
1

Online appendix for the paper

GEM: a Distributed Goal Evaluation Algorithm for
Trust Management

published in Theory and Practice of Logic Programming

DANIEL TRIVELLATO ∗, NICOLA ZANNONE∗, SANDRO ETALLE∗,+

∗Eindhoven University of Technology, Eindhoven, The Netherlands
+University of Twente, Enschede, The Netherlands

(e-mail:{d.trivellato,n.zannone,s.etalle}@tue.nl)

submitted 30 May 2011; revised 13 March 2012; 17 July 2012; accepted 24 September 2012

Appendix A Proofs

As mentioned in Section 3.3 of the paper, we assume that givena request or response
messageM sent by a principala to a principalb, one and only one instance of messageM

is received byb. In other words, we assume no message duplication, and that messages are
always received.

We introduce one last definition.

Definition 1
Let S be the set of tables resulting from running GEM on a goalG w.r.t. P = P1 ∪

. . . ∪ Pn. Let G1 be a goal whose table is inS. Let θ be a solution ofG1 using clause
H ← B1, . . . , Bn. Then, by construction∃θ0, . . . , θn s.t.θ0 = mgu(G1, H) andθj is a
solution ofBjθ0 · · · θj−1 (with j ∈ {1, . . . , n}). Therankingof θ is defined inductively as
follows:

• rank(θ) = 1 if n = 0 (i.e., the clause is a fact),
• rank(θ) = 1 + max(rank(θ1), . . . , rank(θn)) otherwise, whererank(θj) is the

ranking of solutionθj . �

We can now prove the soundness result of GEM.

Proof of Theorem 1. We proceed by contradiction and assume that there exists atleast a
“wrong” solutionθi,j in Soli, i.e., a solution s.t. there is no corresponding SLD derivation
of P ∪ {Gi} with c.a.s.σ whereGiθi,j is a renaming ofGiσ (hypothesis).

Let us chooseθi,j to be a “wrong” solution with minimal ranking (∗). Let Gi = ←

Ai. Sinceθi,j is a solution ofGi, there exists an evaluation tree ofGi in S created by
CREATE TABLE (lines 2-7) with root〈id , Ai ← Ai, new〉, a subnode with clausec =

H ← B1, . . . , Bn and substitutionsθ0, . . . , θn s.t. θ0 = mgu(Ai, H), and for eachl ∈
{1, . . . , n} there exists:

• A node in the evaluation tree ofGi with selected atomBlθ0 · · · θl−1 (ACTIVATE

NODE, lines 8, 18-19).
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• An evaluation tree of← Blθ0 · · · θl−1 created by CREATE TABLE (lines 2-7) at the
location ofBlθ0 · · · θl−1.

• A solutionθl of← Blθ0 · · · θl−1; the answerBlθ0 · · · θl is sent to the requester of←
Blθ0 · · · θl−1 by GENERATE RESPONSE(lines 12-14 or 20-23) if← Blθ0 · · · θl−1

is involved in a loop, or by TERMINATE (lines 3-5) otherwise.
• A node with clause(H ← Bl+1, . . . , Bn)θ0 · · · θl added to the evaluation tree ofGi

by PROCESSRESPONSE(lines 20-23).

Then, θi,j = θ0 · · · θn. If the body of c is empty, then there is a trivial 1-step SLD
derivation ofP ∪ {Gi} with c.a.s.σi (namely themgu of Gi and c), therefore contra-
dicting the hypothesis. So, let us now assume thatn > 0; by construction, for each
l ∈ {1, . . . , n}, rank(θl) < rank(θi,j). So, by the minimality argument (∗), for each
l ∈ {1, . . . , n} there exists an SLD derivation ofP ∪ {← Blθ0 · · · θl−1} with c.a.s.σl

s.t.Blσ0 · · ·σl−1σl = Blθ0 · · · θl−1θl. But then, by standard logic programming results
(given the presence of clausec), there exists a successful SLD derivation ofP ∪{Gi} with
c.a.s.σ s.t.Giσ = Giθi,j , contradicting the hypothesis. �

Since GEM employs a “wait” mechanism to determine when the answers of a goal
should be sent to the requester, both the completeness and termination properties of the
algorithm depend on the correctness of this mechanism. Therefore, before demonstrating
that GEM is complete and always terminates, we prove that the“wait” mechanism is cor-
rectly implemented, i.e., that the answers of a goal are eventually sent to the requester. This
is particularly challenging in the presence of loops.

In the implementation of GEM proposed in Section 3.3 of the paper, the “wait” mecha-
nism for goals involved in a loop consists of loop counters: at each iteration of a loopid ,
the answers of a goalG are only sent when the counter of loopid in setActiveGoals is 0
(procedure PROCESSRESPONSE, line 24). Since the counter is set to the numberk of sub-
goals ofG which are involved in loopid (GENERATE RESPONSE, lines 7 and 19), at each
iteration of loopid the principal evaluatingG should thus receivek response messages. In
order to prove this, we first show that GEM correctly keeps track of the loops in which the
subgoals ofG are involved.

Proposition 1
Let G1, . . . , Gm be the goals involved in a loopid1. LetGi, Gj ∈ {G1, . . . , Gm} be two
goals s.t.Gj is a subgoal ofGi. Then, the node in the evaluation tree ofGi with selected
atomGj has statusloop(ID), whereid1 ∈ ID .

Proof of Proposition 1. Let G1 be the coordinator of loopid1. Let G1, . . . , Gk be a sub-
set ofG1, . . . , Gm s.t. for eachi ∈ {2, . . . , k} goal Gi is a subgoal ofGi−1, andG1

is a subgoal ofGk. The node in the evaluation tree ofG1, . . . , Gk with selected atom
G2, . . . , Gk, G1 respectively has statusloop(ID), whereid1 ∈ ID , because of the follow-
ing observations:

• The identifiersid2, . . . , idk of the requests for goalsG1, . . . , Gk and the identifier
idk+1 of the request for goalG1 are constructed by procedures CREATE TABLE

(lines 5-6) and PROCESSRESPONSE(lines 21-22) in such a way thatid j ⊏ id1, for
eachj ∈ {2, . . . , k + 1}, and thus the lower requestidk+1 for G1 can be identified.
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• Upon receiving the lower requestidk+1, the principal evaluatingG1 returns a re-
sponse〈idk+1,Ansk+1, Sk+1,{id1}〉 to the principal evaluatingGk (procedure PRO-
CESSREQUEST, lines 5-7).

