe======)

Number of Loops

Milliseconds

—TTime —==CTime

(a) Total and Computation Time for an Increasing Number of Lanpise Com-
putation

8000

7000 y
"
s

6000 -

5000 <

Kilobytes
\Y
AY

4000 -

3000 e

2000 /,
1000

0 : T T T T
0 50 100 150 200 250 300

Number of Loops
—TMem -==TabMem e EndTabMem

(b) Total and Tables Memory for an Increasing Number of LoopghénCompu-
tation

Fig. C2. Time and Memory Results for Experiments Set 1

x.0 represents the original policy. To keep the figures aglgiyet informative as possible,
we label the nodes in the graph with the identifier of the ppialcevaluating the goal they
represent rather than with the goal itself, as for the puermdshe experiments the number
of principals involved in a computation is more relevanttitiae goals they evaluate.

Figures C 2 and C 3 provide a graphical overview of the maifueti@n results of GEM,
based on the values presented in Tables 1 and 2 in Sectiornmb paper.

18

16000,00

14000,00 /

12000,00 l

10000,00 l

8000,00 /

Milliseconds

6000,00

4000,00 /4 / 4
1
" /\—j i
2000,00 i e
’ b - ’
" - -— -
rmEm—— Seed

0,00 +SF=T—a==——r

Experiment 1D
—TTime === (CTime
(a) Time Results with Respect to the Number of Messages Exeldaimgthe
Computation

35000

-
- :
: /

Kilobytes

10000

5000
o T T T T 1
o 10000 20000 30000 40000 50000
Number of Answers
—TMem -==TabMem e EndTabMem

(b) Memory Results with Respect to the Number of Answers Ddrivethe
Computation

Fig. C3. Time and Memory Results for Experiments Set 2