• The status of the node in the evaluation tree ofGk with selected atomG1 is set to
loop({id1}) (PROCESSRESPONSE, lines 12-13).
• A counter for loopid1 is added to setActiveGoals in the table of goalGk (PROCESS

RESPONSE, line 14).
• For eachi ∈ {2, . . . , k}, the principal evaluating goalGi sends to the principal

evaluating goalGi−1 a response of the form〈id i,Ansi, Si,ID〉, whereID is the
set of all loops inActiveGoals whose identifier is higher thanid i (GENERATE

RESPONSE, lines 18, 21, and 23), and thusid1 ∈ ID .
• The status of the node in the evaluation tree of goalGi−1 with selected atomGi is

set toloop(ID), whereid1 ∈ ID (PROCESSRESPONSE, lines 12-13). �

Corollary 1
Let G be a goal involved in a loopid . Let k be the number of nodes in the evaluation tree
of G with statusloop(ID) s.t. id ∈ ID . When a response is sent to the requester of the
higher request forG (or lower request, ifG is the loop coordinator), the counter of loopid
in setActiveGoals in the table ofG is set tok.

At each loop iteration, the counters of the loops in which a goal G is involved are set to
the number of subgoals ofG involved in those loops by procedure GENERATE RESPONSE,
lines 7 and 19. Hence, we now need to show that at each iteration of a loopid the number
of response messages with statusloop(id) received by the principal evaluatingG is equal
to the number of subgoals ofG involved in loopid , i.e., that counters correctly keep track
of the number of response messages received by the principalevaluatingG at each iteration
of loop id .

Informally, the correctness of counters stems from the factthat at each loop iteration
step for a goalG there isonly onechoice of loop identifier to include in the response to the
requester of a higher request forG. This is because of the following considerations:

1. LetG be a goal involved in one or more loops. In the loop processingphase, the loop
identifier included by the principal evaluatingG in the response sent to the requester
of a higher request forG is taken from the status of the root node of the evaluation
tree ofG (procedure GENERATE RESPONSE, lines 20-21).

2. After a response forG is sent by GENERATE RESPONSE(lines 20-23), the status of
the root node of the evaluation tree ofG is set toactive(line 24).

3. If G is a non-coordinator goal, then there can beat most oneloop identifier per
time in the status of the root node of its evaluation tree. Therefore, when sending
a response forG, procedure GENERATE RESPONSEhas only one choice of loop
identifier to include in the response status. The reason why anon-coordinator goal
can have at most one loop identifier in the status of the root ofits evaluation tree is
the following. The only point where the status of the root node of a non-coordinator
goalG is modified to take into account the loop being processed is online 18 of
procedure PROCESSRESPONSE, and the check on line 17 updates the status only in
case it is currently set toactive. We point out that when the response for a subgoal of
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G is processed by PROCESSRESPONSEthe status of the root of the evaluation tree
of G is alwaysactive, due to point (2) above and the fact that GEM only processes
one goal at a time (which is due to condition on line 24 of PROCESSRESPONSE),
and thus no response will be received by the principal evaluatingG in the context of
a loop unless a response forG was previously sent.

4. if G is the coordinator of a loopidl, then there can beat most twoloop identifiers per
time in the status of the root node of its evaluation tree: onefor loop idl, andat most
onefor a higher loopidh. Remember that as loop identifiers we use the identifier of
the higher request for the coordinator; hence, in this caseidl is the identifier of the
higher request forG. Given the condition on line 20 of GENERATE RESPONSE, only
idh can be included in the status of a response forG sent to the requester of a higher
request. In fact,idh (denotedid4 in the procedure) is the only identifier in the status
of the root node of the evaluation tree ofG that is higher thanidl (denotedid1 in
the procedure), i.e., higher than the identifier of the higher request forG. Therefore,
when sending a response forG, GENERATE RESPONSEhas only one choice of loop
identifier to include in the response status, namelyidh.
Technically, a coordinator can have at most two loop identifiers in the status of
the root node of its evaluation tree because of the following. Similarly to non-
coordinators, due to condition on line 17 of PROCESSRESPONSEonly one loop
identifier can be added to the root’s status on line 18 of PROCESSRESPONSE. This
occurs whenG receives a response from one of its subgoals in the context ofa higher
loop idh. A second loop identifier (the identifier of loopidl) can be added to the root
status on lines 8-9 of GENERATE RESPONSEif the response received by the princi-
pal evaluatingG in the context of loopidh leads to new answers ofG, which need
to be sent to the goals involved in loopidl. No more than two loops at a time will
be processed by the principal evaluatingG (i.e., idl and at most one higher loop
idh) because of the following reasons. Upon receiving a response in the context of a
higher loopidh:

• a response forG in the context of loopidh will not be sent to a higher goal until
a fixpoint for the loopidl of whichG is the coordinator is reached, during which
time the status of the root node of the evaluation tree ofG is loop({idh , idl}),
and

• due to the condition on line 24 of PROCESSRESPONSEno responses for higher
goals can be received by the principal evaluatingG until a response forG in the
context of loopidh is sent upwards. In fact, the counter of loopidh in the table
of higher goals cannot be0, because no response forG in the context of loopidh
was sent upwards yet. When a response forG is sent upwards, the status of the
root node of its evaluation tree becomesactiveagain (see point (2)).

Formally, the correctness of counters is demonstrated by the following Proposition.

Proposition 2

Let G be a goal andG1, . . . , Gk be the subgoals ofG s.t.G,G1, . . . , Gk are involved in
a loop id l. At each iteration of loopid l, the principal evaluatingG receivesk response
messages, one for each subgoalGi ∈ {G1, . . . , Gk}.
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Proof of Proposition 2. Let G,G1, . . . , Gk, . . . , Gm be all the goals involved in loopid l,
wherem ≥ k. Let id , id1, . . . , idm be the identifiers of the requests for goalsG,G1, . . . , Gm

respectively. The proof is by induction on the numberℓ of goalsGj ∈ {G1, . . . , Gm} s.t.
id j ⊏ id , that is, the number of goals whose request identifier is lower than the identifier
id of the request forG.

Base case: ℓ = 1. Then, alsok = 1. Let Gj ∈ {G1, . . . , Gm} be the only goal s.t.
id j ⊏ id . It is straightforward to see that goalGj is (a variant of) the coordinator of loop
id l, andid j denotes the lower request forGj . When there are no more nodes with status
new in the evaluation tree ofGj , i.e., when all the branches of the evaluation tree ofGj

have been evaluated, procedure GENERATE RESPONSEis invoked by ACTIVATE NODE

(lines 2-3). By procedure GENERATE RESPONSE(lines 12-14), at each loop iteration
one and only one response to the request for the coordinatorGj is sent by GEM to the
principal evaluatingG. Thus, at each iteration of loopid l the principal evaluatingG
receivesk = 1 response messages. Q.e.d.

Inductive case: Now, assume thatG hasℓ such goalsGj ∈ {G1, . . . , Gm} s.t. id j ⊏

id , whereℓ > 1. In this case, each subgoalGi ∈ {G1, . . . , Gk} of G is either the
coordinator of loopid l or a goal with at mostℓ − k subgoalsGp ∈ {G1, . . . , Gm} s.t.
idp ⊏ id i. If Gi is the coordinator of loopid l, by the same reasoning done in the base
case, one and only one response to the request forGi is sent by GEM to the principal
evaluatingG at each loop iteration.
On the other hand, ifGi is not the loop coordinator, there exist at mostℓ − k goals
Gp ∈ {G1, . . . , Gm} s.t. idp ⊏ id i. Let t be the number of subgoals ofGi involved in
loop id l. Sinceℓ−k ≤ ℓ−1, by the inductive hypothesis (∗) the principal evaluatingGi

receivest response messages at each iteration of loopid l. By Corollary 1, at each loop
iteration the counter of loopid l in the table of goalGi is set tot, and is decreased by
1 every time a response to the requests for its subgoals involved in the loop is received
(procedure PROCESSRESPONSE, lines 15-16). Therefore, aftert response messages,
the counter of loopid l in the table ofGi is 0, and procedure PROCESSRESPONSE

(lines 24-25) resumes the evaluation of goalGi. When there are no more nodes with
statusnew in the evaluation tree ofGi, procedure ACTIVATE NODE (lines 2-3) invokes
GENERATE RESPONSE. By procedure GENERATE RESPONSE(lines 20-21), one and
only one response to the request forGi is sent by GEM to the principal evaluatingG at
each iteration of loopid l. Therefore, at each iteration of loopid l the principal evaluating
goalG receivesk response messages. �

Finally, we show that procedure TERMINATE is eventually invoked for any goal in a
computation.

Proposition 3
LetG1 be a goal. Procedure TERMINATE is eventually called forG1.

Proof of Proposition 3. The proof is divided into two parts. First, we show that TERMINATE

is eventually called for a goalG1 that is not involved in a loop. Then, we show that it is
always invoked also ifG1 is involved in one or more loops.
The first part of the proof is straightforward, and is given bythe fact that the number of
answers of goalG1 is finite. This is because of the following observations:
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1. The global policyP is finite, and the terms inP that are not variables are constants
defined inP ; thus, the Herbrand model ofP is finite.

2. LetPG1
∈ P be the policy where goalG1 is defined. The answers ofG1 are com-

puted by GEM through the clauses inPG1
applicable toG1 (procedure CREATE TA-

BLE, lines 3-7). Each clause can be either a fact or have the formH ← B1, . . . , Bm,
such thatB1, . . . , Bm are defined in a policy inP . By (1), both the number of facts
in PG1

and the number of answers of subgoalsB1, . . . , Bn are finite.

Thus, the number of answers of goalG1 is finite. When all the answers ofG1 have been
computed and all the nodes in the partial tree ofG1 have been evaluated, procedure ACTI-
VATE NODE (lines 2-3) invokes GENERATE RESPONSE, which in turn (lines 2-3) invokes
TERMINATE.
Consider now the case in whichG1 is part of an SCC consisting of loopsid1, . . . , idk, s.t.
idk ⊏ . . . ⊏ id1. Let G1, . . . , Gm be all the goals involved in loopsid1, . . . , idk (where
m ≥ k), and goalGci ∈ {G1, . . . , Gm} be the coordinator of loopid i ∈ {id1, . . . , idk}.
Because the number of answers of each goalG1, . . . , Gm is finite, we have that:

• At each iteration of loopid i, if new answers of the loop coordinatorGci are derived,
they are sent to the requesters of the lower requests forGci , starting a new iteration
of loop id i (procedure GENERATE RESPONSE, lines 6-14). On the contrary, if no
answer ofGci is computed, the answers ofGci are sent to the requester of the higher
request forGci (GENERATE RESPONSE, lines 20-23). The loops higher thanid i in
the SCC are then processed.

• At each iteration of loopid1, if new answers of the leaderGc1 are derived, they are
sent to the requesters of the lower requests forGc1 , starting a new iteration of loop
id1 (procedure GENERATE RESPONSE, lines 6-14). Notice that this might cause a
fixpoint for the loops lower thanid1 in the SCC to be recomputed. On the contrary,
if no answer ofGc1 is computed, the answers ofGc1 are sent to the requester of the
higher request forGc1 , and a response with statusdisposed is sent to the requesters
of the lower requests forGc1 (GENERATE RESPONSE, lines 15-16 and TERMINATE,
lines 3-5).

• For each goalGj ∈ {G1, . . . , Gm}, all the nodes in the evaluation tree ofGj are
disposed (PROCESSRESPONSE, lines 5-8); then, procedure ACTIVATE NODE is in-
voked, which immediately invokes GENERATE RESPONSE(lines 2-3).
• The principal evaluating goalGj sends a response with statusdisposed to the re-

quester of the higher request forGj . If Gj is a loop coordinator, the principal eval-
uatingGj also sends a response with statusdisposed to the requesters of the lower
requests forGj (GENERATE RESPONSE, lines 2-3 and TERMINATE, lines 3-5).

Therefore, procedure TERMINATE is always invoked for goalG1. �

Proposition 3 implies that the table of a goal involved in a computation is always dis-
posed. In fact, the disposal of the table of a goal is carried out by procedure TERMI-
NATE (lines 2, 6, and 7). Consider, for instance, the following variation of the global pol-
icy introduced in Section 3.1 of the paper, where the research insituteri refers to goal
memberOfAlpha(c1,X) instead ofmemberOfAlpha(c2,X):
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memberOfAlpha(c1,X)← memberOfAlpha(c2,X).

memberOfAlpha(c2,X)← memberOfAlpha(ri,X).

memberOfAlpha(ri,X)← memberOfAlpha(c1,X).

First of all, let us recall that the termination of the evaluation of the goals involved in a
loop is commanded by the leader of the SCC (goalmemberOfAlpha(c1,X) in the exam-
ple policy). When no new answer of the leader is computed byc1 during a loop iteration,
procedure TERMINATE is invoked (lines 15-16 of GENERATERESPONSE), which disposes
the table of the goal and sends a response with statusdisposedboth to the requesters of the
higher and lower requests formemberOfAlpha(c1,X) (lines 3-5). Whenri receives the re-
sponse, it disposes all the nodes in the evaluation tree ofmemberOfAlpha(ri,X) involved
in a loop (lines 5-8 of PROCESSRESPONSE), which in this case corresponds to disposing
all the non-root nodes. At this point, the status of the root node of the evaluation tree of
memberOfAlpha(ri,X) is active(see point 2 of the discussion preceding Proposition 2).
Therefore, the condition on line 24 of PROCESSRESPONSEis satisfied, and procedure AC-
TIVATE NODE is invoked formemberOfAlpha(c1,X). Since all the non-root nodes in the
evaluation tree ofmemberOfAlpha(c1,X) have statusdisposed, GENERATE RESPONSE

is invoked (lines 2-3 of ACTIVATE NODE), which in turn (lines 2-3) invokes procedure
TERMINATE. TERMINATE disposes the table of goalmemberOfAlpha(ri,X) and sends a
response with statusdisposedto c2 . Similarly tomemberOfAlpha(ri,X), PROCESSRE-
SPONSEdisposes all the nodes in the evaluation tree of goalmemberOfAlpha(c2,X), and
a response with statusdisposedis sent byc2 to c1 by procedure TERMINATE. Since the
root of the evaluation tree ofmemberOfAlpha(c1,X) had already been disposed, in this
case the response message is ignored byc1 (line 4 of PROCESSRESPONSE).

Next, we prove the completeness and termination results.

Proof of Theorem 2. We proceed by contradiction, and assume thatS is missing a solution
of G1. That is, there exists a successful SLD derivation ofP ∪{G1} with c.a.s.θ and there
is no solutionσ of G1 generated by the algorithm s.t.G1θ = G1σ (hypothesis).
This implies that there exist a (maximal) set of goalsG1, . . . , Gk in S s.t. for eachi ∈
{1, . . . , k} there is a non-empty maximal set of substitutions{θi,1, . . . , θi,mi

} s.t.:

(a) Gi is a goal inS.
(b) θi,1, . . . , θi,mi

are correct solutions ofGi according to SLD resolution: for eachθi,j
there exists a successful SLD derivation ofP ∪ {Gi} with c.a.s.θi,j (up to renaming).

(c) The algorithm does not generate the answersGiθi,1, . . . , Giθi,mi
(up to renaming).

The setG1, . . . , Gk is not empty as it contains at leastG1 (the finiteness of the construction
is demonstrated in the proof of Proposition 3).

For eachi, j, let deri,j be the SLD derivation ofP ∪ {Gi} with c.a.s.θi,j of minimal
length. Let us choose integersp, q in such a way thatderp,q has minimal length among the
derivations in the set{deri,j}. The fact thatderp,q has minimal length implies that for any
goalG′ in S, the following holds: if there exists an SLD derivation ofP ∪ {G′} of length
smaller thanlen(derp,q) with c.a.s.θ′, then the algorithm generates a solutionϑ′ for which
G′θ′ is a renaming ofG′ϑ′ (∗).

Let c be the clause used in the first step of the derivationderp,q. If c is a fact, we im-
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mediately have a contradiction: sinceGp is a goal inS, this means that there exists an
evaluation tree ofGp =← Ap created by CREATE TABLE (lines 2-7) with root node
〈id , Ap ← Ap, new〉 and a node with clausec as subnode of the root node. Therefore,
the algorithm will compute a c.a.s. equivalent toθp,q (ACTIVATE NODE), contradicting the
hypothesis.

If c is a ruleH ← B1, . . . , Bn, andσ0 = mgu(Gp, H), then by hypothesis there
exist SLD derivationsderB1

, . . . , derBn
, and substitutionsσ1, . . . , σn s.t.Hσ0 · · ·σn =

Gpθp,q, and for eachi ∈ {1, . . . , n}:

• derBi
is an SLD derivation ofP ∪ {← Biσ0 · · ·σi−1}.

• The c.a.s. ofderBi
is σi, andlen(derBi

) < len(derp,q). (∗∗)

SinceGp is a goal inS, there exists an evaluation tree ofGp created by CREATE TABLE

(lines 2-7) with root node〈id , Ap ← Ap, new〉 and a node with clausec as subnode of the
root node. Then, it is easy to see that for eachi ∈ {1, . . . , n}:

• There exists a node in the evaluation tree ofGp with selected atomBiσ0 · · ·σi−1

(ACTIVATE NODE, lines 8, 18-19).
• There exists an evaluation tree of← Biσ0 · · ·σi−1 created by CREATE TABLE

(lines 2-7) at the location ofBiσ0 · · ·σi−1.
• Sincelen(derBi

) < len(derp,q), by (∗) and (∗∗) the algorithm computes a solution
equivalent toσi of the goal← Biσ0 · · ·σi−1.

• By Propositions 2 and 3, the answerBiσ0 · · ·σi is sent to the requester of← Biσ0 · · ·σi−1

by GENERATE RESPONSE(lines 12-14 or 20-23) if← Biσ0 · · ·σi−1 is involved in
a loop, or by TERMINATE (lines 3-5) otherwise.
• There exists a node with clause(H ← Bi+1, . . . , Bn)σ0 · · ·σi added to the evalua-

tion tree ofGp by PROCESSRESPONSE(lines 20-23).

Therefore,σ1 · · ·σn is (equivalent to) a solution of the evaluation tree ofGp, contradicting
(a), (b), and (c). �

Proof of Theorem 3. We assume that nodes (i.e., goals) in the call graph ofP inherit the
identifier (and the associated ordering) of the request for which they are created. Termina-
tion follows from two observations: (i) the call graph ofP is finite, and (ii) the number of
response messages exchanged by the principals involved in the evaluation ofG is finite.
The call graph ofP is finite (i) for the following reasons:

1. The set of goals over predicates inP (up to renaming) is finite. This is because terms
that are not variables are constants inP .

2. There is no infinite path in the call graph ofP composed of nodesid1, . . . , idn s.t.
idn ⊏ . . . ⊏ id1. This is because of (1) and because the algorithm never creates a
new node with identifierid i for a goal if a node with identifierid j already exists for
a variant of that goal andid i ⊏ id j .

3. The outdegree of each node in the call graph ofP is finite. This is because the
number of atoms in the body of each clause inP is finite.

The number of response messages is finite (ii) because:

1. The number of answers of each goal defined inP is finite (see the proof of Proposi-
tion 3).
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Fig. B 1. Call Graph of the Evaluation ofmemberOfAlpha(c1,X) with Respect to the Example
Global Policy

2. The (possibly empty) set of answers of a goal are transmitted only when a table for
the goal is first created (and a node representing the goal is added to the call graph
of P ) or new answers of its subgoals are received.

3. For any nodesid1 andid2, a set of answers that flows fromid2 to id1 in response to a
requestid2 never contains answers previously communicated in response to request
id2 (SEND RESPONSE, lines 3-4).

4. An empty set of answers may flow fromid2 to id1 only if id2 ⊏ id1 (GENER-
ATE RESPONSE, lines 20-23, and TERMINATE, lines 3-5), orid1 identifies a lower
request and a loopid2 has just been identified (PROCESSREQUEST, lines 5-7).

5. There is no infinite path composed of nodesidn, . . . , id1 in the call graph ofP
through which the answers flow s.t.idn ⊏ . . . ⊏ id1.

6. By Proposition 3, procedure TERMINATE is eventually invoked for any goal. �

Appendix B Example

In this section we show how GEM computes the answers of a goal using the procedures
presented in Section 3.3 of the paper. As an example global policy, we use a fragment of the
policy introduced in Section 1. In particular, we consider the following policy statements:

1.memberOfAlpha(c1,X)← projectPartner(mc,Y ),memberOfAlpha(Y ,X).

2. projectPartner(mc,c2).

3. projectPartner(mc,c3).

4.memberOfAlpha(c2,X)← memberOfAlpha(c1,X).

5.memberOfAlpha(c2,alice).

6.memberOfAlpha(c3,bob).

The call graph of the global policy is shown in Figure B 1. We illustrate the compu-
tation for an initial request(h1,h,memberOfAlpha(c1,X)) from hospitalh to companyc1.
Table B 1 shows the list of all procedure calls made by GEM to produce the response to the
initial request. The first column of the table indicates the order in which the calls are made;
the second column denotes the principal and location where each procedure is evaluated.
GEM computes the answers of goalmemberOfAlpha(c1,X) by making 53 procedure calls;
the number of messages exchanged between different principals, however, is only 14, con-
sisting of 5 request messages and 9 response messages (including the initial request and
its response). Next, we present and discuss some “screenshots” showing the status of the
computation at various stages.
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Call Principal Procedure

1 c1 PROCESSREQUEST((h1,h,memberOfAlpha(c1,X)))
2 c1 ACTIVATE NODE(memberOfAlpha(c1,X))
3 mc PROCESSREQUEST((h1c11,c1,projectPartner(mc,Y)))
4 mc ACTIVATE NODE(projectPartner(mc,Y))
5 mc ACTIVATE NODE(projectPartner(mc,Y))
6 mc ACTIVATE NODE(projectPartner(mc,Y))
7 mc GENERATE RESPONSE(projectPartner(mc,Y))
8 mc TERMINATE(projectPartner(mc,Y))
9 mc SEND RESPONSE((h1c11,c1,projectPartner(mc,Y)),disposed,{})
10 c1 PROCESSRESPONSE(h1c11,{projectPartner(mc,c2),projectPartner(mc,c3)},disposed,{})
11 c1 ACTIVATE NODE(memberOfAlpha(c1,X))
12 c2 PROCESSREQUEST((h1c12,c1,memberOfAlpha(c2,X)))
13 c2 ACTIVATE NODE(memberOfAlpha(c2,X))
14 c1 PROCESSREQUEST((h1c12c21,c2,memberOfAlpha(c1,X)))
15 c1 SEND RESPONSE((h1c12c21,c2,memberOfAlpha(c1,X)),active,{h1})
16 c2 PROCESSRESPONSE(h1c12c21,{},active,{h1})
17 c2 ACTIVATE NODE(memberOfAlpha(c2,X))
18 c2 ACTIVATE NODE(memberOfAlpha(c2,X))
19 c2 GENERATE RESPONSE(memberOfAlpha(c2,X))
20 c2 SEND RESPONSE((h1c12,c1,memberOfAlpha(c2,X)),active,{h1})
21 c1 PROCESSRESPONSE(h1c12,{memberOfAlpha(c2,alice)},active,{h1})
22 c1 ACTIVATE NODE(memberOfAlpha(c1,X))
23 c3 PROCESSREQUEST((h1c13,c1,memberOfAlpha(c3,X)))
24 c3 ACTIVATE NODE(memberOfAlpha(c3,X))
25 c3 ACTIVATE NODE(memberOfAlpha(c3,X))
26 c3 GENERATE RESPONSE(memberOfAlpha(c3,X))
27 c3 TERMINATE(memberOfAlpha(c3,X))
28 c3 SEND RESPONSE((h1c13,c1,memberOfAlpha(c3,X)),disposed,{})
29 c1 PROCESSRESPONSE(h1c13,{memberOfAlpha(c3,bob)},disposed,{})
30 c1 ACTIVATE NODE(memberOfAlpha(c1,X))
31 c1 ACTIVATE NODE(memberOfAlpha(c1,X))
32 c1 ACTIVATE NODE(memberOfAlpha(c1,X))
33 c1 GENERATE RESPONSE(memberOfAlpha(c1,X))
34 c1 SEND RESPONSE((h1c12c21,c2,memberOfAlpha(c1,X)),loop(h1),{})
35 c2 PROCESSRESPONSE(h1c12c21,{memberOfAlpha(c1,alice),memberOfAlpha(c1,bob)},loop(h1),{})
36 c2 ACTIVATE NODE(memberOfAlpha(c2,X))
37 c2 ACTIVATE NODE(memberOfAlpha(c2,X))
38 c2 ACTIVATE NODE(memberOfAlpha(c2,X))
39 c2 GENERATE RESPONSE(memberOfAlpha(c2,X))
40 c2 SEND RESPONSE((h1c12,c1,memberOfAlpha(c2,X)),loop(h1),{h1})
41 c1 PROCESSRESPONSE(h1c12,{memberOfAlpha(c2,bob)},loop(h1),{h1})
42 c1 ACTIVATE NODE(memberOfAlpha(c1,X))
43 c1 ACTIVATE NODE(memberOfAlpha(c1,X))
44 c1 GENERATE RESPONSE(memberOfAlpha(c1,X))
45 c1 TERMINATE(memberOfAlpha(c1,X))
46 c1 SEND RESPONSE((h1,h,memberOfAlpha(c1,X)),disposed,{})
47 c1 SEND RESPONSE((h1c12c21,c2,memberOfAlpha(c1,X)),disposed,{})
48 c2 PROCESSRESPONSE(h1c12c21,{},disposed,{})
49 c2 ACTIVATE NODE(memberOfAlpha(c2,X))
50 c2 GENERATE RESPONSE(memberOfAlpha(c2,X))
51 c2 TERMINATE(memberOfAlpha(c2,X))
52 c2 SEND RESPONSE((h1c12,c1,memberOfAlpha(c2,X)),disposed,{})
53 c1 PROCESSRESPONSE(h1c12,{},disposed,{})

Table B 1. Procedure Call Stack For the Example Global Policy

When principalc1 receives the request for goalmemberOfAlpha(c1,X) from h, it calls
procedure PROCESSREQUEST (Algorithm 1 in Section 3.3 of the paper) that initializes
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Principal c1

HR (h1,h,←memberOfAlpha(c1,X))
LR {}
ActiveGoals {}
AnsSet {}
Tree (h1,memberOfAlpha(c1,X)← memberOfAlpha(c1,X),new)

(h1c11,memberOfAlpha(c1,X)← projectPartner(mc,Y), memberOfAlpha(Y,X),new)

Table B 2. Status of the Computation After Procedure Call 1 in Table B 1

Principal c1

HR (h1,h,←memberOfAlpha(c1,X))
LR {}
ActiveGoals {}
AnsSet {}
Tree (h1,memberOfAlpha(c1,X)← memberOfAlpha(c1,X),active)

(h1c11,memberOfAlpha(c1,X)← projectPartner(mc,Y), memberOfAlpha(Y,X),active)

Principal mc

HR (h1c11,c1,←projectPartner(mc,Y))
LR {}
ActiveGoals {}
AnsSet {(projectPartner(mc,c2),{}),(projectPartner(mc,c3),{})}
Tree (h1c11,projectPartner(mc,Y)← projectPartner(mc,Y),new)

(h1c11mc1,projectPartner(mc,c2),answer)
(h1c11mc2,projectPartner(mc,c3),answer)

Table B 3. Status of the Computation After Procedure Call 7 in Table B 1

the table of the goal. Table B 2 shows the table ofmemberOfAlpha(c1,X) resulting from the
execution of PROCESSREQUESTon the initial request. The table fieldHR (higher request)
is set to the initial request, and the evaluation tree of the goal,Tree, is initialized by adding
to the root node a subnode representing the only clause inc1’s local policy applicable to
the goal, i.e., clause 1. The node status is set tonew, and the node identifier is obtained
by concatenating the request identifierh1 with stringc11. To keep the representation more
compact, in Table B 2 and in the other tables presented in thissection the evaluation tree of
a goal is represented as a list of nodes rather than as the structure defined in Section 3.3 of
the paper.

In order to compute the list of project members,c1 needs to first retrieve frommc the
list of partner companies in the project, and then for each ofthese companies the list of
its project members. Table B 3 shows the status of the computation after goalproject-
Partner(mc,Y)has been completely evaluated bymc (procedure calls 2 to 7 in Table B 1),
i.e., after the set of project partners has been computed. The request for goalprojectPart-
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Principal c1

HR (h1,h,←memberOfAlpha(c1,X))
LR {(h1c12c21,c2,←memberOfAlpha(c1,X))}
ActiveGoals {}
AnsSet {}
Tree (h1,memberOfAlpha(c1,X)← memberOfAlpha(c1,X),active)

(h1c11,memberOfAlpha(c1,X)← projectPartner(mc,Y), memberOfAlpha(Y,X),disposed)
(h1c12,memberOfAlpha(c1,X)← memberOfAlpha(c2,X),active)
(h1c13,memberOfAlpha(c1,X)← memberOfAlpha(c3,X),new)

Principal mc

HR null
LR {}
ActiveGoals {}
AnsSet {(projectPartner(mc,c2),{h1c11}),(projectPartner(mc,c3),{h1c11})}
Tree (h1c11,projectPartner(mc,Y)← projectPartner(mc,Y),disposed)

(h1c11mc1,projectPartner(mc,c2),answer)
(h1c11mc2,projectPartner(mc,c3),answer)

Principal c2

HR (h1c12,c1,←memberOfAlpha(c2,X))
LR {}
ActiveGoals {}
AnsSet {}
Tree (h1c12,memberOfAlpha(c2,X)← memberOfAlpha(c2,X),active)

(h1c12c21,memberOfAlpha(c2,X)← memberOfAlpha(c1,X),active)
(h1c12c22,memberOfAlpha(c2,alice),new)

Table B 4. Status of the Computation After Procedure Call 15 in Table B 1

ner(mc,Y)from c1 to mc is generated by the activation of nodeh1c11 in c1’s table (pro-
cedure call 2, ACTIVATE NODE), which results in a change of status fromnew to active

of both the root node and the node itself. Similarly toc1, whenmc receives the request
it creates the table of the goal (call 3 in Table B 1), settingHR to the higher request and
initializing Tree with clauses 2 and 3 of the global policy presented above. Twocalls
to procedure ACTIVATE NODE (calls 4 and 5) lead to the identification of two answers
of the goal, namelyprojectPartner(mc,c2) andprojectPartner(mc,c3), which are added to
AnsSet with an empty list of request identifiers. At the next call to ACTIVATE NODE

(call 6), the evaluation tree of goalprojectPartner(mc,Y)has no more nodes to activate
(i.e., all the branches of the evaluation tree have been inspected) and procedure GENER-
ATE RESPONSEis invoked (call 7). Since the goal is not involved in any loop, its evaluation
is completed and procedure TERMINATE is executed next (line 3 of Algorithm 6 in Sec-
tion 3.3 of the paper).

As a result of the execution of procedure TERMINATE, the root node of the evalua-
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tion tree of goalprojectPartner(mc,Y)is disposed and the answers identified are sent to
c1 through procedure SEND RESPONSE(procedure call 9, results shown in Table B 4).
The response message received byc1 is processed by procedure PROCESSRESPONSE; the
message contains the two answers (projectPartner(mc,c2) andprojectPartner(mc,c3)) and
an empty set of loop identifiers, and has statusdisposed, indicating that no more answers of
goalprojectPartner(mc,Y)will be received. The evaluation tree of goalmemberOfAlpha(c1,X)
is updated by adding two subnodes to nodeh1c11, one for each project partner (seec1’s
table in Table B 4).

The activation of nodeh1c12 by c1 leads to the request for goalmemberOfAlpha(c2,X)
to c2. Accordingly,c2 creates a table for the goal; the evaluation tree of the goal consists of
three nodes: the root node and two subnodes, representing clauses 4 and 5 of the global pol-
icy, with identifiersh1c12c21 andh1c12c22 respectively. The activation of nodeh1c12c21
by c2, in turn, leads to a request for goalmemberOfAlpha(c1,X) to c1, forming a loop. The
loop is identified byc1 in procedure PROCESSREQUEST(call 14 in Table B 1): in fact, the
identifier of the higher request formemberOfAlpha(c1,X) (h1) is a prefix of the identifier
of c2’s request (h1c12c21). Therefore, the lower request is added byc1 to setLR, and a
response is sent fromc1 to c2 with a notification of looph1 (call 15).

The loop notification sent fromc1 to c2 starts the loop processing phase, which in-
volves procedure calls from 16 to 34 in Table B 1. The results of the loop processing
phase are shown in Table B 5. Upon receiving the loop notification, c2 sets the status of
the node whose evaluation formed the loop toloop({h1}) and “freezes” its evaluation;
then, it proceeds with the evaluation of the other nodes of the evaluation tree. The ac-
tivation of nodeh1c12c22 (procedure call 17), in particular, leads to the first answerof
the goal, i.e.,memberOfAlpha(c2,alice). Since at this point there are no more nodes to
be activated, the computed answer can be sent toc1 with a notification about the loop.
Before sending the answer,c2 sets the counter inActiveGoals to 1 (procedure GENER-
ATE RESPONSE, call 19) and adds the identifier ofHR to the set of recipients of answer
memberOfAlpha(c2,alice) in AnsSet (procedure SEND RESPONSE, call 20).

The loop is now processed atc1. After adding a subnode to the evaluation tree of
goal memberOfAlpha(c1,X) for the answer received fromc2, c1 freezes nodeh1c12 and
starts the evaluation of nodeh1c13 (procedure call 22). This results in a request from
c1 to c3 for the evaluation of goalmemberOfAlpha(c3,X). The only clause applicable
to memberOfAlpha(c3,X) (clause 6 of the global policy) is a fact; therefore, the goalis
completely evaluated after one call to procedure ACTIVATE NODE (call 24). The an-
swer of the goal,memberOfAlpha(c3,bob), is returned toc1 (procedure call 28). Since
the status of the response message isdisposed, c1 disposes nodeh1c13 and adds subn-
odeh1c15 to it reflecting the answer received fromc3 (procedure PROCESSRESPONSE,
call 29). The next two executions of procedure ACTIVATE NODE at c1 lead to the identi-
fication of two answers of goalmemberOfAlpha(c1,X), namelymemberOfAlpha(c1,alice)
andmemberOfAlpha(c1,bob). Before returning these answers to the requester ofHR (i.e.,
h), however, all the loops need to be fully processed. For thisreason,c1 sends the two an-
swers toc2 in response toLR first; the status of the response message isloop(h1), and the
status of the root node of the evaluation tree inc1’s table is changed accordingly (procedure
calls 33 and 34 in Table B 1).

Now, the second iteration of the loop processing phase starts (procedure calls 35-44). In
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Principal c1

HR (h1,h,←memberOfAlpha(c1,X))
LR {(h1c12c21,c2,←memberOfAlpha(c1,X))}
ActiveGoals {(h1,1)}
AnsSet {(memberOfAlpha(c1,alice),{h1c12c21}),(memberOfAlpha(c1,bob),{h1c12c21})}
Tree (h1,memberOfAlpha(c1,X)← memberOfAlpha(c1,X),loop({h1}))

(h1c11,memberOfAlpha(c1,X)← projectPartner(mc,Y), memberOfAlpha(Y,X),disposed)
(h1c12,memberOfAlpha(c1,X)← memberOfAlpha(c2,X),loop({h1}))
(h1c13,memberOfAlpha(c1,X)← memberOfAlpha(c3,X),disposed)
(h1c14,memberOfAlpha(c1,alice),answer)
(h1c15,memberOfAlpha(c1,bob),answer)

Principal mc

HR null
LR {}
ActiveGoals {}
AnsSet {(projectPartner(mc,c2),{h1c11}),(projectPartner(mc,c3),{h1c11})}
Tree (h1c11,projectPartner(mc,Y)← projectPartner(mc,Y),disposed)

(h1c11mc1,projectPartner(mc,c2),answer)
(h1c11mc2,projectPartner(mc,c3),answer)

Principal c2

HR (h1c12,c1,←memberOfAlpha(c2,X))
LR {}
ActiveGoals {(h1,1)}
AnsSet {(memberOfAlpha(c2,alice),{h1c12})}
Tree (h1c12,memberOfAlpha(c2,X)← memberOfAlpha(c2,X),active)

(h1c12c21,memberOfAlpha(c2,X)← memberOfAlpha(c1,X),loop({h1}))
(h1c12c22,memberOfAlpha(c2,alice),answer)

Principal c3

HR null
LR {}
ActiveGoals {}
AnsSet {(memberOfAlpha(c3,bob),{h1c13})}
Tree (h1c13,memberOfAlpha(c3,X)← memberOfAlpha(c3,X),disposed)

(h1c13c31,memberOfAlpha(c3,bob),answer)

Table B 5. Status of the Computation After Procedure Call 34 in Table B 1

this second iteration,c2 identifies a new answer of its goal, i.e.,memberOfAlpha(c2,bob),
which is sent back toc1. This answer, however, does not lead to new answers atc1. Since
h1 is the only loop in the SCC (and hencememberOfAlpha(c1,X) is the leader of the SCC),
and no new answers ofmemberOfAlpha(c1,X) have been computed, the loop termination
phase can start (line 15 of Algorithm 6 in Section 3.3 of the paper). In this phase,c1
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Principal c1

HR null
LR {}
ActiveGoals {}
AnsSet {(memberOfAlpha(c1,alice),{h1c12c21,h1}),(memberOfAlpha(c1,bob),{h1c12c21,h1})}
Tree (h1,memberOfAlpha(c1,X)← memberOfAlpha(c1,X),disposed)

(h1c11,memberOfAlpha(c1,X)← projectPartner(mc,Y), memberOfAlpha(Y,X),disposed)
(h1c12,memberOfAlpha(c1,X)← memberOfAlpha(c2,X),disposed)
(h1c13,memberOfAlpha(c1,X)← memberOfAlpha(c3,X),disposed)
(h1c14,memberOfAlpha(c1,alice),answer)
(h1c15,memberOfAlpha(c1,bob),answer)
(h1c16,memberOfAlpha(c1,bob),answer)

Principal mc

HR null
LR {}
ActiveGoals {}
AnsSet {(projectPartner(mc,c2),{h1c11}),(projectPartner(mc,c3),{h1c11})}
Tree (h1c11,projectPartner(mc,Y)← projectPartner(mc,Y),disposed)

(h1c11mc1,projectPartner(mc,c2),answer)
(h1c11mc2,projectPartner(mc,c3),answer)

Principal c2

HR null
LR {}
ActiveGoals {}
AnsSet {(memberOfAlpha(c2,alice),{h1c12}),(memberOfAlpha(c2,bob),{h1c12})}
Tree (h1c12,memberOfAlpha(c2,X)← memberOfAlpha(c2,X),disposed)

(h1c12c21,memberOfAlpha(c2,X)← memberOfAlpha(c1,X),disposed)
(h1c12c22,memberOfAlpha(c2,alice),answer)
(h1c12c23,memberOfAlpha(c2,alice),answer)
(h1c12c24,memberOfAlpha(c2,bob),answer)

Principal c3

HR null
LR {}
ActiveGoals {}
AnsSet {(memberOfAlpha(c3,bob),{h1c13})}
Tree (h1c13,memberOfAlpha(c3,X)← memberOfAlpha(c3,X),disposed)

(h1c13c31,memberOfAlpha(c3,bob),answer)

Table B 6. Final Status of the Computation for the Example Global Policy

sends a response message with statusdisposed to bothc2 (the other principal in the loop)
andh (to which also the answers are sent). Upon receiving this message,c2 disposes all
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Fig. C 1. Call Graph of the Global Policies Used in the Experiments Set 1

the nodes in the evaluation tree ofmemberOfAlpha(c2,X) that are involved in some loop
(procedure PROCESSRESPONSE), and forwards the message back toc1 (calls 51 and 52).
c1 simply ignores the message, as the status of the root node of the evaluation tree of
memberOfAlpha(c1,X) is alreadydisposed (line 4 of Algorithm 5 in Section 3.3 of the
paper), and the computation terminates. Table B 6 shows the status of the tables of all the
goals at the end of the computation.

Appendix C Practical Evaluation

Figure C 1 shows how the global policies defined in Appendix B and in Section 3.1 of
the paper have been modified to evaluate the performance of GEM in response to an in-
crease in: (1) the number of principals and clauses (Figure 1(a)), (2) the number of loops
(Figure 1(c)), and (3) both the number of principals, clauses and loops (Figure 1(b)) in a
global policy. For each global policy, six variants have been created; in the figures, we use
identifiers from x.0 to x.5 (where x is either 1, 2, or 3) to denote the variants, where variant
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(a) Total and Computation Time for an Increasing Number of Loopsin the Com-
putation

(b) Total and Tables Memory for an Increasing Number of Loops inthe Compu-
tation

Fig. C 2. Time and Memory Results for Experiments Set 1

x.0 represents the original policy. To keep the figures as simple yet informative as possible,
we label the nodes in the graph with the identifier of the principal evaluating the goal they
represent rather than with the goal itself, as for the purpose of the experiments the number
of principals involved in a computation is more relevant than the goals they evaluate.

Figures C 2 and C 3 provide a graphical overview of the main evaluation results of GEM,
based on the values presented in Tables 1 and 2 in Section 5 of the paper.
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(a) Time Results with Respect to the Number of Messages Exchanged in the
Computation

(b) Memory Results with Respect to the Number of Answers Derived in the
Computation

Fig. C 3. Time and Memory Results for Experiments Set 2


